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The long-term, steady-state marine carbon isotope record reflects
changes to the proportional burial rate of organic carbon relative
to total carbon on a global scale. For this reason, times of high ˡ13C
are conventionally interpreted to be oxygenation events caused by
excess organic burial. Here we show that the carbon isotope mass
balance is also significantly affected by tectonic uplift and erosion
via changes to the inorganic carbon cycle that are independent of
changes to the isotopic composition of carbon input. This view
is supported by inverse co-variance between ˡ13C and a range
of uplift proxies, including seawater 87Sr/86Sr, that demonstrates
how erosional forcing of carbonate weathering outweighs that of
organic burial on geological time scales. A model of the long-term
carbon cycle shows that increases in ˡ13C need not be associated
with increased organic burial and that alternative tectonic drivers
(erosion, outgassing) provide testable and plausible explanations
for sustained deviations from the long-term ˡ13C mean. Our ap-
proach emphasizes the commonly overlooked difference between
how net and gross carbon fluxes affect the long-term carbon
isotope mass balance, and may lead to reassessment of the role
that the ˡ13C record plays in reconstructing the oxygenation of
Earthಬs surface environment.

carbon isotopes | mass balance | tectonics | carbonate weathering |

long-term carbon cycle

Introduction

Earthಬs highly oxygenated atmosphere derives largely from the
splitting of thewatermolecule during photosynthesis. Respiration
and decay reverse this process, consuming oxygen, but the burial
of organic matter in sediments allows oxygen to accumulate in
the atmosphere. Net oxygenation may also arise from burial of
reduced sulphur species, but the organic carbon burial flux has
been the major source of oxygen throughout the Phanerozoic (1-
6).

Because photosynthesis results in 13C-depleted organic car-
bon, the carbon isotope composition of past oceans has played
an important role in tracing the oxygenation of Earthಬs surface
environment. The conventional interpretation of C-isotope mass
balance (7) presumes that prolonged intervals of high carbonate
ˡ13C are the result of elevated rates of organic carbon burial
(removing a larger fraction of 13C-depleted organic matter), and
so correspond to an excess of oxygen production over consump-
tion, which is in large part due to the oxidation of organic matter
during surface weathering. This paradigm has led to the view that
atmospheric oxygen levels rose at three crucial junctures in Earth
history: at ∼2.1 Ga (8-9), ∼0.8 Ga (10-11) and ∼0.3 Ga (7,12),
and this has become generally accepted (13).

This paradigm encounters difficulties. Firstly, although
Earthಬs oxygenation history does not rely solely on carbon isotope
data, it is remarkable that independent evidence for oxygenation
does not always coincide with high ˡ13C (14). The Ediacaran-
Cambrian faunal radiation (Cambrian Explosion), which is com-
monly attributed to oxygenation, is strangely accompanied by
low, rather than high ˡ13C (Fig. 1), while the many fluctuations
in atmospheric oxygen between 15% and 32% that have been

identified using the Phanerozoic carbon isotope record (12), lack
corroborating evidence (14). Although such inconsistencies are
widely acknowledged, alternative explanations to explain global
trends in ˡ13C are uncommon. One possibly viable alternative
attributes ˡ13C fluctuations to the amount of diagenetically pre-
cipitated (and isotopically light) carbonate cement worldwide
(14-15). Such large changes remain unsubstantiated, while the
link to the global carbon cycle must appeal to a sampling bias,
wherein a great mass of isotopically light material can be buried
(to drive a positive excursion) yet does not lower the bulk isotopic
composition of the carbonates which are analyzed. We argue that
the preservation of a ˡ13C signal that is correlated with other
global processes is evidence against such sampling errors, and
must be the result of definable system interactions (Fig. 1).

A second problem stems from the driving mechanism for
increased organic burial during times of high ˡ13C. It is widely
supposed that higher rates of organic burial are caused by in-
creased nutrient input and/or sedimentation rates through weath-
ering and erosion (5,11,16-17). However, long-term carbon iso-
tope trends exhibit low, not high values during the collisional
phases of supercontinent formation, while ˡ13C shows an unex-
pected inverse relationship with erosion proxies, such as seawater
87Sr/86Sr and reconstructed sediment masses (Fig. 1, see SI for
correlations), best illustrated by the Ediacaran-Ordovician oro-
genic interval of exceptionally high sedimentary fluxes, which are
independently verified by zircon isotope studies (see SI) . The C
isotope record implies therefore that erosional forcing of organic
burial does not control the long-termC isotopemass balance, and

Significance

The carbon isotope record has played a major role in re-
constructing the oxygen and carbon dioxide content of the
ancient atmosphere. However, known oxygenation events are
not always reflected in the isotopic record of marine carbon-
ate rocks, while conventional interpretations imply that less
organic matter is buried when erosion rates are high, which
is hard to explain. Here we show that both issues can be
resolved if limestone weathering makes up a proportionately
greater fraction of the global carbon cycle at high erosion
rates. We argue that the link between carbon isotopes and
oxygenationis more tenuous than commonly assumed, and
propose a case-by-case re-examination of Earthಬs oxygenation
history.
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Fig. 1. Phanerozoic recordsof marine carbonate ˡ13C (33), seawater Sr
isotope composition (33) and mass of sedimentary material (two shades
correspond to measured and estimated total mass, respectively) (34). Diverse
tectonic proxies identify the Ediacaran-Ordovician interval as a time of
maximal uplift and erosion, but minimal ˡ13C (see SI).

that any such effect may be outweighed by an erosional forcing of
carbonate burial.

The long-term carbon isotope mass balance
Figure 2 shows a representation of the long-term carbon

cycle, which forms the basis for isotope mass balance calculations
(18). Carbon enters the atmosphere/ocean system by four routes:
oxidative weathering of fossil carbon (Fwg), carbonate weathering
(Fwc) and metamorphic degassing of sedimentary organic carbon
(Fmg) and carbonates (Fmc). Carbon leaves the surface pool via
burial of organic carbon (Fbg) and inorganic carbonates (Fbc),
with the fraction of total burial leaving via the organic route
denoted forg. The dashed lines in figure 2 show an important
difference between net (solid lines) and gross (all lines) fluxes in
the carbon cycle, which arises because the carbonate weathering-
precipitation cycle is a CO2 neutral process on long time-scales
(19) (see SI).

The C-isotope mass balance (eq. 1) is based around the
principle that on time scales greater than the residence time of
carbon in the ocean (about 105 years), the quantity and isotopic
composition of carbon entering and exiting the atmosphere-
ocean system (A) must be the same (18):

ˡ13Cin = ˡ13Corg.f org + ˡ13Ccarb (1 - f org) (1)
Standard calculations then assume that the average isotopic

composition of carbon input (ˡ13Cin) is constant and approxi-
mately equal to ˡ13Cmantle or about -6ಽ±1ಽ. Rearranging equa-
tion (1) then allows the proportion of carbon buried as organic
matter (forg) to be read directly from the carbonate C isotope
record (20). Knowledge of forg, and the total input (ป output) rate
of carbon, Ftotal, then allows the rate of organic carbon burial, and
hence oxygen production to be estimated (9,10):

Fbg = Ftotal × (ˡ13Ccarb - ˡ13Cin) / ˂B (2)
Following this reasoning, positive ˡ13C excursions are com-

monly interpreted as organic C burial events, whereby the resul-

Fig. 2. Long term carbon cycle showing isotope fractionation. A is at-
mosphere and ocean carbon, G is buried organic carbon and C is buried
carbonate carbon. Fb refers to burial fluxes, Fw to weathering and Fm
to metamorphic/degassing fluxes. ˡx denotes the isotopic fractionation of
reservoir X, and ˂B is the fractionation effect applied to buried organic
carbon, taken to represent an average value over the Phanerozoic (35). Sil
and Carb show alkalinity fluxes from silicate and carbonate weathering,
respectively, which are combined to calculate Fbc (see SI). Dashed lines denote
the ಫnullಬ carbonate weathering ದ deposition cycle.

tant oxygenation is quantified using the assumptions that total
C throughput and net fluxes (the net carbon flux on geological
time scales excludes the carbonate weathering flux) were similar
to the present day, and that forg approximates the proportion of
outgassed CO2 (including weathering sources) that is reduced
to organic carbon (9,15). For example, the sustained baseline
increase of ∼5-6ಽ during the early Neoproterozoic (11) is inter-
preted to imply an approximate doubling of organic burial due
to increased phytoplankton body size (10) or high sedimentation
rates (11). For the ∼2.1 Ga Lomagundi Event of high ˡ13C, the
total excess oxygen produced has been estimated at a massive 12-
22 times the present inventory of atmospheric oxygen (8,9), with
organic burial rates thought to increase by >20 times over the
course of the isotope excursion (21).

Such large increases in organic carbon burial are difficult to
reconcile with the operation of the long-term carbon cycle.Whilst
organics contribute only around 20-25% of gross carbon burial
(i.e. forg ป 0.20-0.25), they constitute more than 50% (19,6) and
even as much as 72% (22) of the net carbon sink. Even a doubling
of global organic carbon burial over geological timescales would
therefore require a massive reorganization of the carbon cycle,
alongside a contemporaneous increase in carbon sources through
weathering and degassing, due to the impossibility of the other net
sink (carbonate deposition following silicate weathering) being
reduced below zero.

A physical erosion control on the carbon isotope mass bal-
ance

We propose here that long-term variation in forg, and hence
ˡ13C, may sometimes be driven by changes in the inorganic,
rather than the organic side of the carbon cycle. Because the
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Fig. 3. Steady states of the long-term carbon cycle model. The system shown
in Figure 2 is run to steady state for different values of the relative global
uplift/erosion rate. Bold lines (M1) show results when silicate weathering
delivers around 58% of ocean phosphate (29, see SI), dashed lines (M2) show
results whenwhen silicate weathering delivers only 17% of ocean phosphate
(6), and dotted lines (M3) show results when all P delivery is instead from
carbonate weathering. The equations governing the response of fluxes to
reservoir sizes and global temperature follow current models (6, 26). See SI
for full model description, MATLAB code, and further evaluation.

carbonate weathering ದ deposition cycle is CO2 neutral on time
scales relevant to the C-isotope mass balance, increasing the

carbonate weathering (and deposition) rates acts to decrease forg
without impacting the net carbon fluxes responsible for driving
climate. Although this is not the first study to link changes in
carbonate weathering to ˡ13C, for example, it has been shown that
a transient increase in carbonate weathering rates would drive an
increase in ˡ13Cin (23), our proposition differs fromprevious work
by highlighting how sustained changes in carbonate deposition
rates can alter forg directly.

Such changes in the inorganic carbon cycle may be brought
about by variation in erosion rates, driving step changes in carbon-
ate weathering, and therefore gross carbon throughput. Whilst
changes in erosion rate may also initially affect the net fluxes of
silicate weathering and organic C burial, these must eventually
return to balance the carbon cycle at steady state via temperature
and nutrient feedbacks. There is no such requirement for carbon-
ate weathering. This key difference between the net and gross
carbon fluxes may explain why the erosional forcing of organic
burial does not keep pace with carbonate burial during the early
Palaeozoic and other orogenic events (Fig. 1).

Considering that mountains dominate global denudation
rates (24), and that carbonate weathering is proportionately more
important at higher erosion rates (25), we argue that forg (and
hence the ˡ13C composition of the atmosphere-ocean system) will
be lowered by tectonic uplift and erosion, unless compensated for
by increased rates of net carbon flux (outgassing). Conversely,
during periods of low denudation rates, ˡ13C values will tend
to be higher, although the overall weathering flux and organic
burial rates may be lower. This is apparent when considering the
evidence for low ˡ13C during times of supercontinent formation
and high ˡ13C during times of supercontinent stability (16, 26),
and can be observed by rearranging equation (2), assuming that
erosion affects Ftotal:

ˡ13Ccarb = (Fbg × ˂B)/Ftotal + ˡ13Cin (3)
Taking average values from the literature for carbon

fluxes (Fwg = 7.75×1012 mol/yr, Fwc = 24×1012 mol/yr; Fmg = 1.25
x1012 mol/yr; Fmc = 8 x1012 mol/yr; Fbg = 9x1012 mol/yr; Ftotal = Fwc

+ Fmc + Fwg + Fmg = 41 x1012 mol/yr (19, 27), equation (3)
suggests that trends in the long-term ˡ13C average of ∼-1ಽ to
∼+5ಽ can be explained by varying the carbonate weathering flux
between 1.5 times and 0.2 times the present day rate, respectively,
without requiring any change in the rate of organic carbon burial.
Such changes are within the limits of published estimates based
on the Sr isotope record and/or sedimentation rates (see SI). Note
that this mechanism does not require changes in ˡ13Cin.

Modelling the carbon isotope mass balance
To illustrate this idea, we compute the steady states of the

long-term carbon cycle model with respect to the relative global
erosion rate (Figure 3). The flux calculations follow the GEO-
CARB and COPSE models (6, 26) under present day conditions,
including both direct erosion and temperature effects on weath-
ering fluxes. The isotope mass balance calculations in our model
do not differ from those employed in Bernerಬs analysis (5), but
critically our model takes into account the effects of erosion on
carbonate weathering. This is in line with the above discussion,
and with direct evidence for considerable carbonate weathering
in areas of high erosion and relief, e.g. the mountainous and fore-
land areas of the Andes (28). See SI for further model discussion.

An important consideration in this work is that changes in
erosion rate also alter the rate of organic carbon burial via
changes to the phosphorus cycle. To explore this further we link
the rate of organic carbon burial in the model to the availability
of phosphorus (22, 6). Phosphorus enters the surface system via
the weathering of silicate, carbonate and organic C-bearing rocks,
and the strength of the relationship between erosion and organic
C burial depends on the P delivery from the weathering of each
individual rock type.
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Fig. 4. Comparison of positive ˡ13C excursions driven
by burial and erosion events.Panels show A: Relative
model forcing factor. B, Burial fluxes for carbonate
(Fbc, blue) and organic carbon (Fbg, red). C, Ocean
phosphate. D, Atmosphere and ocean carbon. E, ˡ13C
of atmosphere/ocean carbon reservoir. Panels F-J re-
peat these quantities for the second model scenario.
A positive ˡ13C excursion is driven by increased or-
ganic carbon burial, via enhancement of phosphorus
weathering (A-E), and is compared to a positive ˡ13C
excursion driven by a change in erosion (F-J). Both
forcings (green lines) are ramped over a 10 Myr pe-
riod, beginning at t=0. Solid lines show rapid recycling
model (RR on, see text), dashed lines show no rapid
recycling. Note that the positive excursion driven by
organic C burial is associated with a decrease in atmo-
sphere/ocean carbon (panel D), whilst the excursion
driven by erosion is associated with an increase in the
carbon reservoir (panel I). P input from weathering
follows Hartmann et al. (2014) (29). Full model output
is included in the SI.

Recent studies of P delivery from different rock types (29,
30) suggest that silicates play themajor role, deliveringmore than
50%of riverine P (see SI). Themodel run showing this setup (M1)
is shown in bold in figure 3. When the weathering of silicates
is chiefly responsible for P delivery, an increase in erosion will
not greatly affect the steady state P delivery or organic C burial,
because the global silicate weathering rate is tightly controlled at
steady state by the rate of CO2 release (which remains constant
in the model), and by any imbalance in the organic C cycle.

Dashed lines in figure 3 show results when silicates are as-
sumed to contribute only ∼17% of global P delivery (M2), as
was assumed in the original COPSE model, based on crustal
inventories rather than supply rates (6). The dotted lines (M3)
show a more extreme case where all P delivery results from
carbonate weathering. These configurations show that if most P
is supplied by the weathering of carbonates, or follows a similar
erosional forcing to carbonates (i.e. preferentially weathered at

high erosion rates) (25), then an increase in erosion rate would
significantly increase P delivery, and therefore organic C burial,
at steady state. This would act to counter the direct effect of
increased erosion and carbonate weathering/deposition on ˡ13C,
but only as far as carbon mass balance can allow.

We conclude from this analysis that changes in erosion rates
most likely exert a powerful first-order control on long term
carbonate ˡ13C, which is only partially nullified by associated
changes in the phosphorus cycle and organic carbon burial.

We acknowledge that the long-term effects of erosion on
global P delivery and organic carbon burial are still poorly con-
strained. Uncertainties exist in the various temperature and ero-
sion effects on individual chemical weathering fluxes, the degree
of preferential chemical weathering of accessory apatiteminerals,
and the possibility that changes in sedimentation rate may impact
organic carbon burial differently to the burial of carbonates. In
particular, it has been proposed that increased rates of sedimen-
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tation will enhance the preservation of buried organic carbon and
phosphorus (5). Our model calculates the rate of organic carbon
burial based on a relationship between ocean phosphate, new
production and sedimentation rate (31), but we have also run an
alternative model setup to further explore this idea, wherein we
strengthen this relationship by giving the burial rates of organic
carbon and phosphorus an additional linear dependence on the
global erosion rate. The model results for ocean phosphate con-
centration are altered under these assumptions, but the steady-
state burial rates of carbon and phosphorus are not affected,
as they are ultimately constrained by the supply flux of P from
weathering (see SI for more details).

Our model run M1 shows what we consider to be the current
best guess for these mechanisms (see SI for more details and
other model runs), but a model is not unequivocal proof, and
it is clearly theoretically possible for erosion to increase organic
C burial more than it increases the burial rate of carbonates
(e.g. model run M3). However, if this were the case we would
expect ˡ13C values to increase with increasing erosion rates, but
this is effectively falsified by the anti-correlation of ˡ13C and all
available erosion proxies. We therefore conclude that although
erosion rates must certainly increase the rate of P delivery and
organic C burial, such increases must be less than the increases to
the burial rate of carbonates.

Figure 4 shows a series of time-dependent model runs where
a +3ಽ positive excursion in ˡ13C is caused by either increasing
organic carbon burial (via increased P delivery), or decreasing
the erosion rate. Increasing ˡ13C via an organic C burial event
(Figure 4. A-E) results in a decrease in the atmosphere/ocean
carbon reservoir, i.e. a decrease in atmospheric pCO2, and global
cooling. Driving a similar positive excursion via a reduction in
erosion rates (Figure 4. F-J) causes a warming event due to the
weakening of silicate weathering. Importantly, we show that a
positive ˡ13C excursionmay be coincident with either an increase,
or decrease in the rate of organic carbon burial. This should be a
serious consideration for work aiming to tie the C isotope record
to global biogeochemical events.

An important factor influencing the time-dependent re-
sponse of the model is the assumption of ಫrapid recyclingಬ of
isotope signals due to the predominant weathering of recently-
deposited sediments. This idea has been explored in early carbon
and sulphur cycle models (7), and is included in the GEOCARB
models (5). We include this effect here by reducing the size of the
crustal pools of organic carbon and carbonates to around 10% of
the total crustal inventory, allowing for much quicker variation in
isotopic composition (RR on, solid lines in figure 4). This follows
Berner (5, 7). Dashed lines assume no rapid recycling, i.e. that
the isotopic signature of weatheredmaterial represents the whole
crustal inventory. As may be expected, the rapid recycling model
acquires steady state around an order of magnitude quicker than
the non-RRmodel.However, the choice ofmodels does not affect
the qualitative dynamics we wish to demonstrate.

The isotopic composition of carbon inputs (ˡ13Cin) is not
fixed in our model, but responds to the changing composition
of the crustal reservoirs. Although changes to ˡ13Cin (e.g. due
to preferential weathering of high-ˡ13C lithologies) have been
shown to drive C isotope excursions (20, 23), the mechanism
explored in this paper does not depend on variations in ˡ13Cin. As
an example we run the model with this parameter fixed (Figure
S7), which shows the same qualitative results.

Interrogating carbon isotope excursions
A positive carbon isotope excursion caused by changes to

the inorganic carbon cycle has different climatic effects from

one caused by increasing the burial rate of organics: notably an
increase in CO2 and surface temperature, rather than a decrease.
Such testable distinctions allow us to constrain the causes of spe-
cific carbon isotope events, and suggest thatmajor, but short-lived
ˡ13C events, which coincide with global cooling, such as the late
Ordovician Hirnantian event, could potentially relate to excess
organic burial. The longer Permo-Carboniferous glaciations also
occurred at a time of generally high ˡ13C, and are thus consistent
with an elevated organic burial flux, perhaps associated with the
evolution of a modern land biota (32). However, relatively low
erosion rates throughout this period imply that rates of organic
C burial need not have been as high as previously thought ದ
potentially resolving conflicts over the prediction of hyperam-
bient O2 levels (5). By contrast, glaciation during the Cenozoic
is associated with decreasing ˡ13C, and so appears to be more
consistent with the notion that the erosional forcing of carbonate
deposition outweighed that of organic burial.

Some times of elevated ˡ13C do not coincide with glacia-
tion, and this is the case for the post-glacial Lomagundi Event
of exceptionally high ˡ13C during the Palaeoproterozoic . Such
high ˡ13C values may result from a hugely increased oxidative
weathering flux (21), following the Great Oxidation Event, which
could have been self-sustained by oxygenic siderite (iron carbon-
ate) weathering (22). Although not related to decreased erosion
rates, the Lomagundi Event can still be viewed as a time of
proportionately higher net carbon flux relative to gross carbon
throughput, in the same way as we argue for other times of high
baseline ˡ13C, such as during the Tonian Period of supercontinent
peneplanation. Note that in none of these cases does high ˡ13C
imply net oxygenation. Previously, these well-established ˡ13C
events were first-order determinants in our understanding of
Earthಬs oxygenation history.

Despite our emphasis here on erosional controls on ˡ13C,
we view the carbon isotope mass balance as a proportional pa-
rameter, whereby changes to the long-term norm correspond to
changes in the proportion that carbonate weathering makes up
of the global carbon cycle. In this regard, the anti-correlation
between ˡ13Cand 87Sr/86Sr over the past billion years could reflect
the dependence of both these parameters on the competing
tectonic influences of volcanism versus uplift, rather than erosion
per se.

Conclusions
The carbon isotope record is most commonly viewed in terms
of changing organic carbon burial rates, and less in terms of
the proportional organic component of the carbon cycle. By
viewing ˡ13C as a combination of net and gross carbon fluxes
(and removing the common assumption that carbonate / silicate
/ organic weathering systematics are invariantly proportional),
we show that higher proportional organic burial (higher forg)
can result from a decreased global weathering (carbonate) flux
to the ocean and may not be driven directly by changes in the
organic carbon burial flux. Moreover, it appears that tectonic
controls may plausibly be the underlying drivers of carbon isotope
trends that were previously attributed either to organic carbon
burial or to the changing isotopic composition of carbon sources.
This is evidenced by the anti-correlation between carbonate ˡ13C
and erosion proxies such as 87Sr/86Sr and reconstructed sediment
abundance. There seems to be no systematic relationship between
ˡ13C and oxygenation through carbon burial, and we suggest
therefore that the oxygenation history of the Earth be reassessed
on a case-by-case basis in order to better take into account the
distinction between net and gross fluxes.
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