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Abstract

In practical situations, complex systems are often composed of subsystems or subproblems
with single or multiple objectives. These subsystems focus on different aspects of the overall
system, but they often have strong interactions with each other and they are usually not
sequentially ordered or obviously decomposable. Thus, the individual solutions of subprob-
lems do not generally induce a solution for the overall system. Here, we strive to identify
“re-composition architectures” of such “interwoven” systems. Our intention is to connect
the subsystems adequately, analyze the resulting performance, model/solve the overall sys-
tem, and improve the overall solution instead of just solving each subsystem separately. We
review recent developments in this field and discuss modelling and solution paradigms in a
general and unified framework using the example of an interwoven system consisting of two
interacting subsystems.

1 Introduction

The optimization of complex systems is a consequence of the demand that computational sciences
solve increasingly complex problems. For our purpose, we define a complex system as a natural or
engineered system that is difficult to understand and analyze because it: (i) involves interactions
among many phenomena; (ii) has multiple and dissimilar components or subsystems that may be
connected in a variety of ways and as a whole exhibit one or more properties not obvious from
the properties of the individual parts or; (iii) is characterized by non-comparable and conflicting
criteria. For instance, many subjects of interest to humans are complex systems. In the literature,
these systems are also referred to as “interwoven systems” or “systems of systems” [I]. Natural
complex systems, such as the human body, oceans, climate, and many more, are present constantly
and of great interest and significance to the public. Energy or telecommunication infrastructures,
manufacturing systems, and service sector systems are examples of man-made and engineered
complex systems.

For complex systems, the overall decision-making goal is to harmonize local requirements and
goals to attain the objectives required of the entire system. The overall system performance
depends on the interactions and synergy of all its parts, which make it particularly hard to model.
Moreover, human preferences may exist that might not be captured in the mathematical model. In
the presence of multiple components and criteria, a unique decision that is optimal for the whole
system does usually not exist, but rather many or even infinitely many decisions are potentially
suitable. Because of a correlation between the components, the overall system performance does
not equal the simple sum of their performances but could be enriched by a synergy among them.
Furthermore, the “optimal” solution of a mathematical model may not correspond to the actual
optimal solution of the whole system due to possible inaccuracies in the model. Even if an adequate
model does exist, it could result in prohibitively expensive computations. Without usable models,
solutions to complex systems are achieved by optimizing only their components and coordinating
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their optimal solutions. In effect, decision-making for complex systems requires tools originated
from multiobjective optimization that additionally account for the coupling of components and
the coordination of subsystem optimal solutions.

The goal of this pilot study is to present a preliminary mathematical model of a complex or
interwoven system and approaches to its optimization based on known principles of multiobjective
optimization. As discussed in the next section, models and methods for dealing with multiobjec-
tive complex systems have been proposed in the literature, especially in the area of engineering
optimization. However, they lack rigorous mathematical analyses and optimality proofs.

In this preliminary study, we consider interwoven systems that can be modeled as two interacting
subsystems, each modeled as a multiobjective optimization problem (cf. Sec. . Several examples
of such interwoven systems are presented in support of the proposed modeling paradigm (cf. Sec. .
Notions of optimality that recognize the overall system optimality as well as local subsystem
optimality are introduced, cf. Sec.[5] Different composition architectures allowing the computation
of the optimal solutions are presented in Sec. [f] Finally, in Sec. [7] connections of the proposed
approach to other areas of optimization and systems science are discussed.

2 Related Work

The term Interwoven Systems chosen to describe the systems under investigation here has in-
frequently been used in the past. We found one instance in Tomforde et al. [2], where systems
are described that have several properties in common with the ones we address here. The main
difference to the systems discussed is their magnitude. While we concentrate on smaller systems,
where a chance of understanding the basic working principles exists, Tomforde et al. consider
much larger and more complex systems. This different understanding is based on the intention
of the publication. While Tomforde et al. introduce the term interwoven systems, we aim for the
description and analysis of systems.

Literature on complex systems with multiple criteria is rather limited. The first studies on
multiobjective complex problems are undertaken for hierarchical systems in [3] 4 [5] [6, 7} []] and
later continued in [9] [10]. Large-scale hierarchical multiobjective systems are studied in [4] 5] [6].
Other papers propose: (i) decomposition of the original problem into a collection of smaller-sized,
better manageable subproblems; and (ii) coordination of the solutions of the subproblems to
obtain the solution of the original problem. A large number of such approaches exists for specific
applications in management sciences, engineering, and multidisciplinary optimization (see [3], 1]
among many others). Other papers deal with decomposition and coordination due to a large
number of criteria in the original problem [12] 6] 13} [9, 10]. Finally, some papers study objective
decompositions from a predominantly mathematical perspective [14] 15, 16 [17].

Multidisciplinary Design Optimization (MDO) has been developed within the engineering com-
munity to coordinate results of various disciplines involved in system design. The MDO focus has
been to either encapsulate disciplinary optimizations into subproblems that are coordinated by a
super-optimizer or use sensitivity information to relate the effect of one disciplinary optimization
on another. Multiobjective optimization has been introduced to strengthen MDO techniques at-
tempting to deal with noncomparable and conflicting design objectives that are characteristic for
each design discipline.

Numerous papers present applications of multiobjective MDO in various areas of engineering
design, however, formal methodologies such as Multiobjective Collaborative Optimization (MO-
ColO) [11], Multiobjective Concurrent Subspace Optimization (MOCSSO)[18] 19], Collaborative
Optimization Strategy for Multiobjective Sytems (COSMOS) [20], and a bilevel method [21] mak-
ing use of the weighted-sum scalarization are also proposed.

The MOColO, MOCSSO, and COSMOS methods support a multidisciplinary design environ-
ment by performing distributed optimization among different design disciplines. The original
problem has three types of optimization variables: global variables that are shared between the
disciplines, local variables that are particular to each discipline, and coupling variables accounting
for the interaction between the disciplines. The overall objective function assessing the perfor-
mance of the entire system is vector-valued, while each component function assesses the system
performance with respect to a particular discipline. The original problem is reformulated into a
bilevel problem with system optimization at the higher level and subsystem optimization for each
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discipline at the lower level. All three methods promote disciplinary autonomy while achieving
interdisciplinary compatibility, but they differ in how the optimization is organized between the
two levels.

In MOColO at the system-level, the overall objective function (or its scalarization) is optimized
and the optimizations at the lower level are coordinated. The system-level optimization variables
include global and coupling variables, and the optimization is performed subject to consistency
constraints that match these variables with their lower-level counterparts. The subsystem-level
optimization variables include the local variables and the counterparts to the system-level variables
which serve as the system-level target values for the lower-level counterparts. At the subsystem-
level, an auxiliary scalar objective function is minimized for each discipline. This function models
the deviation between the system-level target values and the subsystem-level counterpart values.

In MOCSSO, the system level does not perform optimization of the original vector-valued
objective function but only coordinates the lower-level optimizations in each discipline. The
vector-valued objective is distributed among the disciplines so that each of them is responsible for
optimizing their own scalar-valued objective function. The critical assumption in MOCSSO is that
in the course of the procedure, the variables associated with a discipline based on initial problem
modeling may end up being allocated to some other discipline for the optimization purposes.
This reallocation of variables to the disciplines where they have the greatest impact on both the
objective and constraint functions yields the greatest improvement possible in the objective while
maintaining discipline’s feasibility. Subsystem-level optimization is conducted for each discipline
with respect to the variables currently allocated to that discipline and subject to the feasibility
constraints of that discipline but also subject to the constraint and objective functions of the other
disciplines. In this way, the optimization follows the rules of the epsilon-constraint method and
hence ensures the generation of Pareto points. The system-level optimization is performed with
respect to auxiliary variables modeling the influence of the variables allocated to a discipline on
other disciplines.

In COSMOS, the CO method is integrated with a multiobjective optimization genetic algorithm.
The disciplines are allowed to have their own vector-valued objective functions. At the system and
subsystem levels the optimizations are performed with respect to the global and local variables
respectively. The linking variable values evolve within each discipline optimization and are sent
up to the system level that passes them to the other disciplines. The use of a genetic algorithm
ensures the Pareto set to the original problem may be computed or approximated.

In all multiobjective MDO models methods reviewed above, the proposed algorithms are not
supported with proofs of correctness or optimality.

The discipline-based decomposition of a system, the driving force for MDO, has also been
replaced with other types of decomposition such as scenario-based or object-based decomposition,
each leading to studying a collection of multiobjective problems. If a system performs in multiple
scenarios and each of them is driven by different objective functions, the resulting collection
represents a set of multiobjective problems where each of them models the performance of the
system in a certain scenario. Refer to [22] 23] [24] for multiscenario multiobjective optimization in
engineering design. An effort to quantify trade-offs between disciplines or scenarios is undertaken
in [25, 26]. Physical or object-based decomposition leads to studying a system composed of
subsystems and components that can interact with each other in various ways, which additionally
increases the complexity of the overall problem. A collection of multiobjective problems naturally
emerges because each of the elements may perform according to multiple criteria. Calculation of
the Pareto sets of such complex systems is studied in [27] 28] 29].

3 Model

In this section, we suggest a general mathematical model for complex or interwoven systems
that relies on known principles of multiobjective optimization. To keep the model simple while
capturing the characteristics of interwoven systems, we consider systems that can be modeled
as two interacting subsystems, each modeled as a multiobjective optimization problem. Such a
simple yet non-trivial setup of an interwoven system consists of three parts: two subsystems and
the interaction between them. The subsystems come in the form of the following optimization
subproblems.
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Subproblem 1:

min f1(zo, 1, y21)
st. gi(zo,21,y12) =0
xTo € XO? z1 € Xy

and Subproblem 2:

min fo(zo, Z2, y12)
s.t. g2(2o,22,y21) =0
xg € Xo, T3 € Xo

where X; C R™ for ¢ = 0,1,2 and y2; € R™, y15 € R™2 for some ng,ni,n2,No1, 12 € N.
Each subproblem has objective functions f; : R™ x R™ x R™* — RP: and constraint functions
gi : R x R™ x R"™i — R%, 4,5 = 1,2, i # j, for some p;,q¢; € N. When comparing two
vectors u,v € R™, we write u £ v when u; < v; for all i = 1,...,n, u < v when v < v and
u # v, and u < v when u; < v; for all ¢+ = 1,...,n. Note that Subproblems 1 and 2 share
some common (global) decision variables x¢ € Xy while they also comprise model-specific (local)
decision variables x7 € X7 and x5 € X5, respectively.

The interaction between the subsystems is modeled with linking functions £1 and ¢5 that yield
the values of the linking variables y21 and y12. The interaction is then typically expressed by a
system of interaction equations:

Y12 = £1($071‘1,y21) and Y21 = 62($07$27y12)

where £; : R" x R™ x R™* — R™ for 4,5 = 1,2,49 #* j. This system of interaction equations has
the form of implicit representation of linking variables y12 and y21; by means of linking functions
{1 and /5. However, an explicit representation of y12 and y»; of the following form may also exist:

Y12 = y12(xo, 1, 72)
Y21 = y21(9€079€17$2)~

A graphical exemplification of this setup is given in the following figure:

T Zo T2

Subsystem 2

Subsystem 1

Y21

Feasibility of decision variables may refer to either of the two subsystems or to the interwoven
system. This observation motivates the following definitions.

Definition 1 A solution (xo, x;,y;:) (i # j) is said to be i-subsystem feasible if zg € X, x; € X,
9i(xo, T, yi;) S 0 and y;; satisfies the interaction equations y;; = £;(xo, x;,Y:;) for some x; € X,
where yi; = i(x0, i, Yj3).

Definition 2 A solution (xg,z1, T2, y12,y21) s called multisystem feasible if xg € Xo, 1 € X1,
x9 € Xo, and if all constraints and interaction equations are satisfied, i.e., gi(xo,x1,y12) < 0,
92(x0,w2,921) =0, y12 = L1(x0, T1,Y21), and yo1 = la(x0,T2,y12). A pair of solutions (xo,x1,Y21)
and (zg,x2,y12) is said to be multisystem feasible if (2o, x1, T2, Y12, Y21) is multisystem feasible.
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4 Examples

An interwoven system consists of interacting subsystems. In some areas of human activity, the
susbsystems are developed independently from each other. For example, in engineering design the
subsystems of an automotive vehicle such as an engine or a suspension are designed by different
groups within a company, or even by different companies. Whilst the designers within each
group/company anticipate that these subsystems will work together within one system (a vehicle),
the subsystem designs are carried out with limited or even absent information about the future
interaction between the subsystems. In other applications, such as location of facilities, subsystems
were not even meant to work together when they were being developed but later, due to new
circumstances, they necessarily start to interact with each other as an interwoven system.

A countless number of interwoven systems are encountered in daily life and numerous examples
can be identified e. g., in traffic systems, multidisciplinary design, or evacuation planning to name
just some areas. Nonetheless, some comprehensible examples shall be listed in the following for
the sake of intended exemplification of the proposed model.

4.1 An Academic Example

Let X; = [0,1] C R, i = 0,1,2 and, let 2;,y12,921 € R, i = 0,1,2. The scalar-valued objective
functions f; and fy of the subproblems are defined as

_ .2 2
, — 2
J1(zo, w1,Y21) = 25 — 21 + 2Ty

fa(zo, w2, y12) = (z0 — 5)* + 23y12.

The values of the linking variables y21 and y;2 are specified by the following linking functions ¢,
and £o:

y12 = {1 (20, 1, Y21) = 220 — 31 + Y21

yo1 = la(x0, 2, y12) = —T0 + 422 — Y12

Formally, these linear linkage relations can be written in matrix form: y = Q x + C'y where

g1 qi2 O 0 ci2
= and C = .
@ ( g1 0 @3 > ( c1 0 )
If c12-c21 # 1 there is a unique solution y = (I —C)~! Q x, where I is the unit matrix of dimension
2. In the example above we obtain:

3
Y12 = 5% — 5T + 2z
S0+ Say +2
=——xo+ -z Za.
Y21 B 0 ) 1 2

4.2 Integrated Location Problem

Let a finite set of customer locations A = {ay,...,ay} be given in the plane R?. Suppose that
some group of decision makers, referred to as DM 1, wants to locate an airport at a location
71 € X1 C R?. Suppose that for some given weights wl, >0, m =1,..., M, the sum of weighted
distances between the customers and the airport is to be minimized. Another group of decision
makers, say DM 2, wants to locate a hospital at a location 2o € X5 C R? which should (among
others) also serve the same set of customers. Given some weights w2, > 0, m = 1,..., M, the
maximum weighted distance between the customers and the hospital is to be minimized. The
hospital acts as a repulsive facility for the airport (due to noise) which is expressed by some
weight —Ae < 0. The airport acts as an attractive facility for the hospital (in the sense that
a maximum acceptable travel time should not be exceeded) since emergencies occurring at the
airport have to reach the hospital quickly. This aspect is modeled by a weight A\; > 0. Staff of
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the airport and of the hospital will jointly use a service facility, e.g., providing childcare, which
has to be located at a location zo € Xy C R2.

The resulting interwoven system can again be specified by identifying the two subproblems
corresponding to the two subsystems and by expressing the linking functions.

Subproblem 1: Location of the Airport

M
min f11($075017y21) = Z w71nd(x17 anL) - /\Qd(xhle)
m=1

min fi2(xo, 21,y21) = d(x0,71)
s.t. xg € Xp, 1 € X3

Subproblem 2: Location of the Hospital

min fo1 (o, T2, y12) = Mmax {mnllaxwand(xg, am); Ad(ze, Z/m)}

min fos (w0, T2, y12) = d(x0, 72)
s.t. xg € X, o € X5

Interaction Equations The interaction equations are given by the linking functions #; and /5 as:

Y12 = (o, 1, Y21) == 1

Y21 = La(x0, T2, Y12) 1= T2,

which is again an explicit representation of the linking variables.

4.3 Traveling Thief Problem

The Traveling Thief Problem (TTP) [30] consists of two well-known interacting combinatorial
subproblems: the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). In original
KP, there are m items each with a weight wg, kK =1,...,m, and value v;, k =1,...,m. A subset
of these items has to be packed into a knapsack with limited capacity W so as to maximize the
total value of items chosen. In original TSP, a salesman must visit each one of n cities exactly once
and return to his starting position in a way to minimize total traveled distance. In TTP, there
are objects located in the cities that need to be packed into a knapsack while the thief performs a
visit to every city by building a complete tour. In other words, TTP seeks a tour of n cities and a
subset of items located in the cities to be packed in a way to maximize total value and minimize
total travel time. In TTP, subproblems KP and TSP are interlinked because the traveling speed
of the thief between two cities depends on the weight of items he has placed in the knapsack.
Moreover, the value associated with a picked item deteriorates as a function of travel time and
what contributes to the objective function is the value of the item at the end of the tour.

Let 1 € X; C B™ C R™ be a binary vector whose k** entry indicates item k is picked if it has
a value of 1 and is not picked if it has a value of 0. x5 € R™ describes the tour of the thief where
T9; is the index of the city that is visited i** in the tour. Let Xy = {x € R*|z; € {1,...,n},i =
1,...,n,2; # x;Vi # j}. Then X, captures all possible tours.

For k=1,...,mand i =1,...,n, let parameter ay(i) indicate that item k is located at city ¢
if it is equal to 1, and not if it is 0. Spax and Sy, are the maximum and minimum speed of the
thief, respectively, and W is the capacity of the knapsack. d(i,7) is the distance between city @
and city j,¢,j=1,...,n.
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Subproblem 1: Knapsack Problem

min fi(z1,v kawlk
s.t. Zwkxlk <WwW

k=1

T € X1

Subproblem 2: Traveling Salesman Problem

Z x227x2(1+1)> d(x2n;$2l)
+
xQz S(xQTl)

min f3 (2, s

s.t. 19 € X9

The subproblems above have separate objective functions. While the first one aims to maximize
the total value of items picked along the tour, the second subproblem minimizes total travel time.
We note that the objectives can be combined into one by assuming a rent R per unit time of travel
(see, for instance, the setup in [31]). We prefer to keep these objectives separate and explain the
interrelationships between the two subproblems below.

Interaction Equations In subproblem 1, v, the vector that denotes the values of items, is indeed
linked to the decisions made in the second subproblem because the value v; of picked item k,
k =1,...,m, declines over time. This would correspond to the variable denoted as g1 in our
earlier presentation. Therefore, yo1 could replace v in the subproblem formulation; however, we
have opted not to do so to keep the notation more legible. Likewise, the speed at which the thief
travels, s is determined by the decision variables in the first subproblem and s can be considered
as a function of yqs.

The speed s(xg;) of travel when leaving city xo; is related to the knapsack’s current weight at
city xo;, 1 =1,...,n. It can be expressed as follows:

[ m

S — Smi
$(22i) = l1,0,, (1, 2) = Smax — (maxvvmm> Z Zak(x2j)wkﬂflk-

j=1k=1

According to this formulation, the speed of the thief decreases when the weight of the knapsack
increases, i.e., the speed is one of the factors that captures the interaction between the two
subproblems of the interwoven system.

The final value of the item at the end of the travel is not the same as its initial value. This
value is dependent on travel time and here it is modeled as:

__ 1.init
= bk

v = lo (22, 8) : — ppTk(x2, 8)

where Ty (2, s) is the time between the moment when item k is picked and the end of the tour,
which depends on the location of item k and the order at which it was visited, say i*" in the tour,
as well as the cities visited afterwards as in the following equation:

n
d(332j’ To( ‘+1)) d(z2n,21)

Ty (x2,8) = J + ’ )

(@25 = 2 =) (z2n)

We assume that py is a rate of decline in the value of vy so that vi > 0 for all possible values of
T}y. There might be alternative ways of modeling the value of an item k in a way to depend on the
duration of the tour from the time the item is picked until the end. As such, this becomes another
factor that captures the interaction between the two subproblems of the interwoven system.
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5 Notions of Optimality

It is of interest to establish a concept of optimality for the interwoven systems presented above.
Note that such a concept could recognize all three parts of the system or just a subset of them. We
propose three notions of optimality depending on the level of engagement of each subsystem in the
overall system. The three concepts can be used to model different levels of involvement of decision
makers of the individual subsystems (bottom-up decisions) and/or of decision makers for the
overall system (top-down decisions). Corresponding solution concepts may reflect an individual
(local) or corporate (global) decision makers and a spectrum of their attitudes from ego-centric
to teamwork.

We first take the perspective of a decision maker of one of the subsystems who assumes the
highest priority for this subsystem and respects solely feasibility requirements of the other subsys-
tem. Under the scenario that each subsystem would like to operate at its best for itself regardless
of the values of the linking variables passed from the other system, we define individually Pareto
optimal solutions for each system.

Definition 3 A solution (xg,z1,y21) is said to be individually Pareto optimal for Subsystem 1 if
it can be extended to a multisystem feasible solution (xg,x1,%2,Y12,Y21) and if there is no other
multisystem feasible solution (x(, 2y, xh, Yla, yby) such that

fil@o, 21, 95) < fiwo, o1, y21).- (1)

Similarly, a solution (xg,T2,y12) is said to be individually Pareto optimal for Subsystem 2 if it
can be extended to a multisystem feasible solution (xg,x1,x2,Yy12,Y21) and if there is no other
multisystem feasible solution (x(, ), xh, Yla, Y1) such that

fa(@o, 29, 912) < fa(wo, 2, 12).- (2)

Note that an individually Pareto optimal solution for Subsystem ¢ must be i-subsystem feasible,
i€ {1,2}.

Taking the perspective of a decision maker for the overall system, we distinguish between two
closely related concepts that both reflect the trade-off between the performances of the individual
subsystems. While in both cases candidate solutions must be “stable” in the sense that no (strict)
improvement should be possible for both subsystems simultaneously, (weak) Pareto optimality
of a subsystem is considered at different levels, giving a slightly higher priority to the decision
makers of the individual subsystems in the second notion of optimality than in the third.

Accordingly, we assume in the second notion of optimality that each subsystem would like to
perform best to the common good of both subsystems, we define cooperative Pareto solutions that
are feasible for both systems.

Definition 4 A multisystem feasible solution (xo, x1, T2, Y12, Y21) is said to be cooperatively Pareto
optimal if it is Pareto optimal with respect to all objective functions, i.e., if there is mo other
multisystem feasible solution (x(, !, x5, Yla, yby) such that fi(x(,x),yb) < fi(zo,x1,y21) and
falxh, h, yis) < folxo,x2,y12). Similarly, a multisystem feasible solution (o, x1, T2, y12,Y21) S
said to be cooperatively weakly Pareto optimal, if there is no other multisystem feasible solution
(5667 1,/1, $/2a in’ yél) such that fl(x67 :E/17 y/21) < fl(«TO, L1, y21) and f2(1'6, $/2a in) < fz(l’o, T2, yl?)'

The third notion of optimality reflects the teamwork attitude of two decision makers whose
systems perform at their best simultaneously even if one of them could perform better while the
other system is ignored.

Definition 5 A multisystem feasible solution (xg,x1,Z2,Yy12,Y21) is said to be mutually Pareto
optimal if there is no other multisystem feasible solution (x{, x}, x5, yio,Yh1) such that

fl(x()vx/hyél) fl(x()azlay21)
( Ja(x0, 25, Y12) ) = < fa(z0, 72, y12) ) ®)

Similarly, a multisystem feasible solution (xg,1,%2,Y12,Y21) i called mutually weakly Pareto
optimal if there is no other multisystem feasible solution (x{, x}, x5, yia, Ys1) such that

( fi(whe’ 1) ) - (fﬂwo’wﬂ) ) (4)

fa(x0, 25, Y12) fa(zo, 2, y12)
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The following relations can be derived.
Proposition 1 Let (zg, z1, 22, Y12, Y21) be multisystem feasible. Then it holds:

(1a) If (xg,x1,y21) is individually Pareto optimal for Subsystem 1, then (xo,x1,T2,y12,Y21) IS
mutually weakly Pareto optimal.

(1b) If (zo,z2,y12) is indiwidually Pareto optimal for Subsystem 2, then (xg,x1, T2, y12,Y21) s
mutually weakly Pareto optimal.

(2) If (zo,x1,22,Y12,Y21) 1S cooperatively Pareto optimal, then it is mutually weakly Pareto
optimal.

(8) If (zo,21,%2,Y12,Y21) is mutually Pareto optimal, then it is cooperatively weakly Pareto
optimal.

(4) (xo, 21,22, Y12, Y21) is mutually weakly Pareto optimal if and only if it is cooperatively weakly
Pareto optimal.

Note that mutual Pareto optimality does not in general imply individual Pareto optimality for
the respective subsystems. Similarly, cooperative Pareto optimality does not in general imply
individual Pareto optimality.

6 Composition Approaches

We discuss some possible ways of composing the interwoven subsystems. While some of these
composition approaches reveal a close relation to the notions of optimality discussed in Section
above, others give rise to alternative interpretations of interwoven systems, both with respect to
modelling assumptions and optimality concepts.

6.1 Biobjective All-in-One System

This approach imposes the least additional structure upon the interwoven system while composing
it by bringing together the two subsystems in a natural biobjective way as follows.

min <f1($0,$17y21)>

fa(zo, 2, y12)
s.t. g1(wo, 21,y12) =0
92(0, 22,921) £ 0
l1(x0, w1,Y21) = Y12
la(z0, 22, Y12) = Y21
zo € Xo, 71 € X1, 72 € Xa.

The term biobjective is used in relation to the two subsystems involved. Note that if f; or f3 is a
vector-valued function, the number of objectives in the above formulation will be more than two.
Therefore, in general, this is a multiobjective optimization formulation. A feasible solution of the
biobjective all-in-one system is called Pareto optimal if there is no other feasible solution that
performs at least as good in all objective functions, and strictly better in at least one objective
function. A feasible solution is called weakly Pareto optimal if there is no other feasible solutions
that performs strictly better in all objective functions. The Pareto optimal solutions to this
multiobjective problem can be considered as the solutions to the interwoven system.

Proposition 2 A solution (xg, x1, T2, Y12, Yo1) is mutually Pareto optimal for the interwoven sys-
tem if and only if it is Pareto optimal for the biobjective all-in-one system. Similarly, a solution
(z0,21, %2, Y12, Y21) is mutually weakly Pareto optimal for the interwoven system if and only if it
is weakly Pareto optimal for the biobjective all-in-one system.



6.2 Bilevel All-in-One System

In the spirit of Definition 5] and Proposition [I] above, the biobjective all-in-one system thus
integrates the preferences of the decision makers of the individual subsystems who share an overall
perspective and are willing to act as a team. This approach may serve, for example, as a source
for solution alternatives and trade-off information in a top-down decision making processes.

As an example, consider again the academic example introduced in Section The corre-

sponding biobjective all-in-one system is in this case given by:

An approximation of the nondominated set of this all-in-one system is illustrated in Figure|ll The
points shown are obtained by sampling feasible solutions and filtering for dominated points.

min fi (20, 1, Y21) = 2§ — 71 + TTYn

min fo(zo, T2, y12) = (0 — 5) + 2312

3 3
S.t. yo1 = —5111‘0 + §$1 + 229

3
Y12 = 5330 - 5931 + X2

xo, 21,22 € [0,1], y12,y21 € R.

Academic Example: Biobjective AiO

23

22

21

20

18
17 ¢

16

%1

Biobjectivé AiO nondominéted

Figure 1: Approximation of the nondominated objective vectors, i.e., the images of the Pareto op-

timal solutions of the biobjective all-in-one system, for the academic example introduced
in Section

0.2 0 0.2 0.4 0.6
fi

6.2 Bilevel All-in-One System

In some situations, the interactions between the two subsystems may be modeled in a hierarchical
way. In such cases, a bilevel programming framework may best describe the composed system.

Such a composition does not need to utilize the variables x.

min f1(xg, Z1,Y21)

s.t. g1(zo,71,912) 0
yo1 = {2(w0, T2, y12)
xg € Xo, 1 € X4

To € arg min fg(xo,m,yu)
s.t. g2(zo, w2, 921) =0

Y12 = L1 (zo, 21,Y21)
T9 € Xo.
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In this bilevel problem the objective functions f; and fs can be scalar and/or vector-valued.
We will usually assume an optimistic model in the sense that, if the set of optimal solutions to the
lower-level problem is not a singleton, then the decision maker of the upper-level problem gets to
select an optimal solution to the lower-level problem that is the most suitable to the upper level.
Note that, even though the two subsystems are considered at different levels, it cannot in general
be guaranteed that an optimal solution (or a Pareto optimal solution in the case that f; and fo
are vector-valued) to the bilevel all-in-one system is individually Pareto optimal for Subsystem 1
or for Subsystem 2, or that it is Pareto optimal for the bi-objective all-in-one system, respectively.
It should be noted that the bilevel formulation that is applicable to the interwoven system is not
unique. In [32], different bilevel formulations are suggested and their relationships are analyzed.
We refer to [33] for a discussion of the relationship between single-level and bilevel multiobjective
optimization.

The Pareto optimal solutions to the bilevel all-in-one system can be considered as stable solutions
or as equilibrium solutions to the interwoven system. The model best reflects hierarchical decision
making processes where one subsystem is granted a higher priority (Subsystem 1 in this case),
while the decision maker of the lower-level subsystem should be able to achieve a stable solution
in the sense that no improvement is possible given the restrictions coming from the higher-level
subsystem.

Considering again the academic example problem introduced in Section 4.1} we obtain

min fl(ﬂfo, l‘l,ym) = x% —x1+ x%ygl
3
s.t. yo1 = _51‘0 + §$1 + 2x9
o, T1 € [0, 1]

xy € argmin fa(xo, 22, y12) = (zo — 5)° + 23y12

In this special case, the explicit representation of the linking variables can be used to rewrite the
lower level problem as

. 1 3
min fo(wo, w1, 02) = (20 — 5) + w03 — 57175 + 213

s.t. z2 € [0,1].

The values of xg and x; are passed from the upper level problem and are thus treated as constants.

Since zo has to be chosen optimally for the lower level problem, we set g—ﬁ(xo,xl,mg) =0

and obtain as candidate solutions x93 = 0 when o — 3z1 > 0, and zo = %(—xo + 3z1) when
xo — 3xz1 < 0. Note that for all possible values of zg,x; € [0,1], 22 = 1 at the boundary of
the feasible set is not optimal for the lower level problem. Passing this information back to
the upper level problem and applying again optimality conditions, we obtain a minimum of the
bilevel all-in-one system at (xo,x1, T2, y12,y21) = (0.1492,0.4034,0.1769, —0.1769,0.7351) that is
multisystem feasible and satisfies the lower level constraints (i.e., x5 is optimal for the lower level
problem with the given values of zp and z1). The objective vector of this solution is obtained
as (f1, f2) = (—0.2615,23.5248), which turns out to be dominated for the biobjective all-in-one
problem, cf. Figure [2|

6.3 Individual Systems with Parameterized Interactions

The two subsystems may be decoupled by treating the linking variables in each subsystem as
parameters. In this case, each subproblem becomes a parametric multiobjective optimization
problem in which the set of unknowns is grouped into two subsets: decision variables that de-
termine solutions and parameters that determine problem data. Such models may be used, for
example, if decision makers of the individual subsystems have to suggest solutions independent
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Academic Example: Comparing Biobjective and Bilevel AiO
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Figure 2: Comparison of biobjective and bilevel all-in-one solutions for the academic example prob-
lem introduced in Section For the biobjective all-in-one problem, the nondominated
objective vectors from Figure [I| are shown. For the bilevel all-in-one problem, objective
vectors of multisystem feasible solutions that obey the optimality condition of the lower
level problem were sampled in X; = [0,1], ¢ = 0,1. The optimal solution for the bilevel
all-in-one system was obtained analytically using optimality conditions.

from each other and without knowing the precise preferences from the respective other subsystem.
Moreover, an extensive parametric analysis may provide a wide representation of reasonable so-
lution alternatives of the individual subsystem, including trade-off information, and may thus be
highly valuable for a decision maker for the overall system. However, note that the interrelation
between the solution alternatives of the respective subsystems is not reflected in this model which
may thus bear the risk of overestimating the potential performance of the overall system.

Whereas nonparametric multiobjective problems produce static Pareto optimal solutions, para-
metric optimization goes beyond traditional sensitivity analysis that is valid solely in a neigh-
borhood of an optimal solution. In the parametric case, Pareto optimal solutions are functions
from the parameter space to the decision space (and the objective space). Each solution maps an
element of the parameter space to the decision that is obtained as the Pareto optimal decision
when that parameter value is used for the problem data.

Specifically, for each subsystem having a vector-valued objective function, parametric opti-
mization involves finding: (i) a representation (or approximation) of the Pareto optimal set as
a function of the linking variables; (ii) a partition of the feasible space of the linking variables
into critical regions for which a specific representation is valid. The virtue of parametric Pareto
optimal solutions lies in mapping out the full range of potential outcomes prior to knowing the
specific values of the linking variables. As these values change within their feasible sets, the Pareto
optimal solutions can quickly be approximated using the obtained representation, bypassing the
need for expensive or time consuming re-optimization of each subsystem. For decision makers,
the linking variables acting as parameters offer a way to analyze and understand how changes in
their values affect the Pareto optimal solutions to each subsystem.

In the proposed model, the common and local variables become decision variables while the
linking variables are parameters. The overall problem is decoupled into two subproblems of the
form:

Subproblem 1

min fi(zo, z1;y21)

Z0o,T1

s.t. g1(zo, z1;y12) < 0 where y12 € [tr,tR] is a parameter
g € )(07 xr1 € Xl,
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and Subproblem 2

min fo(zo, 2;Y12)
0o,T2

s.b. ga(xo, 22;y21) < 0 where yo1 € [ur, ug| is a parameter
XTo € XO, To € Xo.

The intervals [t1,tg] and [ur, ug] are the feasible sets for the parameters y21 and y12, respectively.
Since y;; = 4i(xo, i, Yji)s 5, J = 1,2, © # j, the theoretically possible values for y;; can be deter-
mined based on the linking functions ¢; and /5 and the feasible sets X, X; and X5. Since this may
lead to large ranges for the values of y12 and y21, it may be reasonable to consider smaller subsets
of “likely” parameter values that can be determined based on the decision maker’s experience. A
reduced parameter set will, however, affect the ranges of the (approximated, parameter depen-
dent) Pareto sets of the respective subproblems, and some individual Pareto optimal solutions,
cooperative Pareto optimal solutions and mutually Pareto optimal solutions of the system may
be missed (cf. Section [f]).

It is anticipated that best solutions to the two subsystems will be found by solving the subprob-
lems independently. However, since the two subsystems must agree on the common variable zq
and the linking variables y12 and y21, a solution mechanism that ensures such a consensus must
be developed. In other words, it is of interest to compute parametric Pareto optimal sets which
are related to each other by the commonality of certain variables.

We recognize that algorithms for parametric single-objective optimization have been developed
[34, B3], 86}, B7] but parametric multiobjective optimization is an open area of study in which just
pioneering efforts have been undertaken [38] [39]. The parametric approach to interwoven systems
clearly motivates further work in this area. Furthermore, the commonality requirement suggests
other methods and implementations.

6.4 Distributed Approach

In [40l 4] two multiobjective decomposition algorithms are proposed to compute the Pareto op-
timal set of a multiobjective problem that is decomposable to multiobjective subproblems, each
with different objective functions defined on their own feasible sets and subject to a common
constraint allowing for passing information among the subproblems. Because the algorithms com-
pute the Pareto optimal solutions to the original problem by working only with the subproblems,
the approach is referred to as decentralized or distributed. We show that the case of interwoven
systems lends itself to this method.

The interwoven system is decomposed into two subsystems by introducing copies of the common
variables. Let x5! and z§“*? be copies of the common variable zg for subsystem 1 and 2,

respectively. Let y54! and 542 be copies of the linking variable y;o for subsystem 1 and 2,

respectively. Finally, let y5¥*! and y51*? be copies of the linking variable yo; for Subsystem 1
and 2, respectively. Given the copies, the overall problem is decomposed into the following two
subproblems:

Subproblem 1

subl subl
subl subl , subl fl(mo U1, Y21 )
Tq sT1,Y79 HYaq
subl subl
st g1(xg", v, y75 ) =0
x(s)ubl € Xo, r1 € X4

subl sub2 __
Ty —xg" =0

subl sub2 __
Y1 — Y21 =0

subl sub2 __
Yz — Y12 =0,

where y§401 = 01 (2§, 21, ysib?), and g2, y5ib?, yiy? are constant.
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Subproblem 2

fz(xguwa T2, yfgw)

sub2 sub2 , sub2
Tq 2 T2,Y15 Y5y

b2 b2
s.t. ga(zg""", 22, Y57 7)) =0

xé“bz € Xo, 9 € Xo
sub2 subl __ 0

Lo — Ty
sub2 subl __
Y12 — Y12 =0
sub2 subl __
Yor  —Yar =0,

where y35%2 = fo(25402, 29, y33%1), and wgUubL, y7ubl 4subl are constant.
21 0 ) » 912 B 0 y Y12 H» Y21

In each subproblem, there are now new equality constraints referred to as the consistency
constraints because they ensure that the copies are identical to each other. In the distributed
approaches we refer to, each subproblem is transformed into a single objective problem (SOP) by
a suitable scalarization method using scalarizing parameters such as weights in the weighted-sum
method or right-hand-side coefficients in the e-constraint method. Once a subproblem has been
solved, its optimal solutions are passed as constant targets to the other subproblem that is then
solved. The new solutions are in turn passed back to the first subproblem. Lagrangian relaxation
is applied to the consistency constraints of each SOP so that each of them is solved applying the
block coordinate descent [40] or subgradient optimization [41]. The process continues iteratively
until the solutions to every subproblem are within a tolerance level of or as close as possible
to the desired targets. The convergence of the algorithms is claimed based on the Lagrangian
duality theory integrated with either newly developed principles of distributed optimization [40]
or subgradient optimization [4I]. In each case the iterative process leads to the generation of a
weakly Pareto solution to the biobjective all-in-one system which, by Proposition [2| is mutually
weakly Pareto optimal to the interwoven system. The entire solution process can be repeated for
a finite number of the scalarizing parameters to compute a representation of the mutually weakly
Pareto optimal set for the interwoven system.

The solution method that follows on the algorithm in [41] is described in Algorithm (1| below in
the form of a pseudocode. Again it is assumed that each subproblem has been scalarized. The
variables xS“bl, Y3yl ysubl are treated as targets being sent from Subproblem 1 to Subproblem
2, while the other variables x§u2, ysub2 ysub2 act as targets being sent from Subproblem 2 to
Subproblem 1. The additional superscript on the variables denotes the k-th iteration of the
algorithm. In particular implementations, acceptable stopping criteria must be specified.

Algorithm 1 Distributed approach for scalarized subproblems

IR sub2,0  sub2,0 ~sub2,0
1: Initialize x JYie Yo

2: k<0
3: repeat

4: kE+—Fk+1
Solve scalarized Subproblem 1 for zj“*h* gk ofubbk 4 subl.k

Pass xf)"bl’k, yfgbl’k, y;‘bl’k to Subproblem 2

5
6
7: Solve scalarized Subproblem 2 for z5""*F gk ¢sub2k 4 sub2.k
8
9

sub2,k  sub2k  sub2
Pass 02 ysubk 4sub2F 44 Subproblem 1

: until all consistency constraints are satisfied

As mentioned above, the distributed approach is particularly applicable to decision making
situations in which the biobjective all-in-one system is not solvable but its weakly Pareto optimal
solutions are computed in a distributed fashion by only working with the subsystems. The lack
of solvability may result from lack of a model of the entire system, incompatibility of models of
the subsystems, incompatibility of softwares optimizing the subsystems, or different geographical
locations, backgrounds, and preferences of decision makers. Such situations may take place, for
example, in big corporations in which every division is located on a different continent and is
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managed by different decision makers who never work together but, nevertheless, are supposed to
make up a team working for the entire company. Another application refers to the design process
of a complex engineering system, such as an automotive vehicle, which involves a number of design
teams cooperating with each other rather than one team working on the entire vehicle. While
each team works on a different component of the vehicle (e.g., engine, body, suspension, tires)
and has access to limited information from the other teams, all teams work towards the same final
design.

7 Connection to Other Disciplines

7.1 Game Theory

The structure of interwoven systems can be analysed using game theoretic approaches — methods
that are based on one subsystem anticipating the response of another subsystem. The configura-
tion of the interwoven system determines which type of game theory model is the most appropriate
to use [42]. Where subsystems exhibit a hierarchical structure (see the bilevel formulation intro-
duced in Section, a Stackelberg game (leader-follower) can be adopted; where the subsystems
attempt to make decisions in parallel, a Nash game may be used [43]. Motivated by engineering
design scenarios in which different design teams work in physical or organizational isolation, with
only limited opportunity or incentives to share information, Xiao and colleagues [44] developed a
framework based on a Nash model. In the approach, each subsystem constructs a surrogate model
of its own rational reaction set, in anticipation of potential choices from other subsystems. To do
this, a set of scenarios is defined for the interaction variables and an optimization run is performed
by the subsystem for each scenario. A model is then estimated that generalises the relationship
between the interaction variables and the optimized response. The Nash solutions for the overall
system are identified by taking the intersection of the rational reaction sets for each subsystem.
The approach was demonstrated on a simple pressure vessel design problem with two subsystems,
where the underpinning physical models had low computational complexity — it remains an open
question whether or not this approach could be scaled to larger classes of interwoven system and
more computationally demanding evaluation functions.

7.2 Robust Design

During the process of solving its subproblem, each subsystem in an interwoven system is typically
uncertain about the final values that will be chosen for the interaction variables that affect its
objectives. This uncertainty can be re-framed within the context of robust optimization, enabling
a search for subproblem solutions that are in some way robust to the remaining uncertainty over
the choices that will be made for interaction variables. Such an idea was first proposed by Chang
and Ward [45], who described the approach as conceptual robustness; the aim then being to find
solutions that are robust to conceptual noise. A small number of robustness-inspired schemes have
been proposed to deal with interaction variables that are presently undetermined [46]; some of the
schemes are based on game theoretic models — see for example Chen and Lewis’ Stackelberg-based
approach [47]. Again, computational tractability remains a concern with these methods.

7.3 Co-Evolutionary Algorithms

Studies in co-evolutionary computation investigate how separate subpopulations solve their own
subproblems as a means of solving the complete problem — an approach known as cooperative
co-evolution [48]. The sub-populations exchange their information at certain intervals, e.g., at
a certain number of generations in an evolutionary algorithm. Although subpopulations try to
optimize their own objectives, they have to cooperate to solve the overall problem [49]. Mei and
colleagues [50] used a co-evolutionary approach to tackle the TTP. In this formulation, the TTP
was decomposed into a travelling salesman problem and a knapsack problem, with a separate
sub-population devoted to solving each problem. At each iteration of the co-evolutionary algo-
rithm, within each subproblem, the value of a candidate solution was evaluated on the full TTP,
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using collaborators from the previous iteration of the other subproblem. In empirical compar-
isons using instances of the TTP, the co-evolutionary approach was outpeformed by a memetic
algorithm which applied perturbations to both the tour and picking plan simultaneously. Despite
these discouraging initial findings, co-evolutionary strategies remain underexplored for interwoven
systems, warranting further investigation.

8 Summary and Outlook

In this pilot study a mathematical model for an interwoven system consisting of two subproblems
was introduced. Different concepts defining the optimal performance of such an interwoven system
were proposed, and the relation to associated multiobjective and bilevel optimization models was
discussed. Several existing optimization methodologies were suggested as tools for generating
optimal solutions to interwoven systems.

This research raises a variety of challenging and interesting questions. This includes gener-
alizations to interwoven systems with more than two subproblems, an in-depth analysis of the
similarities and the differences between different notions of optimality and between the associated
optimization models, and the development and critical evaluation of efficient solution methods.
The example problems mentioned in this study may serve as a first benchmark for such approaches.
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