

This is a repository copy of Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/114497/

Version: Accepted Version

Article:

Nahar, G, Mote, D and Dupont, V orcid.org/0000-0002-3750-0266 (2017) Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective. Renewable and Sustainable Energy Reviews, 76. pp. 1032-1052. ISSN 1364-0321

https://doi.org/10.1016/j.rser.2017.02.031

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Accepted in Renewable & Sustainable Energy Reviews on 6th Feb 2017

Hydrogen production from reforming of biogas: review of technological advances and an Indian perspective

Gaurav Nahar¹*, Dhananjay Mote² and Valerie Dupont³

¹Defiant Energy Pvt Ltd, Bhoir colony, Chinchwad Pune-411033, India, Ph-91-20-27452317,email-gauravnahar@defiantenergy.in

²Chemical Engineering and Process Development Division, CSIR- National Chemical

Laboratory, Pune-411008, Dr. Homi Bhabha road, Pune 411008, India, Ph-91-20-

25902172,email-dr.mote@ncl.res.in

School of Chemical and Process Engineering, The University of Leeds, LS2 9JT, UK, Ph-44-

113-3432503, email-V.Dupont@leeds.ac.uk

Abstract

This paper examines the benefits and potential of biogas generation and uses in India, with focus on advances made in hydrogen production by catalytic reforming technologies with steam, O_2 , and CO_2 as the oxidants. Utilization of biomass by means of generating biogas is one of the easiest and cost effective methods of harnessing renewable energy. As India is an agricultural country, a tremendous amount of biomass and livestock waste is generated every year. Likewise the large population of India generates much food and municipal solid waste that is not being utilized for biogas generation. Fuel cells are one of the effective means of utilizing biogas, although the synthesis gas or hydrogen generated from biogas can also be used in internal combustion engines. Higher efficiency of fuel cells (45 %) compared to internal combustion engines (30%) and even higher with co-generation systems (70%) make them highly desirable for biogas utilization for power generation. Investigations of hydrogen production for fuel cell use are in their infancy stage in India. Apart from a few scattered investigations not much work has been undertaken in the area of research. Large scale hydrogen production is achieved by steam reforming of hydrocarbons, in particular natural gas. Although the process is a proven technology it has come under considerable scrutiny due to its environmental impact and the energy intensive nature of the process. Several technical and scientific challenges have to be overcome for assimilation of the technology for hydrogen production from biogas and wide scale application in India. These challenges include development of less energy intensive features, highly active and poisons-resistant catalyst, and fuel cell development for utilization of biogas generated hydrogen.

Key words- Hydrogen, biogas, fuel cells, autothermal and catalyst

1. Introduction

The energy sector is the most significant area focused at present on generation of traditional energy from fossil resources. Increased global energy demand and environmental concerns arising from release of greenhouse gases have contributed towards deployment of alternative energy generation options. Biomass as a renewable energy source, derived from biological material obtained from living organism i.e. plants or plant derived materials, is one of them¹.

¹ Abbreviation: ACR- Autothermal Cyclic Reforming, AFC- alkaline fuel cell, ASU- Air separation unit, ATR-Autothermal reforming, ATRB- autothermal reforming of biogas, BNFC- Bio-nanostructured filamentous carbon, BOP- balance of plant, CHP- combined heat and power, COD- chemical oxygen demand, COPD- Chronic obstructive pulmonary disease, DR- Dry reforming, DRM- Dry reforming of CH₄, EEA- European Environmental Agency, F-T -Fischer Tropsch, GE- General Electric, GHSV- Gas Hourly Space Velocity, GTL- Gas to liquid fuels, IISc- Indian Institute of Science, IITs- Indian Institutes of Technology, LAS- Lewis acid sites, MCFC- Molten carbonate fuel cell, MLD- Million litres per day, MSW- Municipal solid waste, MT- million tones, NPBD- National Project on Biogas Development, ODRB- Oxy dry reforming of biogas, OSC- Oxygen storage capacity, PAFC- Phosphoric acid fuel cell, PEMFC- Proton exchange membrane fuel cells, SDC- samaria doped ceria, SR- Steam reforming, SMR- Steam reforming of methane, SOFC- Solid oxide fuel cells, SRB- Steam reforming of biogas, WGS- Water gas shift reaction and WHSV- Weight hourly space velocity.

. The European Commission specified that there are large varieties of biomass available for potential conversion to energy such as by-products, agricultural, forestry residue, related industries, as well as the non-fossil, biodegradable parts of industry and municipal solid waste (MSW) [1]. Biomass and biomass energy systems are suggested to become important contributors to sustainable energy systems and sustainable development in developed as well as developing countries in the near future [2]. According to the European Environmental Agency (EEA), 13% of the total energy consumption by 2020, would be provided by biomass [3].

Biomass can be the most suitable form of renewable energy source among the various other renewable sources due to its many advantages. Biomass can be produced abundantly in most part of the world. Continuous supply can be assured based on constant production. It is important to note that the annual production may vary, depending on the type of biomass grown. It is relatively cheaper to produce it and some types of the biomass obtained as by-products are almost free. Biomass can also be directly used in the existing power generating infrastructure. Specially grown energy crops and other kinds of biomass can be co-fired with coal to generate electricity. The net calorific value from biomass ranges from about 8 MJ/kg for green wood, to 20 MJ/kg for dry plant matter to 55 MJ/kg for CH4, as compared to 27 MJ/kg for coal [4].

The use of biomass could augment and complement that of fossil fuel. It will also help mitigate CO_2 emissions, as CO_2 produced from biomass and its utilisation can be in part counter balanced by the amount absorbed during its growth. India is one of the many countries that have ratified the UNFCCC Paris Agreement in 2016, thus committing to combat climate change. Cultivation and burning of Miscanthus (an energy crop) was predicted to reduce 9% of the total EU carbon emissions in 1990 [5]. The use of waste biomass will also help moderate the CH₄ generated from decaying organic matter. By making use of the sugar cane bagasse for electricity production, more than 100 % reduction in GHG emissions compared to gasoline/diesel, was reported with sugar cane ethanol [6].

Liquid fuels such as biodiesel and bio-ethanol can be produced from sugar containing biomass by fermentation processes. Next generation bio-fuels such as butanol can also be produced from these biomass sources [7]. Complex fuels such as bio-oil can also be generated by pyrolysis of biomass [8]. Gaseous fuels like biogas and producer gas can be produced from biomass. For example, agricultural residue such as wheat straw or rice straw can be converted to biogas via anaerobic digestion, where biogas consists mainly of a mixture of CH₄ and CO₂. This in turn could help in reduction in land filling and increase availability of land for other uses. Anaerobic digestion of biogas comprises of 4 different stages, namely, hydrolysis, acidogenesis, acetogenesis and methanogenesis. Biogas can also be obtained through landfills, such a gas is known as 'landfill' gas. The typical composition of biogas varies from site to site, depending on type of feedstock and also the type of anaerobic digesters used.

The composition of CH₄ in biogas and landfill gas is similar, but the former shows slightly higher composition. In comparison to natural gas both kinds of biogas exhibit lower CH₄ content lowering the calorific value of the gas. In contrast to natural gas, biogas shows presence of NH₃ and O₂.On the other hand higher hydrocarbons are absent in biogas/landfill gas. But both biogas and natural gas typically contain H₂S and N₂ as minor compounds. The major problems associated with combustion of biogas are presence of high amount of H₂S and of silicon compounds as they generate the SO₂ pollutant and silica particulates which damage combustion engine parts and heat exchanger surfaces. In reductive catalytic environments, the H₂S would also act as a catalyst poison. Anaerobically produced biogas exhibits higher H₂S content than landfill gas and natural gas. Similarly, more halogens are present in landfill derived biogas in comparison to the other two.

Table 1: Typical composition of biogas and land fill gas [9].

Recently biogas has received considerable attention as an alternative energy source. Electricity can be generated via combustion of biogas in internal combustion engines (IC engine), but this requires an upgraded technology and infrastructure for removal of impurity that are present in biogas, which may reduce engine efficiency and create pollution due to incomplete combustion. Direct burning of biogas is quite a difficult process. Although CH_4 is the main component in biogas that will be combusted, the other components are not involved in combustion process, but they absorb energy from combustion of CH₄. Presence of CO₂ decreases engine efficiency and increases emission of unburned hydrocarbon [10]. Also, the presence of CO_2 in the combustion process of biogas decreases burning velocity and reduces adiabatic temperature [11]. The presence of H₂S is responsible for corrosion of engine parts, as H₂S is acidic in nature. In addition, the presence of moisture can cause starting problems. As a result, purification of biogas is necessary before combustion. To improve the combustion of the biogas, syngas can be added. The addition of syngas will improve the combustion limitation of biogas such as lower flame speed, flammability limit [11]. Additions of syngas (H₂+CO) to biogas would improve combustion process resulting in complete combustion and reducing emissions. Addition of syngas to CH₄ engine increases efficiency but fuel conversion efficiency decreases slightly. This is a result from fuel consumption rate increases [11]. If syngas higher the concentration of H₂ resulted in higher reduction of the pollutant emissions. In the future, fuel cells may play an important role in power generation due to their superior efficiencies of conversion of chemical energy to work, in contrast to thermal engines. Currently fuel cells are expensive and certain barriers have to be overcome for successful commercialized. Internal combustion engines running on biogas supplemented with syngas derived from biogas could feature in a transition period till such time fuel cells become economically viable. The current review examines the potential of biogas in India and the methods for generating syngas or hydrogen from biogas are then reviewed with focus on catalyst formulations, reactor type and process reaction conditions.

2. Biogas production and usage

Biogas production and utilization have several advantages. Figure 1 shows current uses of biogas. It offers alternative fuel, high-quality fertilizer as a by-product, electricity, heat, complete waste recycling, greenhouse gas reduction and environmental protection from pollutants. Biogas systems convert organic household waste or manure into gas for cooking and lighting. These wastes like (rice, ugali), vegetables (tomatoes, cabbage), peels of potatoes and fruit, excreta can be converted to energy instead of disposing of them. Waste disposal and storage attracts insects and pests. Biogas helps in management of waste and contributes to improved hygiene.

Table 2 shows the reductions in greenhouse gas emissions due to biogas use as compared to fossil fuel. As seen from the table biogas utilization has tremendous potential to reduce greenhouse gas emissions. Wastes obtained from livestock, food waste and organic household waste has greatest potential of reduction.

Table 2: Reduction in greenhouse gas emissions as a result of biogas utilization 12].

The raw material used in biogas production is low cost and it also generates income making it an economically viable option for conversion of biomass. Biogas is also generated using animal waste, which is available in large quantities and is almost free. As livestock animals are commonly reared in rural areas in India, animal dung is produced and is easily obtainable. Burning dung is a common practice. One might argue that burning dung is cheaper than generating biogas. Table 3 compares and explains the advantages of generating biogas using animal dung. According to Table 3, burning dung is highly inefficient, with only 10 % of the energy obtained by combustion actually being utilized, in comparison to 55 % in the case of biogas. Similarly, burning dung is a polluting process causing indoor pollution and thus increases the risk of illnesses such as chronic obstructive pulmonary disease (COPD), acute respiratory infections in children, increased infant and prenatal mortality, pulmonary tuberculosis, nasopharyngeal and laryngeal cancer, and cataract [13]. This is

mainly due to carbonaceous aerosols being released during the burning of dung. Furthermore, these aerosols are responsible for warming and cooling the Earth's atmosphere [14]. In comparison, biogas is a cleaner fuel and combustion of biogas produces a smaller and less hazardous subset of pollutants in addition to CO₂. The biogas obtained from digestion of biomass is successfully utilized in some parts of India and this has resulted in enhancing the local ecology and relieving economic stress in rural communities[15].

Table 3: Comparison of direct burning of 1kg dung and its use as biogas[15].

The use of biogas helps reducing deforestation by minimizing use of firewood and also mitigates the use of synthetic fertilizers which affect the soil quality and carry a heavy carbon footprint. The use of biogas lowers GHG emissions in comparison to fossil fuels. bio-CNG's combustion generates ~8-22g CO_{2eq}/MJ which is 80% lower as compared to petroleum based fuels. Combustion of biogas does not produce harmful aromatic and polyaromatic hydrocarbons. The absence of these hydrocarbons prevents the net emission of soot and particulate matter from the combustion process. Soot formation during burning of natural gas or biogas, depends on the combustion conditions, the net emission of soot can be eliminated by gas combustion control, which is harder to achieve with liquid fuels. Filling stations of liquefied biogas are established in US, Europe and China. The production and utilization of biogas creates work opportunities for thousands of people. These jobs are blessings in rural areas, which are the targeted grounds for the use of biogas. In fact, biogas can easily be decentralized, making it easier to access by those living in remote areas or facing frequent power outages. One of the main advantages of biogas is easy setup and small scale plants require relatively little capital investment. The utilization of biogas helps farmers to become self-sufficient by using the livestock waste and surplus biomass available on the farm to generate power for domestic use.

The slurry obtained after digestion process is safe, organic, and nutrient-rich liquid fertilizer, which can be directly used to enhance agricultural productivity. The biogas slurry has great benefits to farmers. It can not only save money which otherwise is spent on the purchase of synthetic fertilizers, but it also help reducing environmental impacts. During the digestion process the elemental carbon to nitrogen ratio is reduced due to the removal of carbon from the substrate, increasing the fertilizing effect of the slurry. It is estimated that the application of biogas slurry may increase productivity as much as 25% when compared to applying manure directly to fields. Biogas slurry also has a pesticidal effect and can control certain pests without the harmful effect of synthetic pesticides. Experiments conducted at Tamil Nadu University, Coimbatore, India, have shown that biogas slurry can control nematode attack on tomatoes [16]. The severity of root-knot nematodemeloidogyne incognita attack on tomato reduced measurably using two levels of biogas slurry using 5% and 10% (w/w), added to soil. Both (3 fruits/plant) and fruit yield (35.2 g/plant) of tomato increased significantly with 10% (w/w) biogas slurry. The plants fertilized with biogas slurry put up more vegetative growth and tended to flower and fruit much earlier than the control. The nematode population in the soil and the severity of nematode attack also decreased.

Figure 1: Basic utilization of biogas.

3. Biogas potential and utilization in India

Currently, biogas has been mainly used as a cooking fuel and running stationary engines (Figure 1). The potential of biogas has not been completely realized and utilized yet. In order to promote the use of biogas for domestic purposes, the government of India has launched the National Project on Biogas Development (NPBD) in 1981. The number of biogas plants in India has increased from 1.23 million in 1990 to ~4.54 million in 2012, despite an estimated potential of 12.34 million digesters (Figure 2) [17]. The percentage of biogas plants installed with respect to its potential has increased from ~26% in 2002 to approximately 37% in 2012.

The family type (domestic scale) biogas plants resulted in an estimated 4 million tons (Mt) of fuelwood per year, in addition to producing 1 Mt of enriched organic manure [15]. Cooking using biogas is faster in comparison to using charcoal or firewood. Biogas stoves do not take time to heat and cooking can begin once the stove is turned on.

Biomass such as fuel wood, animal dung, crop residue is widely used as a source of energy in developing countries. India is an agricultural country and large amount of biomass is produced as a result of agriculture activity. Agriculture is the backbone of India's economy and accounts for 17% of India's GDP while sustaining 60% of its population [18]. Agriculture activity is responsible for generation of large quantity of biomass. An estimated 686 Mt of gross biomass residue is generated from 26 crops every year in India. Table 4 show surplus crop yields and biomass potential of India. About 245 Mt of surplus biomass are generated annually, i.e. 34 % of the gross biomass is generated as surplus. In addition to biomass, livestock and poultry waste are other sources of biogas raw materials. According to 2013 census, 30.7 million livestock and 128 million poultry, there has been 33 and 48 % increase in the population of livestock and population, respectively. Table 5 shows the distribution of livestock and poultry in 2013-14. An estimated 298027 tonnes/day of manure was generated in India in 2013-14. Animal waste and decomposing biomass generates 55-65 vol % CH₄ which is directly released in atmosphere and has a greenhouse gas potential of 21 in comparison to 1 for CO₂.

Figure 2: Installed biogas plants in India [17].

In addition to agriculture farm waste, certain other kind of wastes generated by the agro- processing industry, vegetable market waste, roadside plantation waste are also important sources of biomass to be considered for biogas generation. Almost 200 Mt of household and agro processing wastes are generated annually in India and disposed in a dispersed manner [19]. As these wastes are produced at very low cost or no cost, they are under-utilized. In addition to the biomass and animal

waste some of the industries also generate wastes which have great potential for conversion into biogas. Table 6 summarizes the potential for generation of biogas from wastewater in India. In India, distilleries produce about 6000 Mm³ of wastewater (Table 6). Similarly a huge potential exits from the wastewater generation from other industries. The generation of biogas from wastewater streams can serve dual purpose. Firstly it will help in reduction of COD (chemical oxygen demand) of the effluent and secondly it would generate valuable energy. A biogas production potential in the range of 0.15–0.45 m³ CH₄/kg of COD removed is possible. The discharge of these streams without treatment could cause serious environmental effects.

Sewage waste is similar to animal waste and can be converted to biogas. The increase in population has created a sharp rise in generation of sewage waste which remains unutilized. Table 7 summarizes the amount of waste water generated in Indian cities. An estimated 15,292 million litres per day (Mld) were generated and 66% i.e. 10,170 Mld were collected and treated [15]. The treatment of waste water will generate tremendous amount of sludge which has great potential for biogas generation. As a result the improper utilization of this abundantly available resource would result in serious environmental effects affecting quality of life in the country. Mammoth amount of household degradable waste containing waste paper, fruit vegetable peels and food waste are generated every year which can be effectively converted to biogas. India has a potential to generate 3000 MW of energy from MSW (Municipal Solid Waste)by 2020 [20]. MSW containing biodegradable waste and paper has lower calorific value. As a result, the conversion of MSW to biogas would be beneficial resulting from increased fuel quality by increased calorific value.

In addition to biomass generation, high amount of meat and poultry is consumed in the country. Indian poultry is the fifth largest production in the world, with egg production growing at the rate of 16% per year. There are three main phases in poultry industry namely production, development and processing which produce wastes such as egg shells, unhatched eggs, poultry droppings, and waste feed. The biogas potential of the poultry farms in India is estimated to be 438,227 m³/day [15].The Indian meat industry is one of the largest in the world. In India about 4.42 Mt of meat are

consumed per year which consists of beef, buffalo meat, mutton, goat meat, pork and poultry meat. Large amounts of water are consumed in the slaughterhouses while cleaning and washing of animals slaughtering and lairage. There are 3600 recognized slaughterhouses, 9 modern abattoirs and 171 meat processing units which slaughter over 121 million cattle's (sheep, goat, pigs and poultry) and 36.9 million buffaloes, annually, for domestic consumption as well as for export purpose [21]. On average 15 litres of water are wasted in each slaughtering, about 630 million gallons water wasted every year in India. Based on the waste water utilization an estimated 1,494,225 m³/day of biogas could be generated [15, 21]. The average Indian dairy's annual milk production was 20 Mt in the 1950s, which became 50 Mt in 1990 and 80 Mt by 2000, India now ranks as the world's number one milk producing country. A dairy consumes about 2-5 litres of water per litre of milk processed, used for washing and cleaning operations. Therefore, this industry poses a major threat to the environment, unless such effluents are subjected to proper treatment. It also provides a great opportunity and potential for biogas generation [22]. A total biogas generation potential from 342 dairy units in India is estimated to be 219,409 m³/day[15].

Table 4: Gross and surplus biomass generated in India [18].

Table 5: Estimation of biogas generation from animal waste in India.

Table 6: Energy potential of waste water from India [19].

Table 7: Waste water generated in India [15].

4. Syngas/hydrogen production in India

The potential of biogas in India is not fully realized due to unavailability of large scale biogas plants. A compilation of various industries or institutes engaged in generating biogas for various applications is depicted in Table 8. Table 9 shows the recent large scale biogas generation projects implemented in India in the year 2014. From these tables, it can be seen that biogas generation and utilization are not even close to the estimated values. A vast potential exists for conversion and utilization of wastes to biogas. The implemented technologies have been useful for the industry to achieve energy saving in turn adding to profits. The implementation of the projects has been widely supported by MNRE and academic institutions like the Indian Institute of Science (IISc) and Indian Institutes of Technology (IITs).

Currently biogas is used in combined heat and power (CHP) for generation of heat and electricity. Biogas can be upgraded for injection in the natural gas grid when it becomes an option. In Germany and Sweden biogas is used as a transportation fuel. Apart from utilization as a fuel, biogas can be converted to synthesis gas (H_2 +CO). Synthesis gas is a valuable commodity and is utilized in production of alcohols, alternative fuels and after separation of the H_2 , ammonia based synthetic fertilisers, and petroleum refinery feedstock. Figure 2 represents the aspect of biogas conversion to synthesis gas and its uses. At this moment there are no installation in India using biogas to convert to syngas.

4.1 Syngas/hydrogen utilization in fuel cells:

One of the widely studied methods of utilization of H_2 and syngas is fuel cells [23, 24]. Technically, fuel cells can be described as electrochemical energy conversion devices that convert H_2 and O_2 into H_2O and in the process produce electricity [25]. Their mode of operation is similar to that of a battery. Unlike a battery, a fuel cell does not store energy and instead converts chemical energy to electrical energy, without the intermediate conversion steps into heat and then mechanical

power, which are required in combustion based power generation technologies [26]. Efficiency exhibited by fuel cells is twice that observed in internal combustion engines and turbines, making them one of the promising energy conversion devices [27]. They can be used in association with other devices such as turbines, further increasing their efficiency up to ~70% [28]. PEMFC (proton exchange membrane fuel cells) and solid oxide fuel cells (SOFC) are the two most promising types of fuel cells. The PEMFC has a polymer based electrolyte such as Nafion which provides excellent resistance to gas crossover. The PEMFC's low operating temperature allows rapid start-up and, with the absence of corrosive cell constituents, the use of the exotic materials required in other fuel cell types, both in stack construction and in the BoP (balance of plant) is not required [24]. Other advantages compared to alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) include significantly reduced corrosion problems due to the limited operating temperature, and the use of a solid electrolyte.

Moreover, PEMFCs are smaller and lighter than other fuel cells, making them ideal in the cases where size and mobility is key parameter for the application. The high power density of these fuel cells makes them ideal for applications in laptops, automotive power, computers and mobile phones. In recent years some of the major drawbacks such as life of the fuel cell and cost of the power generated are being resolved, but further cost improvements are necessary in order to compete with the mature internal combustion technologies [29]. One of the key aspects of PEMFC, which need addressing, is its intolerance to impurities in fuel and oxidant, as these affect the performance and expedite degradation. PEMFC fuel cells are extremely vulnerable to carbon monoxide in the fuel, which poisons the platinum catalysts.

On the other hand, SOFC's are versatile fuel cells with high electrical efficiency of 55% [30]. As a result of their high operating temperatures, SOFCs can be effectively combined with other new energy technologies such as micro turbines to enable the development of electricity generation products with ~70% efficiency [28]. They can also be used in combined heat and power systems (CHP) to provide electricity and heat for applications in cold areas of the world. SOFCs are made

from commonly available ceramic materials and have no moving parts or corrosive liquid electrolytes. Therefore they should lead to highly reliable electricity generation systems which require low maintenance [31]. The manufacturing process for SOFCs is based on well-known equipment that is widely available and well proven in the manufacture of electronic ceramic components. SOFCs do not require expensive catalysts for their operation. SOFCs are heavier than PEMFCs and thus are more suitable for stationary power generation. Biogas is successfully utilized for generating H₂ for fuel cell use [9]. The advantages of using biogas for fuel cells use are quite a few.

- 1. Available in large amount. As biogas is generated from renewable biomass and livestock waste. Cost of production of these resources is very low or almost free.
- 2. The fuel cost generated from biogas for fuel cells would be low in turn reducing the cost of power generated using fuel cells.
- 3. Higher electrical efficiency of fuel cells in comparison to internal combustion engine would result in higher power generation with the same input of fuel.
- 4. Biogas contains CO₂, which reduces its calorific value; in turn lowering the amount of power generated using internal combustion engines. Removal of CO₂ for power generation using fuel cells is not required. In fact the presence of CO₂ is beneficial for the operation of the fuel cell i.e. SOFC's[32].
- 5. Carbon dioxide generated from use of biogas in fuel cell will be in part counter balanced by the biomass used for biogas generation.
- 6. Small scale generation is possible.
- 7. No moving parts in fuel cells result in silent operation.
- 8. Scalable.
- 9. Simpler purification system.
- 10. Hybridization with other technologies such as solar and wind power and heat pumps have great market potential.
- 11. Remote power generation is possible.

12. Few commercially available technologies for using biogas using fuel cells. Commercial scale 2.8 MW fuel cell power plant running on biogas generated from waste water is constructed and operated by fuel cell energy in California, US.

To summarise, biogas can be effectively used in fuel cells. In case of utilisation of biogas for cells no separation of CO_2 is required. Carbon dioxide is useful in the H₂ rich gas (syngas) production process. Fuel cells (SOFC) are able to utilise biogas directly and produce stable power [33]. In case of failure of the fuel cell, the whole process is shut down for maintenance, which is a major drawback of this process. Carbon formed during the H₂ production by the internal reforming process deposits on the anode's surface, affecting the life of the fuel cell. In case of PEMFC, an external generation of H₂ is required. This option can be adopted to supply H₂ from both SOFC and PEMFC fuel cells.

Figure 3: Schematic of synthesis gas utilization derived from biogas.

Table 8: Conversion of different waste biomass to energy in India and reported benefits[19].

 Table 9: Biogas implemented projects in India in the year 2014.

5. Syngas/hydrogen production

5.1 **Reforming processes for syngas/hydrogen production:**

On industrial scale for the last 10 decades, H_2 is mainly produced by processes of steam reforming of methane (SMR) [31]. The H_2 produced by SMR is mainly used for utilization in refineries and fertilizer plants. It is used in hydro treating, (hydrocracking, hydrogenation, hydrodesulphurization, hydrodemetallisation and hydrodenitrogenation) in the refineries for producing clean fuels like gasoline, diesel and many other products. In fertilizer plants it is used for the manufacture of ammonia, methanol and many other derived chemicals like urea, nitric acid and ammonium nitrate. Most industrial steam reformers use Ni catalysts on a ceramic support, operating in the temperatures ranging from 700-1000 °C in the pressure range of 15-30 atm [34, 35].

The main disadvantage of steam reforming (SR) is the endothermic nature of the reaction; i.e. it consumes a large amount of heat to shift the equilibrium towards the right to yield H_2 and CO (reaction 5.1). Further harsh conditions required during SR result in formation of carbon on catalyst surface and sintering of the active metals.

Steam Reforming
$$(SR):C_nH_m + nH_2O \xleftarrow{\text{Ni cat}} nCO + (n + \frac{m}{2})H_2, \Delta H \Box 0$$
 (5.1)

Partial oxidation is another reforming process used for H_2 generation. The reaction (5.2) is mildly exothermic and uses air or oxygen gas as a source of oxygen to produce H_2 and CO.

Partial Oxidation (PO):
$$C_n H_m + \frac{n}{2}O_2 \longrightarrow nCO + \frac{m}{2}H_2, \Delta H \prec 0$$
 (5.2)

One of the important aspects to be considered during the process is the molar O_2/C ratio. Higher O_2/C ratio would result in complete combustion of the fuel (5.3) which is a highly exothermic reaction causing reaction temperature increase, which can form hot-spots in the reactor bed and form coke on the catalyst surface [9]. Another important drawback of the process is lower H₂ yield.

Oxidation (Ox):
$$C_n H_m + (n + \frac{m}{4})O_2 \xrightarrow{\text{Nicat}} nCO_2 + \frac{m}{2}H_2O, \Delta H \Box 0$$
 (5.3)

To mitigate the problem of lower H_2 yield in case of partial oxidation (5.2) and endothermic SR(5.1), a combination of both the process called autothermal reforming (ATR) has been developed. The term 'Autothermal' in the context of reforming means a process that does not rely on external provision of heat, it is self-sufficient by balancing the heat requirement of the

endothermic reactions by those of exothermic reactions, thus avoiding thermodynamic irreversibilities caused by heat transfer across the reactor boundaries. This combination is considered as one of the most attractive options for on-board reforming of complex hydrocarbons like kerosene and diesel [36, 37]. Its main characteristics are: low energy requirement due to the complementary SR and PO reactions, high Gas Hourly Space Velocity (GHSV) at least one order of magnitude relative to traditional SR, and preset H₂/CO ratio easily regulated by inlet reactant ratios and CO₂ recycling [38].

Harsh temperature and pressure conditions during SR requires costly reactor materials and installation. In order to overcome these drawbacks the development of compact ATR reformers is investigated. In an ATR reformer the PO reaction occurs in a thermal zone generating the heat for SR to take place in the catalytic zone, with down flow of steam. The heat generated from the PO mitigates the requirement of external heating. The startup and shut down of an ATR reformer is quite fast and can produce large amount of H_2 with lower O_2 consumption compared to PO reaction, by manipulating the inlet $CH_4/O_2/H_2O$ to get the desired H_2/CO ratio [9]. ATR reformers can use biogas containing CO_2 to adjust the H_2/CO ratio in the product. The major problems associated with ATR reforming is formation of soot in the combustion zone of the reformer, which is controlled by adding steam to the feed, but this increases capital and operating costs of the reformer.

There are two types of ATR reformers. The first type of ATR reformer is compact and just contains a catalyst bed in which SR and combustion occurs on it simultaneously. The first type of ATR reformers is desirable for fuel cell applications because of compact size. In the second type, there are two separate chambers or sections. In the first section non-catalytic PO occurs using a burner. The second chamber where catalytic SR occurs is placed downstream of the PO chamber (Figure 4). This type of ATR reformer is well suited for conversion of gas to liquid fuels (GTL) applications. The major problems arising in the second type of ATR reformers is formation of soot in the non-catalytic PO chamber which depends on factors such as composition, temperature, pressure and especially burner design. Soot precursors may be formed in the combustion chamber during operation. It is essential that the burner, catalyst and reactor are designed in such a way that the catalyst bed destroys the soot precursors avoiding soot accumulation. The process can be applied in H₂ production from various fuels including natural gas, diesel, coal and renewable feed-stocks.

ATR plants based on oxygen-blown ATR at low H_2O/C ratios are the preferred option for largescale and economic production of synthetic gas for GTL plants [39]. Finally, ANL has favored catalytic ATR developing new catalysts for the reforming and shift reactors. It is suggested that ATR systems can be very productive, fast starting and compact.

Figure 4:ATR reformer applied in GTL applications [40].

One of the disadvantages of air-fed ATR is dilution of the reformer outlet with the inert N₂ from the air reactant. Further, the oxidation of fuel used to generate the exothermic heat reduces the H₂ yield. To counteract these problems, Autothermal Cyclic Reforming (ACR) process was designed by the U.S. based company General Electric (GE). The process operates in a three-step cycle that involves SR of fuel on Ni catalyst (reforming), heating the reactor through the oxidation Ni catalyst (air regeneration) and the reduction of the catalyst to its original state (fuel regeneration) [41]. ACR has common features to chemical looping reforming, which can operate in packed bed configuration with alternating flows that result in reactive conditions change from oxidative to reducing/reforming with time in the packed bed reactor, essentially in semi-batch operation, or via fluidized beds fed with steady gas flows and interconnected to allow recirculating material beds, where the conditions in each reactor remain the same with time, permitting continuous flow operation. Typically, SMR reformers require higher combustion-operating temperatures to augment heat transfer and heat transfer area by means of smaller diameter structures. Use of high grade stainless steels with higher mass is required increasing the construction cost of the reformers. Comparatively ATR reformers would require lower material cost and lesser heat transfer area thereby decreasing construction costs.

Along with the above mentioned processes H_2 can be produced by reacting the fuel i.e. hydrocarbon with CO_2 as the source of oxygen, producing H_2 and CO. As a result of large negative enthalpy of CO_2 , the process is highly endothermic process in comparison to other process like SR. The process is generally referred as dry reforming (DR) due to absence of steam reactant, although it can be generated as a by-product or intermediate. Dry reforming of CH_4 (DRM) has been widely investigated to produce H_2 and CO for Fischer Tropsch (F-T) synthesis [42-44].

Dry Reforming (DR):
$$C_n H_m + nCO_2 \xleftarrow{\Delta H \gg 0}{2nCO} + \frac{m}{2} H_2$$
 (5.4)

Dry reforming of methane (DRM): $CH_4 + CO_2 \xleftarrow{\Delta H \gg 0} 2CO + 2H_2$ (5.5)

The highly endothermic nature of the process mandates the use of an external heat source similar to SMR. The process is slow, requiring long residence time and hence slower transient responses [42]. Likewise, the process is prone to carbon deposition by CO disproportionation (5.6, also called the Boudouard reaction) and CH_4 decomposition reactions (5.7)

$$\operatorname{Boudouard}(\operatorname{Boud})(2\operatorname{CO} \xleftarrow{\Delta H_{o}=-171.5 \text{kJ/mol}} \operatorname{CO}_{2} + \text{C})$$
(5.6)

Methane decomp(MED)(CH₄
$$\xleftarrow{\Delta H_o = -90.1 \text{ kJ/mol}}{2H_2 + C})$$
 (5.7)

These reactions result in the formation of carbon deposits especially over Ni based catalysts, resulting in blockage of catalyst pores destroying catalyst particles and disrupting and blocking the reactor. These two side reactions which occur and generate the carbon deposits, eventually

would negate the catalyst's activity and would block the reactor. According to Liu et al. [45] activity of CO disproportionation reaction (5.6) is reduced at and above 700°C, the operating temperature of dry reforming reaction. On the other hand CH₄ decomposition forms highly reactive C_{α} , which can be further gasified by reactions with H₂O (reaction 5.8) by, CO₂ (rev 5.6) or H₂ (rev 5.6), where 'rev' means reverse reaction.

Coke gasification
$$(GS)C+H_2O \xleftarrow{\Delta H_0=139 \text{kJ/mol}} CO+H_2$$
 (5.8)

However, some are converted to the less reactive C_{β} which may encapsulate on the surface or may dissolve in or encapsulate the Ni crystallite based on kinetic balance of various reactions. The dissolution of carbon in Ni is a key step for growth of carbon whiskers, which can destroy the catalyst or block the reactor [42].

Coke oxidation (CO_x) C+
$$\frac{1}{2}$$
O₂ \longrightarrow CO (5.9)

Coke oxidation
$$(CO_x) C+O_2 \xrightarrow{\Delta H_o=-395.6 \text{kJ/mol}} CO_2$$
 (5.10)

Reactions (5.6-5.8) are not limited to dry reforming process, they also occur in other reforming processes. In addition, to the oxidation reactions (5.3 and 5.4), carbon oxidation reactions (5.9-5.10) occur in PO and ATR reforming processes. Pressure, temperature, reactant ratio, reactor and catalyst type are the important factors determining the extent of the reactions in the reactor.

Apart from all the above side reactions (5.6-5.10), water gas shift reaction (WGS) given by reaction (5.10) is the most important side reaction. The catalyst promoting WGS reaction (5.10) is highly favorable as it reduces CO from the product thus increasing H₂ yield and selectivity. The reaction also limits the operating temperature of the reactor. Since very high temperature 800 °C or above promote RWGS (rev 5.11), consuming H₂ and CO₂, producing CO and H₂O, in turn decreasing H₂ yield. WGS is one of the important reactions occurring during H₂ production. It determines the amount of CO in the H₂ rich gas produced, to be fed to fuel cells that are sensitive to CO levels.

Similarly the extent of WGS reaction determines the H_2 yield obtained during the reforming process.

Water Gas Shift (WGS):n×(CO + H₂O
$$\xleftarrow{\Delta H_0 = 41 \text{ kJ/mol}} CO_2 + H_2$$
) (5.11)

5.2 Catalyst formulations used in reforming processes:

Catalyst is one of the important parameter to be considered in H₂ production from hydrocarbons or oxygenated hydrocarbons. The type of catalyst used determines the yield and selectivity of H₂ produced as well as selectivity to by-products. The nature of the catalyst determines the life and activity of the catalyst. In case of H₂ production process, life of catalyst is affected by carbon formation resulting in lower H₂ yield and selectivity and shorter life. Table 10 summarises carbon formation in some catalytic evaluations of H₂ production from biogas. It is important to note that the amount of carbon alone does not affect the activity of the catalyst, while type of carbon formed during the greatly influences catalyst deactivation. The type of metal loaded on catalyst and temperature of process, determines the type and amount of carbon formed on the catalyst. Maximum amount of C was produced over Ni/Al₂O₃ catalyst at 600 °C in comparison to 800 and 900 °C for Co and Fe supported on Al₂O₃[46]. Fishbone-like bio-nanostructured filamentous carbon (BNFC) was observed at 600 °C over Ni/Al₂O₃ catalyst compared to chain-like BNFC obtained with the Fe/Al₂O₃ catalyst at 900 °C. Encapsulating carbon was reported be formed at evident at higher temperatures 800-900 °C.

Similarly H_2 production processes operate at high temperatures, and prolonged exposure to high temperature results in decreased catalyst surface area (a type of sintering), which in turn affects the performance of the catalyst. Table 11 summarises the surface areas of various catalyst used in H_2 production. It can be clearly seen that the surface area of the catalyst is lower after the testing of the catalyst. Also catalysts prepared using different supports result in formation of material

with different surface areas. Usually higher surface area results in better catalytic activity of the catalyst caused by higher dispersion of the active metal on the support [47]. Also, the pore structure of the support andthe metal–support interaction significantly affect the catalytic activity and coking resistance of the catalyst. Catalyst with well-developed pores exhibited higher catalytic activity. Strong interaction between metal and the support increases the resistance to sintering and coking, imparting higher stability to the catalyst [48]. A summary of different pore sizes obtained in various catalysts used in H₂ production from biogas is provided in Table 12. It is obvious that different supports used in catalyst preparation resulted in varied size pores and pore volumes.

The activity of the catalyst is related to the metal surface area (active sites). This implies that higher metallic dispersion results in higher catalytic activity. The main objective of catalyst preparation is producing high surface area materials with defined microstructure. Although the name 'catalyst supports' suggests chemically inert mechanical support, they are often involved in chemical reaction and play an important role in the performance of the catalyst. The methods of catalyst preparation also influence the effectiveness of the catalyst. Catalyst of a given chemical composition prepared by one method can behave differently when prepared using a different method. The method of preparation often defines the size of support and active metal which often help in minimising carbon deposits. Catalyst prepared by soverthmal method of preparation resulted in formation of smaller metal particles (5 nm) in comparison to 30 nm obtained by hydrothermal method. The prepared catalyst used in H₂ production by DRB resulted in higher CH₄ conversion and H₂ yield. Catalyst pore volume and pore size is affected by catalyst preparation methods [49]. Metal surface area and dispersion was affected by different catalyst preparation methods, in turn affecting the carbon formation and catalyst activity. Smaller metallic particles resulted in higher catalytic activity as a result of number of unsaturated metallic surface atoms [50]. The catalyst stability was ascribed to lower carbon formation as a result of smaller metallic particles. Smaller metallic crystals were shown to have a larger filamentous carbon saturation concentration level compared to larger metallic crystals [51]. This was reported to result in a smaller driving force for carbon diffusion and thus a higher resistance to coke formation for the catalyst prepared by hydrotalcite method. On the other hand smaller Ni crystallites were shown to

be less effective in ATR of isooctane which resulted in lower catalytic activity as a result of oxidation of metallic Ni to form NiO [52].

Table 10: Carbon formation in H₂ production form biogas.

Ceria exhibits superior catalytic activity for WGS (R-5.10)[61]. It is also well known to promote metal activity and dispersion, justifying several investigations of various catalytic formulations for H₂ production. Like K₂O, addition of CaO modified the basic nature of the SiO₂ support and active phase particle size [62]. As carbon formation occurs mainly when the metal clusters are greater than a critical value, smaller particle size of the active phase results in lower carbon formation. Addition of CaO changes the nature of carbon formed over Ni/Al₂O₃ catalyst in SRE [63]. Addition of CaO results in the formation of crystalline carbon which is more easily gasified, leaving more active Ni particles exposed for reaction. Addition of CaO into Ni/ γ -Al₂O₃ favored the formation of Ni species in lower interaction with the support, thus requiring a lower activation temperature [64]. Also, catalysts containing CaO did not undergo oxidation of Ni species during the SR, leading to a more stable catalytic system. Formation of perovskite CaZrO₃ by addition of 0.55 mol ratio of CaO/ZrO₂ to Al₂O₃ enhanced the activity of the catalyst[63, 65][[64], Lertwittayanon, Atong et al. [63]. The presence of this phase resulted in formation of oxygen vacancies and increased water adsorption creating favorable conditions for carbon gasification and, then, WGS.

The nature of catalyst support e.g. acidic or basic plays an important role in preventing carbon deposition. Addition of K_2O to Ni/Al₂O₃ catalyst, neutralizes acidic sites of Al₂O₃ and reduces the possibility of coke formation [66]. Carbon gasification reaction is enhanced by addition of K affecting carbon deposited on the catalyst surface [67]. It also increases the adsorption of steam on the catalyst surface [68] affecting H₂ production. Likewise addition of CeO₂ to catalyst support has a significant influence on carbon formation and catalyst activity. The property of the material responsible for reduction in carbon formation, is its oxygen storage capacity (OSC) by means of redox shift between Ce³⁺ and Ce⁴⁺ under oxidizing and reduction environments [69].

Table 11: Surface area properties for various catalysts utilized in H₂ production.

Table 12: Pore sizes of catalysts tested in H₂ production.

The promotion of these reactions kept the Ni surface clean, leading to increase in H₂ yield. The increase in the amount of CaZrO₃ phase significantly improved carbon gasification. On the other hand addition of La₂O₃ to Ni/Al₂O₃ in SR catalyst resulted in the formation of smaller particles of the catalytically inactive NiAl₂O₄phase by serving as promoter, decreasing the reducibility of the catalyst [76]. Addition of certain amount of La_2O_3 to the catalyst resulted in the formation of the smallest Ni particles which achieved the best catalytic performance and the strongest resistance toward carbon deposition and sintering. The addition of La2O3 to Ni/Al2O3 increased metallic surface area, preventing the oxidation of Ni species and also increased stability of the support [77]. Addition of La₂O₃ to Ni/Al₂O₃ catalyst promoted the stabilization of the catalyst and was related to the enhancement of gasification of carbon residues from catalyst surface [78]. Impregnation of Ni/Al₂O₃ with B affected the performance of the catalyst by reducing the Ni particle size [79]. Ni et al. [80] reported better resistance to coking for the catalyst containing 5 wt% B₂O₃ than the unpromoted one, as a result of lower (weaker) Lewis acid sites ('LAS') and the more basic O-H groups formed on the borated Al₂O₃. Another effect of boron regarding the inhibition of carbon deposition on Ni catalysts has also been proposed. According to Xu and Sayes[81] and [82] boron atoms preferentially adsorb in the octahedral sites of the first subsurface layer of the Ni lattice, blocking effectively carbon diffusion into the bulk and retaining carbon atoms/groups of atoms on the surface available for gasification. Furthermore, boron is also expected to provoke a decrease of the on-surface carbon binding energy [82].

Like CaO and K₂O, Y₂O₃ addition to Rh/Al₂O₃ increased the basicity of Al₂O₃ leading to highest H_2 yield and formation of less stable, easily oxidisable coke [83]. The addition of Ni to Rh/Y-Al catalyst also modified the support by formation of NiAl₂O₄ phase at the support surface. The presence of this structure maintains the basic properties responsible for the high SR activity.

Similarly dispersed Ni remains at the support surface. The presence of Ni reinforced the amount of weak LAS, thus preventing the catalyst deactivation by carbonaceous deposits. Secondly, the addition of Ni modified the metallic phase by increasing the rhodium accessibility and stabilizing the rhodium particles. The presence of the NiAl₂O₄ at the support surface prevented the loss of rhodium by diffusion in the support bulk. Lastly, the presence of Ni⁰ at the support surface was responsible for the higher H₂ yield observed in the presence of the bimetallic catalyst compared to the monometallic Rh-Y-Al, which may be due to the activity of Ni for SMR and/or for SRE. Addition of Y to Ni/Al₂O₃ increased reducibility of the catalyst in addition to the reduction in metal particle size and carbon deposition [84]. The interaction between Ni and the support was enhanced resulting in stronger interaction between Ni and support improving Ni particle dispersion and reducing Ni sintering [85]. Addition of MgO resulted in the formation of Mg-Al₂O₄, which reduced the acidity of Al₂O₃, and strong interaction Ni–MgAl₂O₄ favored Ni dispersion, imparting high activity to the catalyst [86].

Although traditionally H₂ production using SR process employs Ni based catalyst, noble metals like Rh, Pt and Pd are also used. The cost of noble metal based catalyst make Ni catalyst economically viable and the preferred metal for SR catalyst. Ni/Al₂O₃ is the widely used catalyst employed in SR reactions. One of the main disadvantages of Ni catalyst is susceptibility to deactivation by coke formation. The growth of Ni particle size and the oxidation of active Ni to nickel aluminate (NiAl₂O₄) are the other important reasons leading to the deactivation of Ni/ α -Al₂O₃ catalysts. Doping Al₂O₃ with the rare earth oxides restrain the growth of Ni particle and suppress the formation of NiAl₂O₄ through their interaction with Ni greatly improving the stability of Ni catalysts. Heavy rare earth oxides are more effective than light ones [87].

One of the approaches to reduce carbon accumulations is preparation of bimetallic catalyst using alkali metals like K and other metals like Sn [88], and Bi [89] to the catalyst. According to Trimm [88], carbide formation is an essential intermediate route to coke formation, formed by interaction of 2p carbon electrons with 3d Ni electrons. Addition of penta-valent p metals (such as Ge, Sn and

Pb or As, Sb or Bi) interacts with Ni 3d electrons, thereby reducing the chance of NiC formation in turn affecting carbon accumulation. Pengpanich et al [90] found addition of Sn to NiO disrupted the active site ensembles responsible for coking. Solubility of carbon in Ni particles responsible for NiC formation is also reduced by addition to Sn to Ni catalyst. Addition of MnO_x to Ni/Al₂O₃ was reported to have co-catalytic function with high redox property [91]. It was suggested that the MnO_x species are present on the surface of the Ni particles, the oxygen atoms derived from MnO_x species can be supplied to the Ni species promoting the reaction between carbonaceous species on Ni and oxygen species. This resulted in high reforming activity of the catalyst. Addition of Mo to Ni/Al₂O₃ increased conversion of LPG resulting in higher H₂ yields and showed superior performance in resisting catalyst coking as well as Ni sintering and Ni oxidation to inactive phases [92].

5.3 Current Research

5.3.1 Autothermal and Steam reforming:

Hydrogen production via SR of biogas is (SRB) is considered as a feasible alternative to SMR with similar efficiency. An economics analysis showed that H₂ can be produced at the rate of 0.27US\$/kWh with a payback period of 8 years with an ecological efficiency of 94.95%, even without considering the cycle of CO_2 [93]. A brief assessment of H₂ production process using biogas has been presented by Alves et al [9] and Yang et al [94]. The authors examined and discussed various H₂ production processes. Although the various catalyst formulations were discussed the effect of H₂S and other contaminants were not explored. Similarly several other authors have examined H₂ production via dry reforming (DRB, i.e. the very endothermic reaction of CH₄ with the CO₂ from the biogas in absence of steam reactant to produce syngas, using reaction 5.4) [70, 95-97] or oxy-dry reforming (ODRB, i.e. DRB in the presence of O₂) [98]. Table 13 summarizes the performance of catalytic SRB and autothermal reforming of biogas (ATRB)

27

evaluations. As seen in the table, noble metals provide higher conversion at lower temperatures in comparison to Ni, which provided higher conversion at higher temperatures.

One of the main challenges in developing catalysts for H_2 production form biogas is preventing carbon deposition on the active phase in order to increase its useful life. In addition, it includes improving the resistance of the catalyst to sulphur poisoning and developing high surface area catalyst to promote activity.

Hydrogen production using 4 wt% Rh/La-Al₂O₃ catalyst in SBR was evaluated by Ahmed et al. [99]. The performance of the catalyst was analyzed for temperatures 590-685°C, with steam to carbon molar ratio (S/C)1.28-3.86, CO₂/CH₄ molar ratio 0.55-1.51, and using gas hourly space velocities (GHSV) in the 9,810-27,000 h⁻¹ range. Highest CH₄ conversion and lowest CO₂ conversion were observed at 650°C (Table 13) at S/C of 1.32 and GHSV of 9810 h⁻¹. The lower conversion of CO₂ was as a result of lower reaction temperature resulting in higher WGS reaction (5.11) contribution and lower DRM reaction (5.4). Variation of GHSV had marginal effect on the performance of the process. On the other hand increasing S/C had a positive impact on CH₄ conversion, increasing H₂ yield (Table 13). This was as result of prompted SMR (5.1) and WGS (5.11) reactions, contributing to lower CO₂ conversion [100]. The use of Ni based catalyst in SBR resulted in decrease in conversion of CH₄ and CO₂. Effendi et al [101] compared the performance of a fixed bed reactor with a fluidized bed reactor for SBR at 750 °C and H₂O/CH₄ ratio 2.2, using a 11.5 wt % Ni/Al₂O₃ catalyst with a GHSV of 18,000 h⁻¹. The fluidized bed was reported to provide 5-15% better performance in comparison to the fixed bed reactor. Highest feed gas to steam ratio was reported to induce poor fluidization in the reactor resulting in severe carbon formation, which was reduced by increasing the steam feed. Formation of cold spots in the catalyst bed used in the fixed bed reactor was responsible for its poor performance. Izquierdo et al.[102] evaluated the effect of different support compositions on the performance of Ni and bimetallic Rh-Ni catalysts in SBR reforming at 800°C with CH₄/CO₂ ratio of 1.5 and WHSV of 131.8 g_{gas}/g_{cat} h. A CH₄ conversion of 99.5 and CO₂ conversion of 67.5% were observed at S/C of 1 over a 13 wt % Ni/Ce-Zr-Al₂O₃ catalyst with 3 and 4 wt% Ce and Zr respectively. Similar to Ahmed at al.[99], increasing S/C was beneficial for CH₄ conversion but was detrimental for CO₂ conversion as result of inhibition of DRM (5.4) and promotion of WGS (5.11) over 4 wt% Rh/La-Al₂O₃. In spite of higher CH₄ and CO₂ conversion, the catalyst exhibited lower H₂ yield compared to Ni/Ce-Al₂O₃ and Ni/Zr-Al₂O₃ catalysts.

Presence of H_2S in biogas affects the activity and stability of the catalyst. Sulphur from H_2S reacts with active metal sites limiting the access of the reactants to the active sites and reducing activity of the catalyst. Further, formation of the stable metal-adsorbate bonds can lead to non-selective side reactions. The inhibition of the highly endothermic reforming reactions like SR (5.1) and DRM(5.4) causes the reactor temperature to rise considerably in turn increasing the risk of catalyst deactivation as a result of overheating by hot-spot formation close to the entrance section [103].

Although H₂S acts as a poisonous gas for metallic-based catalysts, presence of certain amount of H₂S in the feed enhances the reforming activity of the catalyst [100]. According to Laosiripojana et al [100], exposure of certain amount of H₂S to 5 wt % Ni/CeO₂ catalyst resulted in the formation of Ce–O–S phases (Ce (SO₄)₂, Ce₂ (SO₄)₃, and Ce₂O₂S) during the SBR. The formation of Ce (SO₄)₂ was reported to promote the oxygen storage capacity (OSC), the lattice oxygen mobility, and eventually the reforming activity, whereas the formation of Ce₂O₂S conversely reduces both properties and lowering the reforming rate. Addition of H₂S to SOFC running on CH₄ had a surprisingly positive effect on fuel cell activity and increased carbon resistance. The addition of H₂S into pure fuel streams enhanced the performance by converting the anodes from pure metal to metal sulfides, suggesting metal-sulfides are interesting anode materials for SOFC's with fuels contaminated by sulfur species [104].

In contrast, 15 wt% Ni/Al₂O₃ catalyst suffered from severe sulphur poisoning, 98% loss of the catalyst activity was reported by Appari et al [72] in SBR. The loss in activity due to sulphur coverage over catalyst surface is temperature dependent and independent of the H₂S concentration. Catalyst poisoning at low temperature 700 °C is not recoverable just by removal of H₂S from the feed stream. In contrast, catalyst activity at high temperature 800 °C was easily reversed just by removal of H₂S from the feed stream. Similar observation was made by Ashrafi et al.[105]. A complete deactivation of the catalyst activity was recorded at 700 °C which recovered with

increase in temperature to 800 °C. The extent of catalyst regeneration by H₂S removal increases with an increasing temperature. For small scale biogas applications where high efficiency sulphur removal can be expensive, operating reformers with biogas feed with higher H₂S content at higher temperatures, could be economically advantageous. High temperature operation of reformers lead to a wide variety of problems like formation of hot spots, reduction in catalyst surface area, sintering of active metal crystallites etc. These factors could result in loss of activity and life of the catalyst. Chang et al. [106] have performed steam reforming of Biogas in honeycomb reactor using 5 wt% NiO/CeO₂ catalyst at 800°C. Methane conversion obtained is not at par with available literature, however the reactor configuration used is of commercial interest. Angeli et al. [107] have performed experiments at relatively lower temperature (400-550°C) in the presence of Ni and Rh on La₂O₃-ZrO₂. Methane conversion increases with temperature whereas for both metals i.e. Ni and Rh, performance with CeZrLa support was better than with ZrLa. Effect of organic pollutants in the Biogas stream on the performance of catalyst and its deactivation has been studied by Chiodo et al. [108]. It was observed that in moderate concentration the performance of Ni based catalyst was hampered and coke deposition was promoted. Roy et al. [109] have studied steam biogas reforming in the presence of metal foam coated Ru and Ni catalyst on various supports. The metal foam support was shown to achieve better performance than alumina.

Although SR (5.1) followed by WGS (5.11) is the prominent commercial technology, its small scale applications are restricted due to the endothermic nature of the reaction requiring high temperature operation. It also requires an external heat source to drive the endothermic SR(5.1) reaction. Industrially the SMR is carried out in very long tubes filled with catalyst. Even though high pressure has a negative effect on the reforming reactions, it is performed at high temperature and pressure to increase the productivity of the process. SR(5.1) has restriction for adoption in H₂ generation from unseparated biogas due to its negative effect on CO₂ conversion, with higher S/C promoting higher CH₄ conversion and higher WGS (5.11) activity producing more CO₂ than consumed [99].

To date, the number of investigations in autothermal reforming of biogas (ATRB) is limited. ATRB of model biogas was performed by Arkai et al [110, 111] by means of a 30 wt% Ni/Al₂O₃ catalyst. The effect of O_2/C and S/C at constant temperature was studied and the optimum values of O_2/C ratios of 0.45–0.55 and S/C ratios of 1.5–2.5 at 750°C, leading to 90% CH₄ conversion were reported. An important factor influencing the activity of the catalyst was identified. Redox cycles were recorded between Ni, NiO and Ni₂O₃ during the ATR of biogas[112]. The reduction reaction of the Ni oxides proceeded poorly while the oxidation reaction of the Ni components proceeded sufficiently under these conditions. More steam in the reactor during ATRB resulted in oxidation of Ni to Ni₂O₃ under steam rich condition (S/C of 3) and O₂/C of 0.5, reducing the activity of the catalyst. ATR reforming of model biogas over Ni/CeO₂ catalyst was investigated by Vita et al [113]. Lower value of S/C of 0.3 and O₂/C of 0.1 was reported to provide 99.6 and 90.5 % CH₄ and CO₂ conversions respectively, with a 17.6 wt% Ni catalyst at 850 °C (Table 13). The catalytic performance was evaluated for 150 h with slight evidence of deactivation. The stable activity of the catalyst was maintained as a result of higher NiO dispersion of the metal on the catalyst surface, limiting the aggregation of the Ni particles, in addition to the presence of Ni-Ce solid solution.

The same 13 wt% Ni/Ce-Zr-Al₂O₃ catalyst used in SRB [102], Izquierdo et al [114] examined ATRB with S/C of 1 and O₂/C of 0.25 at 800 °C and WHSV (weight hourly space velocity) of 161h⁻¹ (Table 13). Addition of O₂ resulted in slightly improved CH₄ conversion in comparison to [102]. In comparison, CO₂ conversion in [102] was higher due to lower WHSV of 131 h⁻¹ for the SR experiments, as compared to 161 h⁻¹ in ATR [114]. The other explanation for lower CO₂ conversion could be the inhibition of reverse WGS (Rev 5.11) in ATR compared to SBR. Bimetallic Rh-Ni/Ce-Al₂O₃ catalyst showed the highest H₂ yield under ATR conditions among the catalysts examined. Table 13 summarizes the performance of various catalysts in SRB and ATRB. It can be clearly seen that Ni based catalyst are active in both the processes. In comparison to CH₄ conversion, CO₂ conversion was lower in most of the applications, although some investigations have also reported very high CO₂ conversion. Higher CH₄ and CO₂ conversion has reported to exhibit high H₂ yield.

Table 13: Catalyst performance summary evaluated in SRB and ATRB.

5.3.2 Dry and Oxy-dry reforming

Apart from SRB and ATRB reforming, several investigations involving dry reforming and oxy dry reforming of biogas (DRB and ODRB) have been reported [59, 68, 74, 98, 115]. Table 14 summarizes the performance of various catalysts in DRB and ODRB. As seen from the table various catalysts provide a wide variety of results. The major advantage of this process is utilization of two greenhouse gases. Although the process uses CO₂ for reaction, the endothermic nature of the reaction (5.4) requires external burning of fuel to provide heat, which in turn generates CO₂ emissions. Reducing the energy requirement of the process, by driving the endothermic reforming reaction with partial combustion of CH₄, CO, H₂ and C, has been researched [68, 116, 117]. Due to the lack of steam-carbon reaction during the DR (5.4) process, formation of coke occurs over catalyst active sites and support, which is responsible for clogging the reactor and destroying it. Development of carbon tolerant and thermally stable catalysts has directed the research in H₂ production via DR. Noble metals like Pt, Rh and Ru are very well suited for DR reaction(5.4) [9, 118, 119]. But the availability and cost of these materials make them expensive and undesirable for industrial scale or even small scale applications. Depending on the cost and availability of the materials, use of Ni based catalyst has been evaluated. The higher temperature requirement of the DR reaction and the high carbon content in its reactants makes these materials prone to deactivation by sintering and carbon deposition respectively. Preparation of bimetallic catalysts like Ni-Co [59, 120, 121], Ni-B [79] and Ni-K [122, 123] in DRB is evaluated.

DRB over 13wt%Ni/Ce-Zr-Al₂O₃ catalyst was reported to exhibit a CH₄ conversion of 64.5 and 85.6 % CO₂ conversion resulting in a H₂ yield of 57.5 % (Table 14). The absence of steam during the process resulted in higher CO₂ conversion via DRB [114] as compared to SBR [102].

Introduction of O_2 in DRB resulted in 96.3 and 87.4% CH₄ and CO₂ conversions respectively with O_2/CH_4 of 0.125 at 800°C, with beneficial 33.5% increase in H₂ yield (91% of stoichiometric max). This suggests promotion of PO (5.2) by addition of O_2 augmenting H₂ yield [102]. The authors compared different processes at different reactor residence time, making it difficult to understand the effects of processes parameters on the behavior of the process.

Xu et al [56] reported higher performance of Ni-Co/La₂O₃-Al₂O₃ catalyst in comparison to Ni/Ce-Zr-Al₂O₃ for DRB. Typical Ni, Co and La loading utilized were 7, 3 and 6 wt%. The average conversion of 94.5 and 97.0%, for CH₄ and CO₂, respectively, with a selectivity to H₂ of 92.7% was (Table 14) observed at 800 °C with CH₄/CO₂ of 1 for a period of 500 h with minimum 1.9 wt % (Table 11) carbon deposited on the catalyst surface. The authors reported the benefits of adding Co to the Ni/La₂O₃-Al₂O₃ catalyst used for DRB [55]. The reduction of Ni and/or Co present in the catalyst occurred around 500°C, resulting in the formation of active sites for the catalytic reaction. The active sites were reported to be formed in the reductive atmosphere of H₂ and CO during the process. A similar observation was made by Arbag et al [124]. According to the authors the content of Co played an important role in the performance of the catalyst. Higher amount of Co i.e. 5 wt % resulted in the formation of CoAl₂O₄, which was difficult to reduce, thus affecting the catalytic activity. In comparison, bimetallic 2.5 wt% Ni - 2.5 wt% Co onAl₂O₃ showed better performance. , with CH₄ conversion improving with Ni-Co metals loading. This suggests limited contribution of DR reaction to CH₄ conversion.

Likewise, addition of La₂O₃ to Al₂O₃ resulted in the formation of La₂O₂CO₃[125]. The formation of La₂O₂CO₃ was reported to establish equilibrium on the surface of Ni crystallites gradually. The interfacial area between Ni and oxy-carbonate particles provided active sites formation of Ni, forming active sites over the catalyst. Li et al [126] prepared nano rod shaped La₂O₃ support from sol gel synthesized La₂O₂CO₃. The support was shown to have medium-strength basic sites, facilitating increase in adsorption and activation of CO₂, promoting higher CO₂ conversion over 5 wt % Ni/La₂O₃. The nano rod shaped La₂O₃ promoted dispersion of Ni particles on the catalyst surface, positively affecting the catalytic activity. Catalytic activity was reported to take place in the Ni-La₂O₂CO₃ inter-phase, while oxy-carbonate species participate directly reacting with

carbon deposited on the metal, recovering nickel activity [127]. The $La_2O_2CO_3$ species are considered as an oxygen dynamic tampon. C-C compounds are removed by oxidation reactions to produce CO. The stable behaviour was attributed to equilibrium achieved between carbon species formation on nickel crystallites and removing rate of C-C oxidation reactions.

Instead of conventional pre-reduction of NiO-Co₂O₃/Al₂O₃ catalyst with H₂, a different pretreatment method to improve the performance of the catalyst was designed by Zhao et al [57]. The catalyst was pre-reduced in H₂ followed by treatment with CO₂ resulting in the formation of Ni (HCO₃)₂, which decomposed to release oxygen that reacted with carbon deposited over the Ni crystallites during DRB. As a result the activity of the catalyst was maintained, in turn significantly affecting the performance of the catalyst (Table14). The H₂-reduced and CO₂-pretreated catalyst offered much more stable performance for 24h. On the contrary, H₂-reduced and CO₂-untreated catalyst showed a long adjustment period, suggesting gradual formation of active sites during the process. An increase of conversion in CH₄ from 87 to 95% and in CO₂ from 95 to 99% was observed for catalyst with pretreatment time from 0 to 1 h. Formation of carboxyl species was detected by the authors during the CO₂ pretreatment process, resulting from the formation of bicarbonate of Ni. This bicarbonate of Ni was reported to decompose providing oxygen species. These oxygen species would gasify the carbon deposited on Ni crystallites protecting active sites in turn rendering high activity [75]. According to the authors, 0.5 h of catalyst pre-treatment resulted in strongest resistance to coking, and catalyst pretreated for 1 h exhibited the greatest resistance to sintering, suggesting the optimum pre-treatment period of 0.5-1 h [57].

In a different evaluation at lower temperature (600 °C), the activity of Ni-Co/Al₂O₃ catalyst was significantly affected. Mere 25 % CH₄ conversion was observed over 11.25 wt% Ni and 3.75 wt% Co supported on Al₂O₃ catalyst (Table 14) [59]. An enhancement in activity of the Ni-Co/Al₂O₃ catalyst in comparison to [59], was observed by Saha et al [115] at 900 °C with 5 wt% Co and 15 wt% Ni, supported on MgO-Al₂O₃. The authors reported a 57.1% CH₄ conversion with 97% selectivity to H₂ (Table 14). The addition of Co to Ni/Al₂O₃ catalyst was reported to play an important role in the performance of the catalyst. The order of Co addition plays a crucial role in determining the activity of the catalyst. Addition of Co before Ni impregnation on to the support

was beneficial to the activity of the catalyst by acting as sacrificial element, promoting the activity of the catalyst. On the other hand addition of Co after Ni impregnation reduced the activity by blocking some of the active sites of Ni, affecting the performance of the process.

Catalyst preparation methods also play a key role in their performance. Goula et al [128]examined the performance of Ni supported on alumina prepared by wet impregnation, incipient wetness method and equilibrium deposition technique. It was proven that the synthesis method, affects the catalyst's reducibility, as well as the nickel species' particle size. The equilibrium deposition method showed higher Ni dispersion due to smaller particle size, in comparison to the other two methods, affecting the catalytic activity. On the other hand, conventional impregnation resulted in uncontrolled precipitation on catalysts surface during drying, affecting the dispersion of the active phase.

In recent years ZrO₂ has been evaluated as catalytic support [129] and partial substitution in supports for catalytic reactions [130], due to its several advantages, including high ionic conductivity and thermal stability, the latter being very important for reforming reactions. Asencios et al [73] examined the performance of 20 wt% Ni supported on MgO-ZrO₂ catalyst. Among the catalysts Ni/MgO was reported to provide highest activity (Table 14) with the activity decreasing with reduced MgO content. The Ni/ZrO₂ catalyst preferentially catalyzed the PO reaction (5.2), while the catalysts with higher MgO content showed a strong preference for the DR reaction (5.4). A 20 wt% MgO-ZrO₂ catalyst reported best activity in terms of all high CH₄ conversion; lower carbon formation and low reverse WGS (rev5.11) in addition to higher H₂/CO.

In order to develop a C resistant catalyst, Juan-Juan et al [123] investigated the use of K addition to 10 wt% Ni/Al₂O₃utilized in DRB. The addition of certain amount of K (0.2 wt % K₂O) to the catalyst had a positive effect on the activity of the catalyst. Due to K addition, interaction between NiO and Al₂O₃ was modified, resulting in increased NiO reducibility. Potassium migrates from the support to the Ni surface and neutralizes a fraction of the active sites, thereby increasing the gasification of the coke during the process without modification of its structure. Potassium does not modify the size nor the structure of the Ni particles. These factors resulted in very low coke

deposition and a high catalytic activity (more than 90% reduction in coke deposition and less than 10% decrease in the catalytic activity). Similar observation of K addition to 10 wt% Ni/MgO–ZrO₂ was made by Nagaraja at al [122], who reported an optimum K content of 0.5 wt.% to the catalyst. Snoeck et al [131] have reported that one of the important benefits of K addition to a Ni-containing catalyst is a decrease of the value of the lumped forward rate coefficient for CH₄ decomposition and the presence of higher surface oxygen coverage. The reduction in number of active sites available for CH₄ decomposition resulted in lower CH₄ decomposition rate. The alkalized catalyst was responsible for WGS (5.11) reaction.

Doping Al₂O₃ with CeO₂ was also beneficial in increasing CH₄ and CO₂ conversion in DRB. But the catalyst provided inferior H₂ yield in comparison to [114]. CH₄ and CO₂ conversions of ~95 % was reported by Bereketidou and Goula [60] in DRB over 8 wt% Ni/Ce-Al catalyst at 850 °C with a CH₄/CO₂ ratio of 1.5. At the experimental conditions a H₂ yields of 50 and 66% were observed with 8 wt% Ni/10 wt% CeO₂-Al₂O₃ and 8 wt% Ni/20 wt% CeO₂-Al₂O₃ catalysts, respectively (Table 14). In spite of higher conversions (CH₄ and CO₂) reported by Bereketidou and Goula [60] using 8 wt% Ni/10 wt% CeO₂-Al₂O₃ catalyst, the H₂ yield was similar to that observed by Izquierdo et al [114] using 13 wt % Ni/ 3 wt % CeO₂-Al₂O₃ catalyst. The addition of CeO₂ to Al₂O₃ helped to improve the stability of the catalyst stability. The same catalyst exhibited a 40 % reduction in CH₄ conversion Charisiou et al [132] with increased flows and operating temperature. The performance was shown to be hampered by increased reactant flows, although catalyst stability of the CeO₂ doped catalyst was better compared to bare Al₂O₃.

Like cobalt, the order of Cerium addition to Ni/SBA was reported to enhance the activity of the catalyst in DRB. The beneficial effect of CeO₂ addition (<10 wt %) to Al₂O₃ in DRB was ascribed to the redox property of CeO₂. The reaction between the lattice oxygen and CH₄ as well as CO during the process prevents carbon that would have formed via CH₄ decomposition reaction (5.6) and Boudouard reaction (5.7), imparting high catalytic activity. However, very high CeO₂ content (>10 wt%) caused Ni oxidation retarding catalytic activity [133]. The order of impregnation of active Ni and Ce was reported to influence the activity of the catalyst. Impregnation of Ce before Ni onto the support resulted in smaller Ni crystallites and higher reducibility, in turn promoting
the activity of the catalyst. Contrarily, the impregnation of Ce after Ni caused additional plugging of the pores and formation of larger NiO particles, thus hindering the accessibility of the reactants to the active sites and lowering the activity [134]. The improved catalytic behavior by CeO₂ addition was as a result of higher dispersion of nano-sized Ni species and inhibited the carbon formation. Further addition of CeO₂ in the SBA promoted formation of the smaller size Ni crystallites [135].

Apart from Al₂O₃ supported catalyst, the use of the supports like samaria doped ceria (SDC) in DRB of biogas was evaluated by Zmiciz et al.[136]. They reported CH₄ and CO₂ conversions over 95% resulting in 80% H₂ yield at 800 °C with CH₄/CO₂ ratio of 1 (Table 14), using 9 wt% Ni/SDC catalyst. The long term evaluation of the catalyst at 800 °C with CH₄/CO₂ ratio of 1 showed reduction in CO₂ conversion with time, accompanied by presence of graphite type carbon confirmed by XRD. Increasing CH₄/CO₂ ratio had a positive impact on CH₄ conversion, which reached 100% at CH₄/CO₂ ratio of 2.3.

Catalysts prepared by hydrotalcite-like precursors containing Mg (Ni,Al)O were evaluated for DRB at 750 °C with CH₄/CO₂ ratio of 1 (Table 14) [70]. The performance of the catalyst was in comparison to the others (Table 14). Addition of La to the catalyst was shown to impart higher catalytic activity in comparison to the undoped catalyst. Increasing La content from 1 to 2 wt% decreased catalytic activity but increased stability of the catalyst without carbon formation.

To mitigate the main drawback of carbon formation during DRB, addition of H₂O and O₂ to the process was investigated by Pino et al [74] over Ni/La-Ce-O catalyst. A catalyst with lower Ni content Ce_{0.70}La_{0.20}Ni_{0.10}O_{2- δ} was reported to show very high activity at 800 °C with CH₄:CO₂:H₂O:O₂ molar ratios of 1:0.66:0.66:0.10. The application Ni supported on sol-gel synthesized Al₂O₃ for ODRB was investigated by Asencios et al [116]. Supports were synthesized using various pH values and aging temperatures. A 20 wt% Ni supported on Al₂O₃ synthesized using pH 7 and 80 °C showed the highest activity and stable performance for 6 h. Conversions of 70 and 80% for CH₄ and CO₂ (Table 14) were observed respectively during the catalytic evaluation performed at 750 °C, with a feed consisting of model biogas and oxygen, with molar ratios

 $CH_4:CO_2:O_2$ of 1.5:1:0.25, fed at the rate of 107.5 mol/min. The activity of the catalyst was attributed to low acidity of the support resulting in lower coke deposition on the catalyst. The lower acidity of the support caused easy reaction of CO_2 on basic centers of Al_2O_3 with acid-base interaction favoring this reaction.

Table 14: Catalyst performance summary investigated in DRB and ODRB.

5.4 Summary

Hydrogen production from biogas is relatively very new in India and very few investigations have been reported. Development of small scale reformers to convert biogas to H_2 rich gas is essential. The reformate product (H_2 +CO) could widely be utilised for power generation and even for other important applications in energy conversion and the chemical industry. For successful utilization of H_2 energy technology, development of fuel cells is also a key piece of the puzzle which would require time. For immediate application, synthesis gas (H_2 +CO) can be used directly for power generation using internal combustion engines. In comparison, direct utilization of biogas in combustion applications is unfavorable due to the large CO₂ content reducing its calorific value as compared to synthesis gas.

Hydrogen production from biogas can be achieved via various methods like steam reforming, partial oxidation, dry reforming, and autothermal reforming. Table 15 compares the advantages and disadvantages of the various reforming processes. One of the key aspects of H₂ production from biogas is development of carbon resistant and sulphur tolerant catalysts. Hydrogen production via SMR is widely studied and commercially operated. But the major problem associated with SRB is the presence of CO_2 which would affect the performance of the catalyst. As water gas shift is an important reaction taking place during SR process, its promotion has been shown to have negative effect on CO_2 conversion [99]. The lower CO_2 conversion as a result of

higher water gas shift activity would alter the composition of the reformate by changing the H_2/CO ratio and affecting its quality. Also, the presence CO_2 in the feed could catalyze carbon forming reactions reducing catalyst activity and performance. The removal of CO_2 from biogas could solve several problems but removal methods are costlier for small sale operations. The presence CO_2 would also be useful in reduction of hot-spots formed in the reactor due to high temperature operation.

In addition the widely studied dry reforming process results in lower H₂ yield and catalyst deactivation by carbon formation. Both the processes dry and steam reforming are endothermic, with dry reforming more so. They require an external heat source for their energy supply. Other attempts have been focused on investigating the effects of O₂ addition (ODRB) to improve the performance of the process by carbon removal by oxidation with O₂. Some interesting investigations are reported [116]. But the addition of O_2 was too small to affect the overall energy balance of the process. The O₂ addition was intended to reduce the carbon formation rather than provide energy for the process. Hydrogen production investigations using ATRB are very few [110-112] and limited and suggest further work has to be performed. Effect of H₂S on catalytic activity of the ATR catalyst has to be evaluated and assessed. Similarly the effect of the ATR process on CO₂ conversion was not investigated in the investigations and has to be evaluated. The process performance was measured in terms of CH₄ conversion and molar gas composition which does not provide a full explanation of process performance. The performance of the process must be measured in terms of H₂ and CO yield and efficiencies needs to be evaluated by comparison with equivalent chemical equilibrium conditions. The conditions of S/C, O₂/C and temperature were reported, but whether real autothermality, i.e. no reliance on heat provided externally, was achieved or not, was not reported in any of the investigations. Detailed energy balances and experiments would need to be performed accordingly to ensure actual autothermal operation of the reformer. One of the drawbacks of ATR reformer is reduction of H_2 yield resulting in lower H_2/CO ratio. As a result the autothermal cyclic reforming (ACR) processes have been developed.

As mentioned earlier, ATR reduces H_2 yield due to combustion of fuel or H_2 produced during the process. Hydrogen yield can be increased by using the ACR process. Hydrogen yield can be

increased by using ACR. In addition the process has a benefit of lower energy requirement by maintaining autothermal conditions. One type of ACR has been under great deal of development since last decade. This process, also called chemical looping reforming, is based on the transfer of oxygen from air to the fuel by means of a solid oxygen carrier avoiding direct contact between fuel and air. In the ACR process the air to fuel ratio is kept low to prevent the complete oxidation of the fuel to CO₂ and H₂O. Figure 4 shows the scheme of a typical ACR process. A N₂ free gas stream concentrated in H₂ and CO is obtained at the outlet of the fuel reactor. Moreover, the air separation unit (ASU) required in the conventional auto-thermal reforming for CO₂ capture is avoided here. Recently ACR has been reported as an promising approach to produce H₂ for fuel cells applications [137]. This approach allows to maintain autothermal conditions in the reformer and at the same time provides high quality reformate similar to SR reformers. The power and voltage with a PEMFC stack fed H₂ produced from ACR reformers was close to the values achieved when SR fuel processors are used. Experimental investigations of ACR using biogas needs to be assessed and evaluated for potential future applications.

Figure 5: Schematic of ACR reforming system.

The process has a benefit of lower energy requirement by maintaining autothermal conditions over the redox cycle. Recently ACR has been reported as a promising approach to produce H_2 for fuel cells applications [137]. This approach allows to maintain net autothermal conditions in the reformer and at the same time provides high quality reformate similar to SR reformers. The power and voltage with a PEMFC stack fed with H_2 produced from ACR reformers was close to the values achieved when SR fuel processors are used. Experimental investigations of ACR using biogas need to be assessed and evaluated for potential future applications.

from [9, 147, 148].

6. Conclusion and recommendation

6.1 Conclusion

By 2050 renewable energy resources are projected to contribute to 50% of the world energy demand. In order to keep with the global trend, India will also have to adapt to the changing circumstances and will have to adopt new and renewable energy resources. Looking at the forecast, biogas has potential to become an integral part of the renewable energies circle. India being an agricultural country, a tremendous amount of agricultural and livestock waste is available. Likewise, the rise in population has resulted in growth in food and agriculture processing industry, bringing about large amount of waste being produced which remain unprocessed, and causing environmental concerns as well as spreading diseases. It is an important and valuable resource for India. It has diverse applications and has great potential for generating environment friendly and suitable bio-fuels using surplus biomass, livestock waste along with industrial and domestic waste water. It possesses potential to address the pressing economic issues like depletion of fossil fuels, management of renewable energy resource, emission of GHG and replacement of chemical fertilizers which have arrived over the past few years.

Hydrogen energy in addition to solar, hydro and biomass would be one of the key renewable energy sources essential for India to maintain its high GDP. The technology is new, and considerable work in the field is required for the adoption in India. The utilization of biogas for H_2 generation would have a prominent impact on the successful implementation of H_2 energy technology for India. It will help minimize the environmental effects along with increasing the affordability for wide scale application.

6.2 Recommendation:

Wide scale use of the hydrogen energy technology for sustainable distributed power generation for remote and local areas has to be undertaken. Biogas has great potential to provide a cost effective and environment-friendly means for generating H₂ in India. The development of an energy efficient H₂ production process from biogas has to be developed and evaluated. autothermal reforming (ATR) and autothermal cyclic reforming (ACR), i.e. chemical looping reforming (CLR) seem to provide alternative means to generate sustainable and environment friendly H₂ production due to their lack of reliance on heat provided externally. Stable and active catalyst need to be developed for the processes. Catalyst formulations based on CeO₂ are promising candidates to produce sulphur and carbon tolerant catalyst. Development of nano sized Ni based material to improve the stability and activity of the catalyst using a variety of catalyst preparation methods have to be prepared and tested. A detailed system efficiency analysis needs to be performed to determine the extent of autothermal condition achievement for the processes. Bimetallic catalyst based on La, Co, B along with K and Sn can be prepared to improve the processes' performance. Similarly, use of micro-reactor systems for these processes can be investigated to reduce the cost and increase the affordability of the system.

The developed technology could also be used for cost reduction of other bio-fuel producing processes, having potential of biogas generation as byproduct. For example productions of ethanol and biodiesel have potential for biogas generation. The spent wash obtained from distillery waste is usually converted to biogas. Likewise the oil cake obtained from crushing of non-edible oil seeds in vegetable oil feedstock for biodiesel production can be targeted for biogas production. Under the new Clean India scheme "Swachh Bharat Abhiyan" will be greatly benefited by the implementation of the idea by utilizing waste and generating clean power, in addition to providing environmental friendly fertilizer, resulting in cleaner cities and villages and meeting the day today power requirements.

7. References:

[1] European Parliament CotEU. The promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance) 2009.

[2] Berndes G, Hoogwijk M, van den Broek R. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy. 2003;25:1-28.

[3] Agency EE. Renewable Energy Road Map:Renewable energies in the 21st century: building a more sustainable future Brusselss2007. p. 1-60.

[4] Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage. 2001;42:1357-78.

[5] Clifton-brown JC, Stampfl PF, Jones MB. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology. 2004;10:509-18.

[6] Demba Diop, Alessandro Flammini, Michel Schlaifer, Magdalena Anna Kropiwnicka, Markhof MM. Assessing the impact of biofuels production on developing countries from the point of view of Policy Coherence for Development. The European Union's Framework Contract Commission 2011; 2013. p. 168.

[7] Jang Y-S, Malaviya A, Cho C, Lee J, Lee SY. Butanol production from renewable biomass by clostridia. Bioresour Technol. 2012;123:653-63.

[8] Czernik S, Bridgwater AV. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels. 2004;18:590-8.

[9] Alves HJ, Bley Junior Cc, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-AraÃ^ojo CH. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy.2013;38:5215-25.

[10] Yilmaz IT, Gumus M. Investigation of the effect of biogas on combustion and emissions of TBC diesel engine. Fuel.2017;188:69-78.

[11] Kohn MP, Lee J, Basinger ML, Castaldi MJ. Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition. Ind Eng Chem Res.2011;50:3570-9.

[12] Sharma CK. Biogas – A Boon for India. Biofuels. 2010;11:1-3.

[13] Lal K, Mani U, Pandey R, Singh N, Singh AK, Patel DK, et al. Multiple approaches to evaluate the toxicity of the biomass fuel cow dung (kanda) smoke. Ecotoxicol Environ Safety.2011;74:2126-32.

[14] Sen A, Mandal TK, Sharma SK, Saxena M, Gupta NC, Gautam R, et al. Chemical properties of emission from biomass fuels used in the rural sector of the western region of India. Atmos Environ.2014;99:411-24.

[15] Rao PV, Baral SS, Dey R, Mutnuri S. Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sustainable Energy Rev.2010;14:2086-94.

[16] Jothi G, Pugalendhi S, Poornima K, Rajendran G. Management of root-knot nematode in tomato Lycopersicon esculentum, Mill., with biogas slurry. Bioresour Technol. 2003;89:169-70.

[17] Lohan SK, Dixit J, Kumar R, Pandey Y, Khan J, Ishaq M, et al. Biogas: A boon for sustainable energy development in India×³s cold climate. Renew Sustainable Energy Rev.2015;43:95-101.

[18] Hiloidhari M, Das D, Baruah DC. Bioenergy potential from crop residue biomass in India. Renew Sustainable Energy Rev.2014;32:504-12.

[19] Singh J, Gu S. Biomass conversion to energy in Indiaâ€"A critique. Renew Sustainable Energy Rev.2010;14:1367-78.

[20] Saini S, Rao P, Patil Y. City Based Analysis of MSW to Energy Generation in India, Calculation of State-Wise Potential and Tariff Comparison with EU. Procedia - Social and Behavioral Sciences.2012;37:407-16.

[21] Ahmad J, T. A. Ansari. . "Biogas from Slaughterhouse Waste: Towards an Energy Self-Sufficient Industry with Economical Analysis in India. Journal of Microbial Biochem Technology. 2012;12:912-916.

[22] Ramasamy EV, Abbasi SA. Energy recovery from dairy waste-waters: impacts of biofilm support systems on anaerobic CST reactors. Appl Energ. 2000;65:91-8.

[23] Larminie J, Dicks A. Fuel Cell Systems Explained (2nd Edition). John Wiley & Sons.

[24] Services EGT. Fuel cells Handbook. Morgantown, West Virginia: EG&G Technical Services; 2004. p. 427.

[25] James Larmine Ad. Fuel cell systems explained. Wiley. 2001:1-35.

[26] Singhal SaKK. High temperature solid oxide fuel cells: Fundamentals design and applications. Elsevier advanced technology. 2003:405.

[27] Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renew Sustainable Energy Rev. 2009;13:2430-40.

[28] Kandepu R, Imsland L, Foss BA, Stiller C, Thorud B, Bolland O. Modeling and control of a SOFC-GT-based autonomous power system. Energy. 2007;32:406-17.

[29] Pérez LC, Koski P, Ihonen J, Sousa JM, Mendes A. Effect of fuel utilization on the carbon monoxide poisoning dynamics of Polymer Electrolyte Membrane Fuel Cells. J Power Sources. 2014;258:122-8.

[30] Singhal SC, Kendall K. Introduction to SOFCs. In: Subhash CS, Kevin K, editors. High Temperature and Solid Oxide Fuel Cells. Amsterdam: Elsevier Science; 2003. p. 1-22.

[31] Rostrup-Nielsen J. Steam reforming of hydrocarbons. A historical perspective. In: Xinhe B, Yide X, editors. Stud Surf Sci Catal: Elsevier; 2004. p. 121-6.

[32] Kendall K, Finnerty CM, Saunders G, Chung JT. Effects of dilution on methane entering an SOFC anode. J Power Sources. 2002;106:323-7.

[33] Staniforth J, Kendall K. Biogas powering a small tubular solid oxide fuel cell. J Power Sources. 1998;71:275-7.

[34] J.R R-N. Production of synthesis gas. Catal Today. 1993;18:305-24.

[35] Pen^a MA, Gómez JP, Fierro JLG. New catalytic routes for syngas and hydrogen production. Appl Catal, A. 1996;144:7-57.

[36] Cheekatamarla PK, Lane AM. Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells: I. Activity tests and sulfur poisoning. J Power Sources. 2005;152:256-63.

[37] Kang I, Bae J. Autothermal reforming study of diesel for fuel cell application. J Power Sources. 2006;159:1283-90.

[38] Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions. J Power Sources. 2000;87:28-38.

[39] Aasberg-Petersen K, Christensen TS, Stub Nielsen C, Dybkjær I. Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications. Fuel Process Technol. 2003;83:253-61.

[40] Zahedi nezhad M, Rowshanzamir S, Eikani MH. Autothermal reforming of methane to synthesis gas: Modeling and simulation. Int J Hydrogen Energy. 2009;34:1292-300.

[41] Grégoire PadrÃ³ C, Lau F, Kumar R, Lyon R, Cole J. Unmixed Reforming: A Novel Autothermal Cyclic Steam Reforming Process. Advances in Hydrogen Energy: Springer US; 2002. p. 31-45.

[42] Kathiraser Y, Oemar U, Saw ET, Li Z, Kawi S. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem Eng J.2015.

[43] Fan M-S, Abdullah AZ, Bhatia S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem. 2009;1:192-208.

[44] Rostrup-Nielsen JR, Sehested J, NÃ, rskov JK. Hydrogen and synthesis gas by steam- and C02 reforming. Advances in Catalysis: Academic Press; 2002. p. 65-139.

[45] Liu C-j, Ye J, Jiang J, Pan Y. Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and CO₂ Reforming of Methane. Chem Cat Chem.3:529-41.

[46] de Llobet S, Pinilla JL, Moliner R, Suelves I. Relationship between carbon morphology and catalyst deactivation in the catalytic decomposition of biogas using Ni, Co and Fe based catalysts. Fuel.139:71-8.

[47] Laosiripojana N, Chadwick D, Assabumrungrat S. Effect of high surface area CeO₂ and Ce-ZrO2 supports over Ni catalyst on CH4 reforming with H₂O in the presence of O₂, H₂, and CO₂. Chem Eng J. 2008;138:264-73.

[48] Wang S, Lu GQM. CO₂ reforming of methane on Ni catalysts: Effects of the support phase and preparation technique. Appl Catal, B. 1998;16:269-77.

[49] Seo JG, Youn MH, Jung JC, Song IK. Effect of preparation method of mesoporous NiAl₂O₃ catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG). Int J Hydrogen Energy. 2009;34:5409-16.

[50] da Silva ALM, den Breejen JP, Mattos LV, Bitter JH, de Jong KP, Noronha FbB. Cobalt particle size effects on catalytic performance for ethanol steam reforming-Smaller is better. J Catal.318:67-74.

[51] Christensen KO, Chen D, LÃ, deng R, Holmen A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal, A. 2006;314:9-22.

[52] Mayne JM, Dahlberg KA, Westrich TA, Tadd AR, Schwank JW. Effect of metal particle size on sulfur tolerance of Ni catalysts during autothermal reforming of isooctane. Appl Catal, A. 2011;400:203-14.

[53] Chattanathan SA, Adhikari S, McVey M, Fasina O. Hydrogen production from biogas reforming and the effect of H₂S on CH₄ conversion. Int J Hydrogen Energy. 2014;39:19905-11.

[54] Roy PS, Raju ASK, Kim K. Influence of S/C ratio and temperature on steam reforming of model biogas over a metal-foam-coated Pd-Rh/(CeZrO₂-Al₂O₃) catalyst. Fuel.139:314-20.

[55] Xu J, Zhou W, Li Z, Wang J, Ma J. Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy. 2009;34:6646-54.

[56] Xu J, Zhou W, Li Z, Wang J, Ma J. Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: Effect of operating conditions. Int J Hydrogen Energy. 2009;35:13013-20.

[57] Zhao J, Zhou W, Ma J. Pretreatment as the crucial step for biogas reforming over Ni-Co bimetallic catalyst: A mechanistic study of CO2 pretreatment. Int J Hydrogen Energy. 2014;39:13429-36.

[58] Lin K-H, Chang H-F, Chang ACC. Biogas reforming for hydrogen production over mesoporous $Ni_{2x}Ce_{1-x}O_2$ catalysts. I Int J Hydrogen Energy. 2012:37:15696-703.

[59] Sengupta S, Ray K, Deo G. Effects of modifying Ni/Al₂O₃ catalyst with cobalt on the reforming of CH4 with CO₂ and cracking of CH₄ reactions. Int J Hydrogen Energy.39:11462-72.

[60] Bereketidou OA, Goula MA. Biogas reforming for syngas producion over nickel supported on ceria–alumina catalysts. Catal Today. 2012;195:93-100.

[61] Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J. A comparative study of water-gas-shift reaction over ceria-supported metallic catalysts. Appl Catal, A. 2004;258:271-6.

[62] Carrero A, Calles JA, VizcaÃno AJ. Effect of Mg and Ca addition on coke deposition over Cu-Ni/SiO2 catalysts for ethanol steam reforming. Chem Eng J.163:395-402.

[63] Choong CKS, Zhong Z, Huang L, Wang Z, Ang TP, Borgna A, et al. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al₂O₃: I. Catalytic stability, electronic properties and coking mechanism. Appl Catal, A. 407:145-54.

[64] Elias KFM, Lucrédio AF, Assaf EM. Effect of CaO addition on acid properties of Ni-Ca/Al₂O₃ catalysts applied to ethanol steam reforming. Int J Hydrogen Energy. 2013;38:4407-17.

[65] Lertwittayanon K, Atong D, Aungkavattana P, Wasanapiarnpong T, Wada S, Sricharoenchaikul V. Effect of CaO-ZrO₂ addition to Ni supported on Ni-Al₂O₃ by sequential impregnation in steam methane reforming. Int J Hydrogen Energy. 2010;35:12277-85.

[66] Mariño F, Baronetti G, Jobbagy Ma, Laborde M. Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming: Formation of hydrotalcite-type compounds as a result of metal–support interaction. Appl Catal, A. 2003;238:41-54.

[67] Zhang Y, Gong X, Zhang B, Liu W, Xu M. Potassium catalytic hydrogen production in sorption enhanced gasification of biomass with steam. Int J Hydrogen Energy. 2014;39:4234-43.

[68] Alstrup I, Clausen BS, Olsen C, Smits RHH, Rostrup-Nielsen JR. Promotion of steam reforming catalysts. In: A. Parmaliana DSFFAV, F A, editors. Stud Surf Sci Catal: Elsevier; 1998. p. 5-14.

[69] Zhou G, Gorte RJ. Thermodynamic Investigation of the Redox Properties for Ceria−Hafnia, Ceria-Terbia, and Ceria-;Praseodymia Solid Solutions. J Phys Chem B. 2008;112:9869-75.

[70] Serrano-Lotina A, RodrÃ-guez L, Muñoz G, Daza L. Biogas reforming on La-promoted NiMgAl catalysts derived from hydrotalcite-like precursors. J Power Sources.196:4404-10.

[71] Barrai F, Jackson T, Whitmore N, Castaldi MJ. The role of carbon deposition on precious metal catalyst activity during dry reforming of biogas. Catal Today. 2007;129:391-6.

[72] Appari S, Janardhanan VM, Bauri R, Jayanti S. Deactivation and regeneration of Ni catalyst during steam reforming of model biogas: An experimental investigation.Int J Hydrogen Energy .2014;39:297-304.

[73] Asencios YJO, Bellido JDA, Assaf EM. Synthesis of NiO-MgO-ZrO2 catalysts and their performance in reforming of model biogas. Appl Catal, A. 2011;397:138-44.

[74] Pino L, Vita A, Lagana M, Recupero V. Hydrogen from biogas: Catalytic tri-reforming process with Ni/LaCeO mixed oxides. Appl Catal, B. 2014;148;149:91-105.

[75] Zhao J, Zhou W, Ma J. Pretreatment as the crucial step for biogas reforming to hydrogen over Ni–Co bimetallic catalyst: Effect of CO2 pretreatment time. Int J Hydrogen Energy. 2014;39:16195-201.

[76] Bang Y, Seo JG, Song IK. Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/La-Al₂O₃ aerogel catalysts: Effect of La content. Int J Hydrogen Energy. 2011;36:8307-15.

[77] de Freitas Silva TR, Cristhiane Guimaraes Maciel,Lucradio, Alessandra Fonseca Assaf, Elisabete Moreira Assaf, Jose Mansur. Hydrogen production from oxidative reforming of methane on $Ni/_{Y}$ -Al₂O₃ catalysts: Effect of support promotion with La, La-Ce and La-Zr. Fuel Process Technol. 2014;127:97-104.

[78] Melchor-HernÃ; ndez C, GÃ³mez-Cortés A, DÃ-az G. Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol-gel. Fuel.2013;107:828-35.

[79] Fouskas A, Kollia M, Kambolis A, Papadopoulou C, Matralis H. Boron-modified Ni/Al_2O_3 catalysts for reduced carbon deposition during dry reforming of methane. Appl Catal, A. 2014;474:125-34.

[80] Ni J, Chen L, Lin J, Kawi S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH₄. Nano Energy.2012:674-86.

[81] Xu J, Saeys M. First principles study of the coking resistance and the activity of a boron promoted Ni catalyst. Chem Eng Sci. 2007;62:5039-41.

[82] Xu J, Saeys M. Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron. J Catal. 2006;242:217-26.

[83] Le Valant A, Bion N, Can F, Duprez D, Epron F. Preparation and characterization of bimetallic Rh-Ni/ Y_2O_3 -Al₂O₃ for hydrogen production by raw bioethanol steam reforming: influence of the addition of nickel on the catalyst performances and stability. Appl Catal, B. 2010;97:72-81.

[84] Wang Y, Wang L, Gan N, Lim Z-Y, Wu C, Peng J, et al. Evaluation of $Ni/Y_2O_3/Al_2O_3$ catalysts for hydrogen production by autothermal reforming of methane. Int J Hydrogen Energy. 2014;39:10971-9.

[85] Sun L, Tan Y, Zhang Q, Xie H, Song F, Han Y. Effects of Y2O3-modification to Ni/\hat{I}^3 -Al₂O₃ catalysts on autothermal reforming of methane with CO₂ to syngas. Int J Hydrogen Energy.2013;38:1892-900.

[86] Bobadilla LF, Penkova A, Romero-Sarria F, Centeno MA, Odriozola JA. Influence of the acid–base properties over NiSn/MgO-Al₂O₃ catalysts in the hydrogen production from glycerol steam reforming. Int J Hydrogen Energy. 2014;39:5704-12.

[87] Su B-L, Guo S-D, Delmon B, Froment GF. Effects of rare earth oxides on stability of Ni/ \hat{I} ±-Al₂O₃ catalysts for steam reforming of methane. Stud Surf Sci Catal: Elsevier; 1999. p. 325-32.

[88] Trimm DL. Catalysts for the control of coking during steam reforming. Catal Today. 1999;49:3-10.

[89] Trimm DL. Coke formation and minimisation during steam reforming reactions. Catal Today. 1997;37:233-8.

[90] Pengpanich S, Meeyoo V, Rirksomboon T, Schwank J. iso-Octane partial oxidation over Ni-Sn/Ce_{0.75}Zr_{0.25}O₂ catalysts. Catal Today. 2008;136:214-21.

[91] Koike M, Ishikawa C, Li D, Wang L, Nakagawa Y, Tomishige K. Catalytic performance of manganese-promoted nickel catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Fuel. 2013;103:122-9.

[92] Malaibari ZO, Amin A, Croiset E, Epling W. Performance characteristics of Mo-Ni/Al₂O₃ catalysts in LPG oxidative steam reforming for hydrogen production. Int J Hydrogen Energy. 2014;39:10061-73.

[93] Braga LcB, Silveira JL, da Silva ME, Tuna CE, Machin EB, Pedroso DT. Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. Renew Sustainable Energy Rev. 2013;28:166-73.

[94] Yang L, Ge X, Wan C, Yu F, Li Y. Progress and perspectives in converting biogas to transportation fuels. Renew Sustainable Energy Rev.2014;40:1133-52.

[95] Serrano-Lotina A, Daza L. Highly stable and active catalyst for hydrogen production from biogas. J Power Sources.2013;238:81-6.

[96] Serrano-Lotina A, Martin AJ, Folgado MA, Daza L. Dry reforming of methane to syngas over La-promoted hydrotalcite clay-derived catalysts. Int J Hydrogen Energy.2012;37:12342-50.

[97] Serrano-Lotina A, RodrÃ-guez L, Muñoz G, Martin AJ, Folgado MA, Daza L. Biogas reforming over La-NiMgAl catalysts derived from hydrotalcite-like structure: Influence of calcination temperature. Catal Commun.2011;12:961-7.

[98] Lucrédio AF, Assaf JM, Assaf EM. Reforming of a model biogas on Ni and Rh-Ni catalysts: Effect of adding La. Fuel Proc Tech.2012;102:124-31.

[99] Ahmed S, Lee SHD, Ferrandon MS. Catalytic steam reforming of biogas - Effects of feed composition and operating conditions. Int J Hydrogen Energy. 2015;40:1005-15.

[100] Laosiripojana N, Charojrochkul S, Kim-Lohsoontorn P, Assabumrungrat S. Role and advantages of H_2S in catalytic steam reforming over nanoscale CeO2-based catalysts. J Catal. 2010;276:6-15.

[101] Effendi A, Zhang ZG, Hellgardt K, Honda K, Yoshida T. Steam reforming of a clean model biogas over Ni/Al₂O₃ in fluidized- and fixed-bed reactors. Catal Today. 2002;77:181-9.

[102] Izquierdo U, Barrio VL, Lago N, Requies J, Cambra JF, GÃ¹/4emez MB, et al. Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. Int J Hydrogen Energy. 2012;37:13829-42.

[103] Cimino S, Lisi L, Russo G. Effect of sulphur during the catalytic partial oxidation of ethane over Rh and Pt honeycomb catalysts. Int J Hydrogen Energy. 2012;37:10680-9.

[104] Grgicak CM, Green RG, Giorgi JB. SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S. J Power Sources. 2008;179:317-28.

[105] Ashrafi M, Pfeifer C, Proll T, Hofbauer H. Experimental Study of Model Biogas Catalytic Steam Reforming: 2. Impact of Sulfur on the Deactivation and Regeneration of Ni-Based Catalysts. Energy Fuels. 2008;22:4190-5.

[106] Chang AC-C, Lee K-Y. Biogas reforming by the honeycomb reactor for hydrogen production. Int J Hydrogen Energy. 2016;41:4358-65.

[107] Angeli SD, Turchetti L, Monteleone G, Lemonidou AA. Catalyst development for steam reforming of methane and model biogas at low temperature. Appl Catal, B. 2016;181:34-46.

[108] Chiodo V, Maisano S, Zafarana G, Urbani F. Effect of pollutants on biogas steam reforming. Int J Hydrogen Energy. 2016.

[109] Roy PS, Park CS, Raju AS, Kim K. Steam-biogas reforming over a metal-foam-coated (Pd–Rh)/(CeZrO₂–Al₂O₃) catalyst compared with pellet type alumina-supported Ru and Ni catalysts. J CO₂ Utl. 2015;12:12-20.

[110] Araki S, Hino N, Mori T, Shimizu T, Hikazudani S. Reforming Reactions of Model Biogas over Honeycomb Supported Ni Catalysts. J Pet Sci Technol. 2009;52:120-7.

[111] Araki S, Hino N, Mori T, Hikazudani S. Autothermal reforming of biogas over a monolithic catalyst. J Nat Gas Chem.2010;19:477-81.

[112] Araki S, Hino N, Mori T, Hikazudani S. Durability of a Ni based monolithic catalyst in the autothermal reforming of biogas. Int J Hydrogen Energy. 2009;34:4727-34.

[113] Vita AP, Lidia Cipita, Francesco, Lagana, Massimo, Recupero V. Biogas as renewable raw material for syngas production by tri-reforming process over NiCeO₂ catalysts: Optimal operative condition and effect of nickel content. Fuel Process Technol. 2014;127:47-58.

[114] Izquierdo U, Barrio VL, Requies J, Cambra JF, GÃ¹/₄emez MB, Arias PL. Tri-reforming: A new biogas process for synthesis gas and hydrogen production. Int J Hydrogen Energy.2013;38:7623-31.

[115] Saha B, Khan A, Ibrahim H, Idem R. Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas. Fuel.120:202-17.

[116] Asencios YJO, Elias KFM, Assaf EM. Oxidative-reforming of model biogas over NiO/Al_2O_3 catalysts: The influence of the variation of support synthesis conditions. Appl Surf Sci. 2014;317:350-9.

[117] Lai M-P, Lai W-H, Horng R-F, Chen C-Y, Chiu W-C, Su S-S, et al. Experimental Study on the Performance of Oxidative Dry Reforming from Simulated Biogas. Energy Procedia.2012;29:225-33.

[118] Li B, Xu X, Zhang S. Synthesis gas production in the combined CO2 reforming with partial oxidation of methane over Ce-promoted Ni/SiO₂ catalysts. Int J Hydrogen Energy.2013; 38:890-900.

[119] Hadian N, Rezaei M. Combination of dry reforming and partial oxidation of methane over Ni catalysts supported on nanocrystalline MgAl₂O₄. Fuel.113:571-9.

[120] Foo SY, Cheng CK, Nguyen T-H, Adesina AA. Syngas production from CH_4 dry reforming over Co-Ni/Al₂O₃ catalyst: Coupled reaction-deactivation kinetic analysis and the effect of O₂ co-feeding on H₂:CO ratio. Int J Hydrogen Energy.37:17019-26.

[121] San-José-Alonso D, Juan-Juan J, IllÃ;n-GÃ³mez MJ, RomÃ;n-MartÃ-nez MC. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl Catal, A. 2009;371:54-9.

[122] Nagaraja BM, Bulushev DA, Beloshapkin S, Ross JRH. The effect of potassium on the activity and stability of Ni-MgO/ZrO₂ catalysts for the dry reforming of methane to give synthesis gas. Catalysis Today.2011:178:132-6.

[123] Juan-Juan J, Rom \tilde{A}_i n-Mart \tilde{A} -nez MC, Ill \tilde{A}_i n-G \tilde{A}^3 mez MJ. Effect of potassium content in the activity of K-promoted Ni/Al₂O₃ catalysts for the dry reforming of methane. Appl Catal, A. 2006;301:9-15.

[124] Arbag H, Yasyerli S, Yasyerli N, Dogu G, Dogu T. Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas. Appl Catal, B.2016;198:254-65.

[125] Al-Fatesh AS, Naeem MA, Fakeeha AH, Abasaeed AE. Role of La₂O₃ as Promoter and Support in Ni/La-Al₂O₃ Catalysts for Dry Reforming of Methane. Chin J Chem Eng.22:28-37.

[126] Li X, Li D, Tian H, Zeng L, Zhao Z-J, Gong J. Dry reforming of methane over Ni/La₂O₃ nanorod catalysts with stabilized Ni nanoparticles. Appl Catal, B..2017;202:683-94.

[127] Benito M, GarcÃ-a S, Ferreira-Aparicio P, Serrano LGa, Daza L. Development of biogas reforming Ni-La-Al catalysts for fuel cells. J Power Sources. 2007;169:177-83.

[128] Goula MA, Charisiou ND, Papageridis KN, Delimitis A, Pachatouridou E, Iliopoulou EF. Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method. Int J Hydrogen Energy.2015;40:9183-200.

[129] Hegarty MES, O'Connor AM, Ross JRH. Syngas production from natural gas using ZrO2-supported metals. Catal Today. 1998;42:225-32.

[130] Dong W-S, Roh H-S, Jun K-W, Park S-E, Oh Y-S. Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content. Appl Catal, A. 2002;226:63-72.

[131] Snoeck JW, Froment GF, Fowles M. Steam/CO₂ Reforming of Methane. Carbon Formation and Gasification on Catalysts with Various Potassium Contents. Ind Eng Chem Res. 2002;41:3548-56.

[132] Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Avraam DG, et al. Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts. J Natl Gas Sci and Eng.20016;31:164-83.

[133] Laosiripojana N, Sutthisripok W, Assabumrungrat S. Synthesis gas production from dry reforming of methane over CeO₂ doped Ni/Al₂O₃: Influence of the doping ceria on the resistance toward carbon formation. Chem Eng J. 2005;112:13-22.

[134] Kaydouh M-N, El Hassan N, Davidson A, Casale S, El Zakhem H, Massiani P. Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie.

[135] Wang N, Chu W, Zhang T, Zhao XS. Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int J Hydrogen Energy.2012;37:19-30.

[136] Genoveva Zimicz M, Reznik BA, Larrondo SA. Conversion of biogas to synthesis gas over NiO/CeO₂-Sm₂O₃ catalysts. Fuel 2015:95-99.

[137] Lima da Silva A, Dick LFP, Lourdes Muller I. Performance of a PEMFC system integrated with a biogas chemical looping reforming processor: A theoretical analysis and comparison with other fuel processors (steam reforming, partial oxidation and auto-thermal reforming). Int J Hydrogen Energy.2012;37:6580-600.

[138] Lino AVP, Assaf EM, Assaf JM. Hydrotalcites derived catalysts for syngas production from biogas reforming: Effect of nickel and cerium load. Catal Today. 2016.

[139] Chang ACC, Lee K-Y. Biogas reforming by the honeycomb reactor for hydrogen production. Int J Hydrogen Energy.2016;41:4358-65.

[140] Italiano C, Vita A, Fabiano C, Laganà M, Pino L. Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO 2 catalysts. Int J Hydrogen Energy. 2015;40:11823-30.

[141] Cipitì F, Barbera O, Briguglio N, Giacoppo G, Italiano C, Vita A. Design of a biogas steam reforming reactor: A modelling and experimental approach. Int J Hydrogen Energy. 2016:27: 11577–11583.

[142] Luneau M, Gianotti E, Meunier FC, Mirodatos C, Puzenat E, Schuurman Y, et al. Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas. Appl Catal, B. 2017;203:289-99.

[143] Chattanathan SA, Adhikari S, McVey M, Fasina O. Hydrogen production from biogas reforming and the effect of H2S on CH₄ conversion. Int J Hydrogen Energy.2014;39:19905-11.

[144] Asencios YJO, Bellido JDA, Assaf EM. Synthesis of NiO/MgO-ZrO₂ catalysts and their performance in reforming of model biogas. Appl Cata, A..2011;397:138-44.

[145] Li X, Li D, Tian H, Zeng L, Zhao Z-J, Gong J. Dry reforming of methane over Ni/La 2 O 3 nanorod catalysts with stabilized Ni nanoparticles. Appl Catal, B. 2017;202:683-94.

[146] Abdelsadek Z, Sehailia M, Halliche D, Gonzalez-Delacruz V, Holgado J, Bachari K, et al. In-situ hydrogasification/regeneration of NiAl-hydrotalcite derived catalyst in the reaction of CO 2 reforming of methane: A versatile approach to catalyst recycling. J CO₂ Utl. 2016;14:98-105.

[147] Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL. Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol. 2001;71:139-48.

[148] Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009;139:244-60.

Figures

Figure 6: Basic utilization of biogas.

Figure 7: Installed biogas plants in India [17].

Figure 8: Schematic of synthesis gas utilization derived from biogas.

Figure 9:ATR reformer applied in GTL applications [40]

Figure 10: Schematic of ACR reforming system.

	Biogas composition						
Component	Unit	AD-biogas	Landfill biogas	Natural gas			
CH_4	vol%	53-70	30-65	81-89			
CO_2	vol%	30-50	25-47	0.67-1			
\mathbf{N}_2	vol%	2-6	<1-17	0.28-14			
O_2	vol%	0-5	<1-3	0			
H_2	vol%	NA	0-3	NA			
Light hydrocarbons	vol%	NA	NA	3.5-9.4			
H_2S	ppm	0-2000	30-500	0-2.9			
NH ₃	ppm	<100	0-5	NA			
Total chlorines	mg/Nm ³	< 0.25	0225	NA			
Siloxanes	$\mu g/g$ -dry	<0.08-0.5	<0.3-36	NA			

Table 1: Typical composition of biogas and landfill gas [9].

Table 2: Reduction in greenhouse gas emissions as a result of biogas utilization [12].

Substrate	(%)
Grass	86
Sugar beet (Incl. Tops)	85
Maize	75
Manure	148
Waste from food industry	119
Organic household waste	103

Table 3: Comparison of direct burning of 1kg of dung and its use as biogas [15].

Parameters	Burning dung	Bio-gas	
 Gross energy	10,460 kcal	4713 kcal	
Device efficiency	10%	55%	
Useful energy	1046 kcal	2592 kcal	
Manure	Not generated	10 kg of air dried	

<u>Stata</u>	Amer (labo)	Crop production	Biomass generation	Biomass surplus
State	Alea (kila)	kt/year	(kt/year)	(kt/year)
Andhra Pradesh	2540.2	3232.0	8301.7	1172.8
Assam	2633.1	6075.7	6896.3	1398.4
Bihar	5833.1	13817.8	20441.8	4286.2
Chhattisgarh	3815.5	6142.8	10123.7	1907.8
Goa	156.3	554.7	827.2	129.9
Gujarat	6512.9	20627.0	24164.4	7505.5
Haryana	4890.2	13520.0	26160.9	9796.1
Himachal Pradesh	710.3	1329.2	2668.2	988.3
Jammu and Kashmir	368.7	648.7	1198.7	237.7
Jharkhand	1299.8	1509.0	2191.2	567.7
Karnataka	7277.3	38638.5	23766.8	6400.6
Kerala	2041.7	9749.7	9420.5	5702.0
Madhya Pradesh	9937.0	14166.9	26499.6	8033.3
Maharashtra	15278.3	51343.3	36804.4	11803.9

 Table 4: Gross and surplus biomass generated in India [18]. A kt is a kilo tonne.

Table 5: Estimation of bio-gas generation from animal waste in India.

Animal	Population (million)	Waste (kg day ⁻¹ head ⁻¹)	Estimated fresh waste tonnes/day	Gas Yield m ³ /kg of dry matter
Cattle	11.189	20	223780	0.34
Buffalo	2.009	25	50225	0.24
Sheep	7.991	0.6	4794.6	0.37
Goat	9.275	0.6	5565	0.37
Pigs	0.284	3	852	0.39
Poultry	128.1	0.1	12810.8	0.46
Total	242.32		298027.4	

Industry	Wastewater Produced (Mm ³)	COD of wastewater (kg/m ³)	Energy value of CH4 at 20% conversion of wastewater to energy, TJ ^{ab}	Energy value of CH4 at 90% conversion of wastewater to energy, TJ ^b
Distillery	6000	118.00	5,947.20	9,558.00
Steel plants	10,40,000	0.60	5,241.60	8,424.00
Paper and pulp	7,200	5.91	357.44	574.45
Sugar industry	230	2.50	4.83	7.76
Cotton	1,550	0.60	7.81	12.56
Fertilizers	52	2.00	0.87	1.40
Refineries	15	0.30	0.04	0.06
Dairy	206	2.24	3.88	6.23
Pharmaceuticals	56	0.39	0.18	0.29
Coffee	1.3	2.80	0.03	0.05
Edible oil	1,425	4.60	55.06	88.49
Total	10,56,730		11,618.94	18,673.30

Table 6: Energy potential of waste water from India [19].

a-The IPCC default value of 20% is considered as the fraction of wastewater treated in anaerobic systems. For distillery 56% is considered based on literature. b- It is assumed that with advent of efficient waste treatment mechanisms and innovations in reactors, up to 90% of wastewater can be treated in an anaerobic system. Energy values are calculated with a conversion factor of 0.05 MJ/m³ CH₄, with CH₄ producing capacity of 0.30 m³ CH₄/kg COD.

Name of the zone	City aloggification	Wastewater generated	Wastewater collected	
Name of the zone	City classification	(Mld)	(Mld)	
	Vorulargo	669.53		
		58.22		
South	Large	640.42		
	Smoll	1532		
	Sman	2911	1812	
	V lanaa	1935		
	Large Medium Small	394		
North		948.26		
		2250		
		5578	3932	
	Vorulargo	978		
	Very large	437		
Western	Laige	780.525		
	Small	1269		
	Sillali	3469	2275	
	Vorylargo	55		
	Very large	297		
Eastern	Medium	631		
	Small	2461		
	Siliali	3434	2151	

Table 7: Waste water generated in India [15].

Table 8: Conversion of different waste biomass to energy in India and reported benefits [19].

S.N.	Name of the industry/agency	Feedstock/waste	Conversion route	Applications	Reported benefits/savings
1.	Sakthi Sugars, Maharashtra	Sugarcane bagasse	Biomethanation	Heating	Reported IRR = 32% Biogas substituted for almost 87% of fuel oil consumption

2.	K.M. Sugar Mills, Uttar Pradesh	Do	Do	Power plant (capacity 1 MW)	12,000 m ³ biogas produced from 400 KL of spent wash per day
3.	Pravar Nagar, Sugar factory at Maharashtra	Sugar factory press mud (75% organic matter; 29% solid content; 65% is volatile	Biogas (having 60% methane)	Domestic fuel for cooking	Four biogas plants each having 85 m ³ capacity each are setup with MNRE's financial assistance. Meeting cooking needs of 196 households for 4 h/day
4.	Demo plants by an NGO Appropriate Technology Institute (ARTI)	Sugarcane leaves left after harvesting	Oven and rotary kiln conversion to char and briquetting biogas	Fuel for various applications	Plant output 100 kg char per day. Earning of Rs. 75,000 in 25 weeks of harvesting season
5.	ASTRA, IISc	Leafy biomass	biogas	Fuel	It is claimed that 2/3 of the families of estimated 100 million rural household could be provided if we use only 10% of around 1130 million ton leafy biomass waste available in India
6.	Al-Kabeer Exports Pvt. Ltd. Medak (Andhra Pradesh)	Slaughter house waste (liquid and solid)	Two stage digestion process for biogas production	Fuel	3000-4000 m ³ gas is produced, which saves furnace oil consumption worth Rs. 4 million per annum

7.	Western Hatcheries Ltd.	Poultry waste	UASB reactor for biogas production	Power plant (capacity 1.2 MW)	60 m3 biogas is produced per day from 200 TPD poultry waste processing plant at Namakhal
8.	MSW to energy & resources in singupa town in Bellary District by Technology Informatics design Endeavour (TIDE) &IISc	Organic fraction of municipal waste	Plug flow biogas reactor	Not known	Data collected shows that 1 kg waste gives 50- 601 of biogas. C/N ratio of compost is found to be 11.4
9.	Coffee Board and Ministry of commerce	Coffee pulping waste	Bioreactor for biogas conversion	Power generation	About 80 m3 of biogas is produced from each ton of coffee parchment. The technology has been successfully has been successfully demonstrated at 13 locations
10.	Transport House, KSRTC, Bangalore	Canteen waste (rice straw, bagasse, paper shreds, garden cuttings, lawn mowing, vegetable peels, uneaten rice, plate and washings, fruit and vegetable rejects)	Biomethanation	Fuel for food warming	The KSRTC plant can handle 25 kg of canteen rejects per day along with leaf litter, which produces 1.5 m3 of biogas

SR. No.	State	Implementing Agency	No. of Proposals received	Plant capacity m ³	Proposed Power Generation Capacity(kW)	Total CFA including administrative Charges (Rs in Cr.)	Date of receipt	Status
1	Karnataka	BDTC, Bangalore	14	4700	472	1.83	17.01.2014	Sanctioned (F. No25- 32/2012-BE 09.06.2014
2	Uttar Pradesh	UPNEDA, Lucknow	16	1630	216	0.83	16.07.2014	Sanctioned (F. No25- 1/2014-15/Bp 10.09.2014)
3	Punjab	PEDA Chandigarh	22	3535	343	1.44	01.09.2014	Sanctioned (F. No25-5/14- 15-BE 05.11.2014)
4	Andhra Pradesh and Telengana	NREDCAP, Hyderabad	7	855	90	0.39	30.8.2014	Sanctioned (F. No25-4/14- 15/BPP 03.11.2014)
5	Madhya Pradesh	MPUVN, Bhopal	1	85	10	0.04	24.09.2014	Under process* (File with IFD)

Table 9: Bio-gas implemented projects in India in the year 2014.

Table 9 continues on next page

SR.			No. of		Proposed Power	Total CFA	Date	
No.	State	Implementing Agency	Proposals received	Plant capacity m ³	Generation Capacity(kW)	including administrative Charges (Rs in Cr.)	Of receipt	Status
6	Andhra Pradesh & Telengana	NREDCAP, Hyderabad	2	1560	187	0.58	08.10.2014	Under process* (File with IFD)
7	Uttar Pradesh	UPNEDA, Lucknow	10	1155	134	0.57	10.09.2014 & 17.11.2014	Under process* (File with IFD)
8	Punjab	BDTC, PAU, Ludhiana	1	200	24	0.09	18.11.2014	Under process* (File with IFD)
9	Nagaland	DNRE, Nagaland, Kohima	1	85	3	0.01	12.09.2014	Incomplete documents* (Letter issued on 28.11.2014)
10	Maharashtra	MEDA, Pune	6	1550	186	0.70	23.10.2014 & 28.10.2014	Incomplete documents* (Letter issued on 28.11.2014)

Catalyst	Condition				Deposited	Author	
	Temp	S/C	O ₂ /C	CH ₄ C	Carbon		
	(°C)		H_4	O ₂			
Refomax	750	-	-	1.5	15.21% ^a	[<u>53]</u>	
Pd(7)-Rh(1)/CeZrO ₂ -	700	2.00			14 67%b	[54]	
Al ₂ O ₃	700	2.00	-	-	14.0270	[<u>]</u>	
NiO/Al ₂ O ₃ -Ni/Al=67:33	600	-	-	1.5	8.79 ^c	[<u>46]</u>	
10NiO/6wt%La2O3-	800			1	6 740/ d	[55]	
Al ₂ O ₃	800	-	-	1	0.74%	[<u>JJ</u>]	
7NiO-3wt%CoO ₂ /6	800			1	6 520/ e	[56]	
wt% La ₂ O ₃ -Al ₂ O ₃	800	-	-	1	0.33%	[<u>30</u>]	
7NiO-3wt%CoO ₂ / 6 wt	950			1	2 15f	[57]	
% La ₂ O ₃ -Al ₂ O ^f	830	-	-	1	5.15	<u>[]]</u>	
Ni _{0.4} Ce _{0.8} O ₂	600	-	-	-	1.2%	[<u>58]</u>	
75%NiO-	600			1	0 2 09	[50]	
$25\%CoO_2/Al_2O_3$	000	-	-	1	0.208	[<u>39</u>]	
$8wt\%NiO/Al_2O_3$	860	-	-	1.5	0.180 ^h	[<u>60]</u>	

Table 10: Carbon formation in H₂ production from bio-gas.

- a- The experiment was performed using GHSV of $300 \text{ cm}^3/(g_{cat} \text{ min})$
- b- The coke deposited was measured in terms of % of feed. The experiment was performed of GHSV of 10000/h
- c- The value is provided rate of carbon deposited measured in terms of (g_{carbon}/g_{catalyst})
- d- The experiment was performed using GHSV of 6000 cm³/(g_{cat}.h)
- e- Catalyst tested for 100 h in stainless steel reactor & The experiment was performed using GHSV of 6000 $cm^{3/}\left(g_{cat}.h\right)$
- f- Carbon amount was measured as percentage of the used catalyst and the experiment was performed using GHSV of 6000 cm³/(g_{cat}.h). The catalyst was reduced for 2 h in pure H₂ at a flow rate of 30 ml min⁻¹ at 700 $^{\circ}$ C
- g- The value is provided rate of carbon deposited measured in terms of $g_{carbon}/g_{catalyst}$. The total metal loading for the catalyst was 15wt%.
- h- The experiment was performed using GHSV of 1200/h. Amount of Coke was measured in the form of g_{carbon}/g_{catalyst} Amount of Carbon deposition was measured in the form of g_{carbon}/c_{atalyst}

Formulation	Catalyst	Support	Crystallite size	Reference
10 wt% NiO/6wt %La2O3-Al2O3	252.7ª		5.3	(55)
7wt %NiO-3wt% CoO ₂ /6wt %La ₂ O ₃ -Al ₂ O ₃	252.2ª	-	4.7	[55]
	203 ^a			
HT2-750 ^h	162°		4.19ª	[70]
LaHT2-750 ^h	166 ^a	-	4.18ª	[70]
	142°			
	163 ^d			
0.5 wt% PtO ₂ /Al ₂ O ₃	159 ^e	188	-	[71]
	152ª			
8wt% NiO/Al ₂ O ₃	163ª			
8wt% NiO/10wt% CeO2-Al2O3	136 ^a	281	14	[60]
$8wt\%NiO/20wt\%CeO_2-Al_2O_3$	126 ^a		13	
	151ª			
15 wt% NiO/γ-Al ₂ O ₃	106 ^c	206	11.34 ^a	[72]
	86 ^b		12.09 ^b	

Table 11: Surface area properties for various catalysts utilized in H₂ production from biogas.

	143.2ª		
1.31 wt%-Pd(7)-Rh(1) / CeZrO ₂	- 120b		[54]
	1308		
		7.36 ^a	
	1000	17.16	
$N_{10.1}Ce_{0.95}O_2$	128ª	17.18	[58]
Ni _{0.26} Ce _{0.87} O ₂	105 ^a	7.35 ^a	[50]
		13.4 ^b	
20 wt% NiO/ZrO2	34 ^a	14 ^a	
	-		[73]
20 wt% NiO-4wt%MgO-ZrO ₂	23ª	16.1ª	
		18.3 ^f	
$Ce_{0.25}La_{0.50}Ni_{0.25}O_{2-\delta}$	3.8 ^a	9.8 ^g	(7.4)
Ceo 40L ao 40Nio 20O2 s	 2 Qa	26 9 ^f	[74]
CC0.401240.401 (10.2002-0	2.)	20.9	
		6.8 ^g	
7wt %NiO-3wt% CoO2/6wt			
%La ₂ O ₃ -Al ₂ O ₃ ^h		16.5	
	-		[75]
7wt %NiO-3wt% CoO2/6wt		15.3	
La_2O_3 -Al ₂ O ₃ ⁱ			

a- Fresh catalyst

b- Used catalyst

c- Reduced catalyst

d- Catalyst activity preformed at 900°C and reduced at 900°C.

e- Catalyst examined at 900°C without reduction.

f- CeO₂ crystallite size.

g- Ni crystallite size.

	Support			Catalyst			
Material	Pore size (nm)	Pore volume (cm ³ /g)	Pore size (nm)	Pore volume (cm ³ /g)	Reference		
15 wt% NiO/γ-Al ₂ O ₃	11.34	0.79	12.09 ^a 21.11 ^b 17.66 ^c	0.626 ^a 0.581 ^b 0.433 ^c	[72]		
1.31 wt%-Pd(7)- Rh(1)/(CeZrO ₂ -Al ₂ O ₃)	-	-	9.0 ^a 19.0 ^d	0.14 ^a 0.12 ^d	[54]		
10 wt% NiO / 6 wt% La ₂ O ₃ -Al ₂ O ₃ 7 wt% NiO – 3 wt% CoO ₂ / 6 wt% La ₂ O ₃ -			10.16 10.15	0.6416 0.6399	[55]		
Al ₂ O ₃ 8 wt% NiO/Al ₂ O ₃ 8 wt% NiO /10 wt% CeO ₂ -Al ₂ O ₃		0.65	14.5 14.9	-	[60]		
Ni _{0.1} Ce _{0.95} O ₂ Ni _{0.26} Ce _{0.87} O ₂			14.9 15.7	0.48 0.41	[58]		

Table 12: Pore sizes of catalysts tested in	a Hyproduction from biogas	ŝ.

a- Fresh catalystb- Used catalyst after stability test at 800 °C

c- Used catalyst after stability test at 700 $^\circ C$

d- Used catalyst

Process	Catalyst	Хсн4	X _{CO2}	Yie	d	Exp	erimental	Conditions	
				Y _{H2}	Yco	S/C	Temp (°C)	CH4/CO2	O ₂ /C
SR	10 wt% Ni onCeZrLa	43	12	47.2	2.1	3	550	1	-
ATR	25% Ni onMgAlCe	52	48	72.7	12	1	873	1.5	-
SR	5 wt% NiO/CeO2	64.6	36.2	35.8	10.5	1.3	800	2	-
SR	15% Ni on Al_2O_3	82	8.5	-	-	2	1073	1.2	-
SR	0.09 wt%[Pd(7)- Rh(1)]/(CeZrO ₂ Al ₂ O ₃]	90	6.5	71.2	0.8	1.5	1073	1.5	-
OSR ^g	Ni/CeO ₂	90	65	82	82	0.3	1023	1.5	0.1
60	4wt%RhO2/3wt%	93	10.5	2.62ª	0.98ª	1.3ª	685ª	1 ^a	-
SK	La_2O_3 - Al_2O_3	97.5	-49.0	3.53ª	0.39ª	3.8ª	650ª	1 ^a	-
SR	1.3 wt %Pd- Rh/CeZrO ₂ -Al ₂ O ₃	93.9	5.0	-	-	1.2 ^b	800 ^b	1.5 ^b	
SR	Ni _{0.4} Ce _{0.8} O ₂	~96	40	~72.4% ^c	~5%	2	700	3	6.2
ATR	1.5 wt% NiO/CeO ₂	97.5	90.5	96.3	1.3 ^d	0.3 ^d	800 ^d	1.5 ^d	0.1
SR	7.5wt% Ni/CeO ₂	99	4	55	29	1	900	1.5	-
ATR	5 wt% Ni on Mg0.4Al ₂ O ₃	99	15	-	-	3	1073	1.5	0.5
ATR	13 wt% NiO/Ce-Zr- Al ₂ O ₃	99.0	34.4	67.1 ^e	1.5 ^f	1 ^f	800 ^f	1.5 ^f	0.25 ^f
ATR	1wt%RhO2-13wt% NiO/Ce-Al2O3	99.1	39.1	75.3 ^e	1.7 ^f	1 ^f	800 ^f	1.5 ^f	0.25 ^f

|--|

a- Experiment was performed using WHSV of 9810 h^{-1} . The yield was calculated on the basis of mol H₂ produced/mol of CH₄. The long term experiments were performed for 40 h.

- b- The experiment was performed using WHSV of 20,000 h^{-1} for 200 h.
- c- These values are expressed as dry mole fraction of the outlet gas.
- d- Experiment was performed at WHSV of $30,000 \text{ h}^{-1}$ for 150 h.
- e- The H_2 yield is calculated by dividing out volumetric flowrates of H_2 by inlet volumetric flowrates of CH_4 and H_2O .
- f- Experiment was performed using WHSV of 161 h⁻¹ with Ni and Rh loading of 13 and 1 wt%.
- g- Oxidative Steam reforming.

Process	Catalyst	Х СН4	X _{CO2}	Yi	eld	Expe	rimental (Conditions		Ref
				Y_{H2}	Y _{co}	S/C	Temp (°C)	CH4/CO ₂	O ₂ /C	
DRB	75Ni-25Co/Al₂O ₃ ª	25	-	-	0.6	-	600	1	-	[59]
DRB	HT (Mg/Al=2+Ni=2%)	35	45	-	0.6 ^b	-	700 ^c	1 ^c	-	[70]
DRB	15 wt%Ni-5 wt %CoO2/MgO–Al2O3	57.1 ^d 80 ^e	-	90% ^d 90% ^e	-	-	900	1.25	-	[115]
DRB	13 wt%NiO/Ce-Zr-Al ₂ O ₃	60.1	94.4	63.5	1 ^b	-	800 ^d	1.5 ^d		[114]
DRB	NiO/Ce-Al ₂ O ₃	64.5	85.6	57.5	0.9 ^b	-	800 ^d	1.5 ^d	-	[114]
DRB	Refomax	67	86	33% ^b	39% ^b	-	750 ^e	1.5 ^e	-	[143]
ODRB	20 wt%NiO/Al ₂ O ₃	70	85	-	-	-		1.5	0.1	[116]
DRB	8 wt%NiO/20 wt% CeO ₂ - Al ₂ O ₃	70.5	97	76.5	60	-	860 ^f	1.5 ^f	-	[60]
DRB	20 wt% NiO/MgO	80	85	-	1.15 ^b		750 ^g	1.5 ^g	0.1 ^g	[144]
DRB	26 wt% (nanocast) Ni on La ₂ O ₃	80	82	-	-	-	700	1	-	[145]
DRB	Ni _{0.4} Ce _{0.8} O ₂	~83	~78	-	-	0.6 ^h	700 ^h	3 ^h	-	[58]
DRB	7 NiO-3 wt%CoO2/ 6 wt% La2O3-Al2O3	>90	>90	~95	>95	-	800	1	-	[55]
DRB	7 NiO-3 wt%CoO ₂ / 6 wt% La ₂ O ₃ -Al ₂ O ₃	93.7	94	95% ⁱ	98% ⁱ	-	800 ^j	1 ^j	-	[56]
DRB	NiAl-HT	93.7	94.4	92.6	85	-	700	1	-	[146]
חחח	7 NiO-3 wt%CoO ₂ / 6	95	97	-	-	-	850 ^k	1	-	[57]
DKR	wt% La ₂ O ₃ -Al ₂ O ₃	95	99	98% ⁱ	99% ⁱ	-	850 ¹	11	-	[75]
DRB	9 wt% NiO/Ce _{0.82} Sm _{0.18} O _{1.91}	~98	~97	0.8	-	-	800	1	-	[136]
DRB	Ce0.70 La 0.20 Ni0.10O2-8	98	80	-	1.8 ^b	-	800 ^m	1.04 ^m	0.1 ^m	[74]

Table 14: Catalyst performance summary investigated in DRB and ODRB

a- The catalyst prepared had a total metal loading of 15 wt%.

b- The yield of CO was measured on the basis of H_2/CO ratio.

c- The catalyst performance was evaluated for 50 h.

d- The catalyst performance was evaluated with 100 ppm S in the feed for 9 h.The selectivity of H_2 was obtained by dividing molar flow rate of H_2 divided by molar flow rate of 2 CH₄ reacted.

e- The selectivity of H_2 was obtained by dividing molar flow rate of H_2 divided by molar flow rate of 2 CH₄ reacted. The catalyst performance was evaluated in absence of S.

f- The performance of the catalyst was evaluated at WHSV of 1200 h^{-1} for 300 min over 8 wt% Ni supported catalyst.

g- The activity of the catalyst was examined over 6h with activity reducing with decreasing MgO content from 100 to 20 wt%.

h- Performance evaluated for 24 h.

i- The H_2 selectivity was calculated by dividing H_2 molar flow rate by molar flow rate of CH_4 reacted. CO selectivity was obtained by dividing CO molar flow rate by molar flow rate of CH_4 and CO_2 reacted.

j- The performance of the catalyst was evaluated using GHSV of 6000 cm³ g_{cat}^{-1} h⁻¹ for 300 h.

k- The catalyst was reduced in H₂ for 2h followed by treatment in CO₂ for 2h at 850 °C, over 7 wt% Ni, 3 wt% Co and 6 wt% La₂O₃ promoted Al₂O₃ catalyst, using GHSV of 6000 cm³ g_{cat}^{-1} h⁻¹. The performance of the treated catalyst was evaluated for 30 h.

l- The catalyst was reduced in H₂ for 2 h followed by pre-treated for 1 h in CO₂ at 850°C using GHSV of 6000 cm³ g_{cat}^{-1} h⁻¹. The performance of the treated catalyst was evaluated for 27 h.

m- The performance of the catalyst was evaluated using 31,000 h⁻¹ for 150 h.

Methods	Advantages	Disadvantages
SR	Produces high-purity H ₂ fellow carbon formation. Widely used for H ₂ production. Cannot use CO ₂ in bio-gas. Highest H ₂ yield.	Needs to remove H ₂ S and add oxidizing agents. High operating temperature and energy demand. Catalyst can be moderately expensive. Highest CO ₂ emissions. Highest NO _x emissions. Large size reformer
ATR	Produces high-purity hydrogen fuel. High energy efficiency. Can use both CH₄ and CO₂ in biogas. Compact size. Absence of NO _x formation due to use of pure O₂	Complex process control; needs multiple catalyst. Relatively unstable. Lower H ₂ yield compared to SR Limited commercial experience. Requires air or oxygen. In case of use of O ₂ expensive air separation units are required.
ACR	H ₂ yield is comparable to SR. Can use both CH ₄ and CO ₂ in biogas. Compact size. Lower energy requirement compared to SR. N ₂ -free H ₂ rich gas is obtained. No air separation is required which otherwise is required for PO and ATR reformers.	Process under development stage. Very limited commercial experience only few pilot plants are available. Absence of NOx emissions
DR	Can use both CH₄ and CO₂ in biogas. High conversion efficiency.	Carbon formation. Moderate selectivity. Side reaction consumes hydrogen. High operating temperature and energy demand. Catalyst can be expensive. Lower H ₂ yield compared to SR. Limited commercial experience. Large size reformers
РО	High energy efficiency. Relatively low operating temperature. Can be combined with other reforming methods. Feedstock desulfurization not required. With use of O ₂ absence of NO _x formation.	May completely oxidize methane to CO ₂ and H ₂ O. Limited industrial application. Lower H ₂ yield compared to SR. Soot formation/handling adds process complexity. Low H ₂ /CO ratio. Very high operating temperate. Highly exothermic reaction leading to catalyst deactivation by formation of hot spots. Danger of explosion. Requires air or oxygen. Lower H ₂ yield compared to SR. In case of use of O ₂ expensive air

from [9, 147,148].