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Abstract. Computationally expensive simulations play an increasing
role in engineering design, but their use in multi-objective optimization
is heavily resource constrained. Specialist optimizers, such as ParEGO,
exist for this setting, but little knowledge is available to guide their con-
figuration. This paper uses a new implementation of ParEGO to exam-
ine three hypotheses relating to a key configuration parameter: choice of
scalarising norm. Two hypotheses consider the theoretical trade-off be-
tween convergence speed and ability to capture an arbitrary Pareto front
geometry. Experiments confirm these hypotheses in the bi-objective set-
ting but the trade-off is largely unseen in many-objective settings. A third
hypothesis considers the ability of dynamic norm scheduling schemes to
overcome the trade-off. Experiments using a simple scheme offer partial
support to the hypothesis in the bi-objective setting but no support in
many-objective contexts. Norm scheduling is tentatively recommended
for bi-objective problems for which the Pareto front geometry is concave
or unknown.

Keywords: Expensive optimization, surrogate-based optimization, per-
formance evaluation.

1 Introduction

1.1 Motivation

The use of modelling and simulation plays an increasingly important role in the
evaluation of designs for complex engineered products. However these simula-
tions can often require run-times of hours or days, even using high-performance
computing resources. In this setting, perhaps only a few hundred candidate de-
signs can be explored using high-fidelity models. Traditional multi-objective op-
timizers are unsuitable in this environment due to the typically large number
(thousands) of solution evaluations that they require to achieve approximate
convergence. This has led to the development of specialist algorithms, such as
the Pareto Efficient Global Optimization (ParEGO) algorithm [11] that are able
to achieve successful results on a smaller budget of function evaluations. Despite
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the popularity of ParEGO and related optimizers, there is little understanding
of how these, usually quite complex, algorithms can be configured to ensure
an effective optimization process. The present study focuses on one aspect of a
ParEGO configuration – the choice of scalarising norm – and considers the effect
of this component on both the speed and quality of optimizer convergence.

1.2 Related works

In recent years, the use of surrogate modelling to replace expensive function
evaluations has become more widespread and has enabled efficient application
of multi-objective optimization to real-world problems [7]. This review focuses
on optimizers that are related to ParEGO, in that they use Kriging (or one of
its variants) to build the surrogate model. For a review of wider methods refer
to [16]. ParEGO uses Latin Hypercube Sampling (LHS) [15] to initialise a set of
designs; it scalarises the vector objective function and builds a single surrogate
(known as a DACE model); the model is searched for a design that maximises
the single objective of Expected Improvement (EI); this solution is evaluated and
the process then iterates; the algorithm stops when the budget of high fidelity
evaluations is exhausted. MOEA/D-EGO [21] uses LHS for initialisation, but fits
a DACE model to each objective; then, instead of generating a single solution, it
creates a batch of solutions by multi-objective maximisation of EI according to a
set of scalarised functions using different weighting vectors. Multi-EGO [9] uses
LHS for its initialisation, builds DACE models for each objective function and
then, instead of using scalarisation, uses the vector EI of the objective functions.
Voutchkov & Keane’s algorithm [18], uses Sobol sampling for initialisation and
works directly with the estimates of objective values (rather than EI). MSPOT
[20] is similar but uses LHS for initialisation and selects only one solution at a
time using hypervolume contribution as a metric. SMS-EGO [14] creates a model
for each objective then instead of using EI, the algorithm uses lower confidence
bounds to identify a decision vector which optimises the expected hypervolume
indicator. ǫ-EGO [19] is very similar to SMS-EGO except that instead of using
the hypervolume indicator, it uses the additive ǫ-indicator. ParEGO has also
been extended to use a double Kriging strategy and a modified EI criterion
which jointly accounts for the objective function approximation error and the
probability of finding Pareto optimal solutions [2].

Despite the set of variants available, until very recently [7] there had been
few attempts to compare the performance of the algorithms. In particular, there
has been little attempt to analyse and understand how the different mechanisms
within these complex algorithms affect performance in the context of a given
problem landscape. A notable exception is the work of Cristescu & Knowles [1],
which assesses strategies for selecting solutions to use in updating the DACE
model in ParEGO. Our paper aims to make a further contribution in this direc-
tion, with a focus on scalarising norms.

The paper is organised as follows. In Section 2, the original ParEGO algo-
rithm is described in more detail, together with our new implementation. In
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Section 3, we set out the hypotheses relating to scalarisation that will be ex-
amined in the study and define the experiments that will be performed to test
these hypotheses. Results for static and dynamic choices of scalarising norms are
presented in Section 4 and Section 5 respectively. Section 6 concludes the paper.

2 ParEGO implementation

2.1 Knowles’ ParEGO

In this section, we elaborate a little further on ParEGO – for full details refer to
[11]. The algorithm is an extension to Jones et al.’s EGO algorithm [10] which
deals with single-objective problems of a similarly expensive nature. ParEGO is
a decomposition-based multi-objective solver, meaning the multi-objective prob-
lem is decomposed into a set of single-objective problems using weight vectors
and scalarising functions; the augmented Tchebycheff function being used in
the original paper. ParEGO begins by creating an initial population of 11k − 1
candidate solutions using LHS, then evaluates and normalises the k number of
objectives. At each iteration of the algorithm, a direction vector is randomly
generated from a set of weight vectors generated according to Simplex Lattice
Design [15]. The number of directions |D| is defined according to

(

s+k−1

k−1

)

, where
s is the configurable parameter. ParEGO employs the weighted scalarisation
function to re-value all previously visited solutions and uses all or part of these
solutions to estimate a DACE model according to maximum likelihood. To find a
new solution, ParEGO uses a simple genetic algorithm to maximise EI. The new
solution is evaluated and the procedure continues until the evaluation budget is
expended.

2.2 A new ParEGO implementation

In the current work, ParEGO is treated as a framework rather than a specific
algorithm. The implementation of ParEGO differs slightly from the original in
ways outlined below. The implementation has been undertaken in Tigon, which is
an open-source C++ library that has been developed to support the Liger open-
source optimization workflow software [6]. In Tigon, an optimization algorithm is
assembled from a set of components according to the Decorator design pattern.
Figure 1 depicts a workflow diagram for the new implementation of ParEGO.

This implementation of ParEGO begins by defining an optimization prob-
lem. Next, an initial population is created using LHS and is evaluated on the
high-fidelity evaluation functions. Next, the Direction Iterator creates a set of
weight vectors according to generalised decomposition [5] and randomly chooses
from amongst them. Subsequently, the Scalarization operator applies the weights

to the Lp-norm scalarization function (
∑k

i=1
ωi|fi(x) − z∗i |

p)
1

p , where wi is the
weight of the ith objective, fi(x) is the evaluation of a solution x on the ith
objective, z⋆i relates to the ideal point, and p is the order of the scalarisation
norm. Next the Direction/Fitness Filtration operator sorts the solutions accord-
ing to their scalarised fitness and direction. In the Surrogate Based Optimizer the



4 Aghamohammadi et al.

Latin Hypercube 

Initialization
Evaluator Direction Iterator

Scalarization

Problem 

Formulation

Direction / Fitness 

Filtration

Surrogate Based 

Optimizer

Budget 

Expended?

N
o

End

Yes

EGO 

Formulation

Fitness-based 

Initialization

Single 

Objective 

Optimizer

Archive NonͲ
Dominated 

Solutions

Add Candidate 

Solution

Fig. 1. Implemented framework for ParEGO

DACE model is constructed and searched over using the efficient single-objective
optimizer ACROMUSE [12], which is the default evolutionary optimizer imple-
mented in Tigon. A new solution is identified, evaluated, and the optimizer iter-
ates until the evaluation budget is expended. All solutions are archived off-line
as the search progresses, with the archive filtered for non-dominated solutions.

3 Experiments with scalarising norms

We employ a formal hypothesis testing framework to explore the effect of differ-
ent scalarising norm choices on the performance of ParEGO.

3.1 Hypotheses

1. To obtain good coverage of the Pareto front, the scalarising norm must be of
a higher-order than the shape of the front (see [13] for the geometric analysis
relating scalarisation functions to Pareto dominance relations).

2. In the case where two different scalarising norms are of sufficient order to
capture the front, the lower-order norm will converge faster than the higher-
order norm (see [5] for underpinning argumentation and experiments).

3. By increasing the order of the norm dynamically during an optimization
run, enhanced convergence can be achieved for problems where higher-order
norms are needed to capture the shape of the front.

3.2 Test problems and performance indicators

In order to test the hypotheses we use two test functions: a scalable concave test
function – DTLZ2 [3] – and a scalable convex version that replaces the shape
of DTLZ2 with the convex shape from the WFG test suite [8]. We refer to this
latter problem as DTLZ2CX. To assess the quality of the solution obtained,
two performance metrics have been used: hypervolume (HV) [4] and inverse
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generational distance (IGD) [17]. The hypervolume reference point is defined
as the anti-ideal. Raw hypervolume values are normalised with respect to the
hypervolume of the global Pareto front. Metrics are applied to the off-line archive.

3.3 Experimental set-up

To implement the hypothesis tests, we consider a set of experiments that are
repeated for optimizers using a range of static and dynamic scalarising norms.

Static norm experiments: These tests try to validate or reject hypotheses
1 and 2. The experiment has 6 categories of tests (outlined in Table 1) and in
each of those tests three norms of p ∈ {1, 2,∞} are tested with the same initial
population on convex and concave versions of DTLZ2. The budget for evalua-
tion for these tests, including the initial population defined using LHS, is the
following: 1400 evaluations for two-objective tests (CAT1-2), 1800 evaluations
for four-objective tests (CAT3-4) and 2000 evaluations for seven-objective tests
(CAT5-6). These budgets are larger than allowable for some industrial problems
but enable long-run convergence to be observed. The expected outcome for the
convex problem is that all norms can capture the Pareto front given a sufficiently
high budget, with the lower-order norms achieving this result more quickly with
norm p = 1 expected to be fastest. As for the concave tests, norm p = ∞ will
capture the Pareto front, norm p = 2 will partly capture the Pareto front and
norm p = 1 will only capture the extremes of the front.

Dynamic norm experiments: These tests implement ParEGO with a pre-
defined schedule of changing norms in order to confirm or reject hypothesis 3.
Again six test categories were created with the parameters following the same
setup as in Table 1; however budget size and implementation of norms in these
experiments is different. For a given budget of 500 evaluations, which excludes
the initial population size, the budget is divided into four quarters: the first
quarter begins with the p = 1 norm, at the beginning of the second quarter the
norm is switched to p = 2, at the beginning of the third quarter norm p = 50
comes into effect, and at the beginning of the fourth quarter the Tchebycheff
norm (p = ∞) is operating. The expected outcome for concave geometries is for
the norm scheduled version to outperform all static cases. For convex geometries,
performance is expected to be better than static p = ∞ but worse than p = 1.

Both types of experiment are repeated for k ∈ {2, 4, 7}. In all tests, the
number of decision variables that comprise the distance function ‘g’ in DTLZ2
and DTLZ2CX is fixed at 5, so that the total number of decision variables is
d = k + 4. The number of weight vectors is determined by s = 3. The initial
population size for LHS follows the original guidelines set by Knowles of 11d− 1
and the maximum number of solutions chosen to estimate the DACE model is
80 (again, following Knowles). All experiments were replicated 11 times.

4 Results — static norms

In this section, results are presented for the static norm experiments. The median
HV is identified at evaluations i = 500 and i = 1000, with convergence trajecto-
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Table 1. Experimental configuration for 6 categories of test

Test
category

Decision
vector size

Objective
vector size

Number of
directions

Initial
population

size

DACE
surrogate

size

Pareto
front

geometry
CAT1 6 2 10 65 80 Concave

CAT2 6 2 10 65 80 Convex

CAT3 8 4 20 87 80 Concave

CAT4 8 4 20 87 80 Convex

CAT5 11 7 84 120 80 Concave

CAT6 11 7 84 120 80 Convex

ries shown for i = [1, 500] and i = [501, 1000] to indicate trends on alternative
budgets. Box plots for IGD metrics summarising performance across the 11 runs
are shown for i = 500 and i = 1000. Scatterplots and parallel coordinates plots
are also included as needed to support understanding of the results.

2-objective instances: Results for the concave CAT1 test are shown in
Figure 2. p = ∞ outperforms p = 1 and p = 2 in terms of both median HV
and the IGD distribution. Scatterplots of median HV runs (Figure 3) show that
p = 1 has found good quality solutions only at the edges of the global front
(the latter is indicated by the dashed line in the plots). For the convex CAT2
tests, p = 1 and p = 2 show more rapid convergence than p = ∞ for the median
run, although the IGD results are inconclusive (see Figure 4) . Scatterplots for
median runs (not shown) all indicate good convergence to the global front.
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Fig. 2. HV convergence profiles and IGD box plots for static CAT1 tests
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Fig. 3. Scatterplots relating to median HV runs for static CAT1 tests

4-objective instances: As shown in Figure 5, for the 4-objective concave
CAT3 test, p = ∞ does not exhibit the clear outperformance seen previously
for k = 2. This appears to be as a result of slower convergence, but this result
is curiously not replicated on the convex CAT4 (see Figure 6), where p = ∞
exhibits similar convergence to p = 1 and p = 2.

7-objective instances: The situation for the 7-objective concave CAT5 test
is similar to the finding for k = 4 and is not shown. For the convex CAT6 case
(shown in Figure 7), the median run for p = 1 suffers slow convergence but the
IGD results indicate substantial inter-run variability. Parallel coordinates plots
corresponding to the median HV results (see Figure 8) suggest that all norms
are struggling to converge to the global front.

The 2-objective results offer support for hypotheses 1 and 2 – with p = ∞
offering better coverage of concave fronts, but with a convergence speed penalty
compared to p = 1 and p = 2 for convex fronts. The 4-objective and 7-objective
results, by contrast, offer less support to these hypotheses, with all norms suf-
fering convergence issues within the available limited budget.

5 Results – dynamic norms

Many different possibilities exist for applying dynamic norms within ParEGO.
Here, for simplicity, after initialisation the remaining budget is divided into quar-
ters and the norm is increased over the course of the optimization process. p = 1,
p = 2, p = 50, and p = ∞ are used in each successive quarter. Experiments are
run for a total budget of 500 evaluations (exclusive of the budget used for ini-
tialisation). The categories of tests remain the same as in the static experiments.
Convergence profiles relate to the run with the median HV at i = 500. Compar-
isons are made to the equivalent results for the p = 1 and p = ∞ norms.

2-objective instances: The results for the dynamic CAT1 test on the bi-
objective concave problem are shown in Figure 9. The ability of the dynamic
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Fig. 4. HV convergence profiles and IGD box plots for static CAT2 tests
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Fig. 6. HV convergence profiles and IGD box plots for static CAT4 tests
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Fig. 8. Parallel coordinates plots relating to median HV runs for static CAT6 tests

scheme to improve convergence over the p = 1 static scheme is clear, with tran-
sitions to HV values superior to the saturated p = 1 results as the order of
the norm is increased. The final result at the end of the optimization budget
is close to the p = ∞ performance. No convergence acceleration advantage is
seen during the early stages of the search, reflecting the result already seen for
the static CAT1 tests. For the bi-objective convex problem (see Figure 10), the
median HV results suggest some deterioration in convergence speed arising from
the progression to higher-order norms in the latter stages of the optimization
process; this finding is confirmed by the IGD results, suggesting that there is a
penalty in terms of convergence when the higher-order norm is unnecessary.

4-objective instances: The results for the 4-objective concave problem are
shown in Figure 11. The median HV result indicates that the dynamic scheme
has offered a speed-up over the static p = ∞ alternative, whilst retaining the
benefits of improved coverage of the front; however the IGD results suggest that
the performance benefits over p = ∞ are inconclusive when considering all 11
runs. In the static CAT4 tests (shown in Figure 12), whilst it is unsurprising
that the dynamic scheme is unable to outperform the p = 1 equivalent, the
deterioration in search speed shown for the median HV in the early stages of
the search is unexpected. This sits alongside the previous unexpected strong
performance of p = ∞ reported earlier.

7-objective instances: The parallel coordinates plots in Figure 8 have al-
ready indicated the problems encountered by the static schemes in converging to
the global front of the 7-objective CAT5 and CAT6 tests. In the concave CAT5
test, the median HV result shows surprisingly poor performance in the early
part of the search in comparison to both the p = 1 and p = ∞ cases; however
performance is similar across all three schemes by the end of the budget. Looking
across all 11 runs, the IGD results hint – again, surprisingly – that the dynamic
scheme might be faring worse than p = 1 on this concave problem. Results for
CAT6 are not shown, but follow a similar trend to the CAT5 findings.
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Fig. 9. HV convergence profiles and IGD box plots for dynamic CAT1 tests
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Fig. 10. HV convergence profiles and IGD box plots for dynamic CAT2 tests
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Fig. 11. HV convergence profiles and IGD box plots for dynamic CAT3 tests
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Fig. 12. HV convergence profiles and IGD box plots for dynamic CAT4 tests
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Fig. 13. HV convergence profiles and IGD box plots for dynamic CAT5 tests

The bi-objective experiments offer partial support to hypothesis 3. For the
concave geometry, the dynamic scheme showed little deterioration over using a
static p = ∞, but no speed-up was observed during the early stages of the search.
It is possible that this finding may be because DTLZ2 with only 5 variables in
the ‘g’ function is an easy problem to solve. Meanwhile, the dynamic result on
the convex problem supported hypothesis 3, offering improved performance over
p = ∞. The 4-objective experiment on the concave problem is similar to the bi-
objective result (offering partial support to hypothesis 3), but the result in the
convex case is confounded by the curious, rapid convergence of the static p = ∞
norm. The 7-objective experiments offer no support to hypothesis 3, with some
evidence that the dynamic approach is actually harmful to convergence.

6 Conclusion

The paper has investigated two hypotheses that arise from the theory of decom-
position based, multi-objective optimization: (1) that the chosen scalarization
norm must be of a large enough order to capture the geometry of the front;
(2) that higher-order norms converge more slowly than their lower-order equiv-
alents. These issues are particularly important when the evaluation budget for
the optimization process is heavily constrained, and so we focused our inquiry
on a class of surrogate-based methods for expensive optimization represented
by the seminal ParEGO algorithm. Our practical experiments with a new im-
plementation of ParEGO suggest that, for optimization on a limited budget,
these hypotheses hold for bi-objective problems but are not supported in many-
objective situations. The third hypothesis we considered involved the potential
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for dynamic adjustment of the norm (from lower-order earlier in the search to
higher-order later in the search) to overcome the trade-off implied by hypotheses
1 and 2 for problems with concave geometries. Our experiments showed that,
for bi-objective concave problems, the dynamic norm was a more favourable
choice than p = 1 but did not offer accelerated convergence over p = ∞ and, as
such, did not represent a ‘dominating’ option. This favourability was retained in
the 4-objective case, but had disappeared in the 7-objective case. Overall, the
findings suggest that ParEGO (at least in the new implementation) may not be
performing well for many-objective problems.

6.1 Limitations and future work

This project was limited by the resource constraints imposed on a 3-month post-
graduate project. In a number of cases, convergence trajectories were slow but
had not completely saturated within the number of evaluations available and
it would have been useful to further understand these convergence trends. The
number of replications was limited to 11, which is less than is desirable for robust
statistical analysis. Specifically here, it would be interesting to further examine
the apparent deterioration of the dynamic scheme in the 7-objective cases. We
were also limited in the number of test problems for which we could investigate
performance – DTLZ2 and its convex hybrid captured the Pareto front geome-
tries of interest to our hypotheses, but it would have been potentially insightful
to explore other (particularly, more challenging) problem formulations. In par-
ticular, it would be interesting to consider mixed convex-concave surfaces and
asymmetrical problems. The dynamic norm scheme we implemented was quite
crude and should be seen as a basis for further exploration. Such further work
could involve both sensitivity analysis for schemes with a priori norm scheduling,
but also consider adaptive schemes based around on-line convergence metrics.
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