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Abstract 

The morphology and polymorphism of mannitol particles were controlled during spray drying with 

the aim of improving the aerosolization properties of inhalable dry powders. The obtained 

microparticles were characterized using scanning electron microscopy, infrared spectroscopy, 

differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation 

impactor. Mannitol particles of varied Į-mannitol content and surface roughness were prepared via 

spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles 

produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the 

fine particle fraction was increased by the rough surface of carriers and the high Į-mannitol content. 

Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% 

mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective 

method to engineer particles for dry powder inhalation.  

Keywords: A1. Morphology; A1. Polymorphism; A1. Heat transfer; A1. High resolution X-ray 

diffraction; A2. Spray drying; B1: Mannitol 
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1. Introduction 

Inhalable medications are considered an effective therapy for the local treatment of diseases of the 

respiratory system such as asthma [1, 2]. In the preparation of inhalable medications, small particles of 

active pharmaceutical ingredients (API) are mixed with large carrier particles [3]. In order to 

aerosolize the drug particles, the properties of both the carriers and the API particles are of great 

importance since the drug–carrier adhesive forces need to be overcome by the patient’s inspiratory 

force [4]. Studies have reported on the impact of particle mean size [5], particle size distribution [6], 

morphology [7, 8], crystal form [9], surface roughness [10] and surface energy [11] on the 

performance of inhalable dry powders. Indeed, the particle size, size distribution, morphology and 

polymorphism of carriers have been found to exert a major impact on the efficiency of dry powder 

inhalation (DPI) [12, 13], although results have not been consistent. For instance, Podczeck [14] found 

that small particles improved aerosol performance, while Kaialy et al. [5] observed that large particles 

had such an effect. Further, Maas et al. [15] and Kaialy et al. [16] found that smooth carriers provided 

a higher fine particle fraction (FPF) than rough carriers, while Littringer et al. [17] showed that rough 

surface carriers improved the FPF. Such inconsistencies may be attributed to the independent 

examination of individual properties rather than within the complete system. Nevertheless, the above 

mentioned studies emphasize the importance of drug carriers engineering in enhancing aerosol 

performance in DPI [18–20]. 

Mannitol has been chosen as the model excipient for this study in order to assess the combined control 

morphology and polymorphism of the carriers. Three crystal forms, Į-, ȕ- and į-mannitol, have been 

approved as carriers of DPI. In addition, mannitol was found crystalline after spray drying [7]. 

However, little research has been performed on mannitol as a potential DPI drug delivery carrier [21].  
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The polymorphism of materials is influenced by the operating conditions, the solvent mixture [22] and 

the additives [23] during the spray-drying process. Previous studies have reported that addition of 

insulin [24] and lysozyme [25] resulted in various mannitol polymorphisms following spray drying. 

Rough surface mannitol particles were prepared using Luria broth agar as an additive in an 

ethanol-water solvent [26]. Nevertheless, the toxicity following inhalation of these additives has not 

been adequately studied. Ideally, no residual additive should be present in the final mannitol product. 

NH4HCO3 has been previously examined as an additive for spray drying [27], and was found to 

decompose into H2OĹ, CO2Ĺ, and NH3Ĺ at temperatures above 50Ԩ, leaving no additive residue after 

spray drying. Further, NH4HCO3 was seen to affect the morphology of drug particles during the 

spray-drying process [28]. 

Herein, control of both morphology and polymorphism was assessed in order to improve the aerosol 

properties of engineered particles and their DPI performance. Engineered mannitol particles were used 

as DPI carriers mixed with API budesonide. The effect of gas bubbles on particle morphology during 

droplet drying was studied using hot stage microscopy. Additionally, the influence of NH4HCO3 

concentration was investigated.  

2. Materials and methods 

2.1 Materials 

Columnar ȕ-mannitol crystalline (≥99.0% HPLC) and NH4HCO3 were provided by Aladdin (Shanghai, 

China). Absolute ethanol was obtained from Nanjing Chemical Reagent Co., LTD, China. Micronized 

budesonide (YIXING, CHINA, D10 = 1.10 ± 0.01 m, D50 = 1.98 ± 0.04 m and D90 = 4.59 ± 0.27 m) 

was used as a model API for the adhesive mixtures. 

2.2 Spray drying 
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All particles were produced with a Buchi B-290 Mini spray dryer and inert loop B-295 organic 

solvents accessory. A 1.5-mm diameter nozzle screw cap and a 0.7-mm nozzle tip were used. When 

the organic solution was handled, the Buchi B-290 and B-295 were operated in closed mode. Nitrogen 

was used as the drying gas, heated to just below 200°C before being fed to the drying chamber. After 

the drying chamber, the nitrogen containing solvent vapours enters the condenser, where the solvent is 

condensed, while the cooled nitrogen is purged and is reheated again and fed to the drying camber to 

be used. 

In all cases, a solution of 5% (w/v) mannitol in 25%:75% v/v ethanol:water was used. NH4HCO3 was 

then added and fully dissolved in the 5% (w/v) mannitol solution, before spray drying. The 

spray-drying process conditions were an air flow rate of 473 L/h, an aspirator rate of 100%, a mannitol 

solution feeding rate of 1.2 L/h, and an inlet temperature of 100Ԩ. The spray-dried powders were 

collected in the hermetic bag and placed in glass desiccators at room temperature until further analysis. 

Formulations containing 0%, 1.67% and 2.00% of NH4HCO3, designated as samples A, B and C, 

respectively, were prepared by spray drying. 

2.3 Particle size, powder density, Carr index, Hausner ratio and theoretical aerodynamic 

diameter 

A Mastersizer 3000 equipped with a vacuum unit (Malvern, UK) was used to measure the particle size 

distribution of the engineered powders. The air pressure of the unit was set to 0.8 bars.  

Bulk and tapped densities were tested according to the Chinese Standard Test Methods for Powder 

Characterization (GB/T 16913-2008) and for Powders Tap Density (GB/T21354-2008). Before bulk 

density was measured, the particles were placed in a drying oven for 8 hours at a constant temperature 

of 55Ԩ, and were then filtered with an 80-mesh sieve. A 25 ml measuring cylinder (readable to 0.2 ml) 
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loaded with 5.0g of the powder was tapped 2400 times; 2400 taps were sufficient to reach the 

maximum diminution in the particle bed volume. The value read from the measuring cylinder after 

tapping (tapped volume) was used to estimate the tapped densities. Each measurement was repeated 

three times, with the average value being reported. 

The Carr index (CI) and Hausner ratio (H) are often used in the characterization of the flowability of 

particles; lower CI and H values imply better flowability [29, 30]. CI and H can be calculated from tap 

and bulk densities, ȡtap and ȡbulk, using equations (1) and (2):   ൌ ஡೟ೌ೛ି஡್ೠ೗ೖ஡೟ೌ೛ ൈ ͳͲͲΨ       (1) 

 ൌ ஡೟ೌ೛஡್ೠ೗ೖ       (2) 

The theoretical primary aerodynamic diameter of the particles (Dae) is estimated from the average 

particle size (D50) and tapped density data (ȡtap) using [31, 32]: 

௔௘ܦ ൌ ହ଴ටఘ೟ೌ೛ఘభܦ         (3) 

where ȡ1 = 1 g/cm3 

2.4 Particle surface investigations 

The gold-palladium-coated powder samples were analysed by scanning electron microscopy (SEM) 

(Merlin, Zeiss, Germany). 

2.5 Hot stage microscopy  

The impact of gas bubbles on the particle surface roughness and morphology was investigated using a 

hot stage microscope. This was partly inspired by the work of Maas et al. [33], in which a hot stage 

was used to observe crystal growth behaviour within a liquid droplet. The hot stage used herein 

consisted of an Olympus BX53 microscope (Olympus, Japan) and a Linkam LNP95 hot stage reactor 

(Linkam, UK). A hydrophobic glass [34, 35] (no cover slip) was placed on the preheated (85Ԩ) hot 
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stage; after a few minutes, small droplets (2.6 mm in diameter) were prepared using a microliter 

syringe from the 5% (w/v) mannitol solution (samples A, B and C) and placed on the glass (one at a 

time). The drying and crystallization processes were directly observed using the Olympus BX53 

microscope with a CCD camera. Image-pro plus software was used for image analysis. 

2.6 Powder X-ray diffraction (XRD)  

A D8 Advance X-ray diffractometer (Bruker Corporation, Germany) was used for the assessment of 

the polymorphic forms of the commercial mannitol and all engineered powders. The samples were 

collected on a stainless steel holder. The surface of the powders was flattened manually for analysis. 

Each sample was scanned from 5° to 40° of 2ș, with a step size of 0.01° per second. 

2.7 Detection of residual of additives 

Infrared spectroscopy (ReactIRTM15, Mettler-Toledo, Switzerland) was used to detect the existence of 

NH4HCO3 in the spray-dried mannitol particles. 

2.8 Homogeneity testing 

Budesonide was mixed with the carrier at a carrier to drug weight ratio of 99:1 using a whirlpool 

mixer for 15 min. Each powder sample (20 ± 5 mg) was placed in the capsules (size 3) to yield a 

nominal dose of 200 ± 10 ȝg budesonide per capsule (content uniformity of formulations was 

evaluated). Homogeneity testing was performed to assess the homogenous content of budesonide 

through analysis of three random samples (20 ± 5 mg powder, 200 ± 10 ȝg budesonide per capsule). 

The powder was dissolved in 25 mL of an ethanol:water mixture (25%:75% v/v) and was assayed by 

ultraviolet (UV) spectrophotometry (UV mini-1240, Shimadzu, Japan) at 247 nm [26]. 

2.9 In vitro aerosolization and deposition properties 

The deposition and in vitro aerosolization properties were measured using a Next Generation Impactor 
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(NGI, Copley Scientific, USA). In each test, the air flow rate was adjusted to 60 L/min. In each 

experiment, ten capsules (20 ± 5 mg powder, 200 ± 10 ȝg budesonide) were individually installed in a 

Cyclohaler® device. A 25%:75% v/v ethanol:water solution was used as the collection fluid at the 

impinger stages. Each section was rinsed with the collection solvent and the exact amount of the drug 

in solutions was then assayed by UV spectrophotometry at 247 nm.  

The recovered dose was the total amount of the drug recovered from the capsule, the inhaler device, 

the pre-separator, the induction port and all stages of the impactor. The amount of budesonide 

deposited in stages S2, S3, S4, S5, S6, S7 and Moc of the impinger was considered as the fine particle 

dose. The FPF was determined as the ratio of fine particle dose to recovered dose [22]. 

2.10 Differential scanning calorimetry (DSC) 

Thermal analysis was conducted with a differential scanning calorimeter (Diamond DSC, PerkinElmer, 

USA) using a 9-mg sample, at a heating rate of 10 K/min from 30Ԩ to 300Ԩ, under an argon 

atmosphere (50 mL/min). 

2.11 Wetting angle of the droplets 

Small droplets were prepared under the same condition with the hot stage microscopy experiment and 

were placed on the hydrophobic glass. The wetting angle of the droplets was measured using a 

Dataphysics (OCA40 Micro, DataPhysics, Germany). 

3. Results and discussion 

3.1 Microparticle properties and process parameters 

The average particle size, the aerodynamic diameter, the tap and bulk density, CI, H and FPF of 

spray-dried mannitol particles are listed in Table 1. The average particle sizes for samples A, B and C 

ranged from 9.58 ȝm to 12.4 ȝm. Engineered mannitol particles had a significantly lower average 
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particle size and tap and bulk density compared to commercial mannitol. The tap and bulk densities 

increased with increasing concentration of NH4HCO3. Further, the measured values of CI (>40%) and 

H (>1.6) indicate an extremely poor flow ability [17, 36]; however, commercial mannitol and 

spray-dried mannitol had similarly poor flow properties. The measured outlet temperature was 65Ԩ, 

and did not change with the concentration of NH4HCO3 in the feed solution.  

3.2 Testing the NH4HCO3 in spray-dried mannitol 

The IR spectra of commercial mannitol showed peaks at 1025.82, 1081.21, 1421.13 and 1637.96 cm–1 

(Fig. 1). NH4HCO3 has a characteristic peak at 1700 cm–1 indicating the presence of C=O bond. 

Interestingly, samples A, B and C (Fig. 1) showed the characteristic peaks of mannitol and no peak at 

1700 cm–1, indicating that NH4HCO3 was completely decomposed during spray drying and therefore 

was not present in the final products. 

3.3 Drug content homogeneity 

The drug content and the coefficient of variation for each capsule are provided in Table 2. Since the 

coefficient of variation for all four capsules was less than 8%, it was assumed that the blends were 

uniform [37–39]. 

3.4 Morphology 

SEM images show the mannitol crystals on the surface of the engineered mannitol microparticles (Fig. 

2I). Using ImageJ software, a rectangular area (3.7×5.1 ȝm) on the centre of each particle was 

transformed into 2D and 3D surface plots for samples A, B and C (Fig. 2盹 and 眀, respectively). 

Sample A mannitol microparticles were observed to have a relatively smooth surface (as depicted by 

the green area in the 2D and 3D plots) with deposited fine needle crystals and small particles (Fig. 2a). 

On the other hand, sample B microparticles had an irregular surface, as denoted by the blue area in the 
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2D and 3D plots (Fig. 2b). Finally, sample C microparticles had an irregular structure and rough 

surface due to the formation of large crystals (Fig. 2c), as observed by the increased blue area 

coverage in the 2D and 3D plots compared to the previous two samples. Therefore, the concentration 

of NH4HCO3 in the mannitol solution had a significant influence on the morphology of spray-dried 

mannitol particles. This phenomenon is different from what was reported by Ali et al. [28]. Ali et al. 

did not observe morphological changes with increasing NH4HCO3
 concentration. The reason that the 

findings here differ from Ali et al. is probably due to the difference in operational conditions between 

our work and that of Ali et al. in terms of inlet temperature and concentration. In the work of Ali et al., 

the temperature of the inlet gas was from 110ć to 170ć, and the concentrations of mannitol and 

NH4HCO3. were from 10% to 70% and 5% to 20% respectively. It is known that the inlet 

temperature of the drying gas was related to the decomposition rate of NH4HCO3, and increased 

concentration of the feed solution could lead to increased solid content of spray dried particles. 

NH4HCO3, which decomposes into gas bubbles during the drying process, was used as a pore former 

to change the particle morphology. The morphology of particles can be strongly influenced by the 

formation of bubbles in relation to the initial nucleation within the droplets [40]. Various methods to 

investigate single droplet drying mechanisms have been reported, such as using a glass filament [41], 

hydrophobic surfaces [34], acoustic levitation [42–44], aerodynamic levitation [45] and leidenfrost 

drop forms [20, 46, 47]. Herein, hot stage microscopy was employed, wherein a hydrophobic surface 

was created to investigate the impact of gas bubbles on the morphology of the spray-dried particles. In 

the drying process for samples A, B and C can be observed in Fig. 3a, b and c, respectively. The 

droplet diameter decreased for several seconds until recrystallization commenced. Bubbles appeared 

in the droplets of samples B and C at 37 and 35 seconds, respectively (Fig. 3b and c), inflating and 



  

11 

 

rupturing quickly. The number of mannitol crystals formed increased rapidly following bubble 

formation. On the other hand, the sample A droplet shrunk quickly due to the fast solvent evaporation 

but remained liquid and did not recrystallize. Crystals emerged after 45 seconds (Fig. 3a), and grew 

fast. At the same time, the droplets for samples B (Fig. 3b) and C (Fig. 3c) were covered by mannitol 

crystals. It is worth noting that the solute may not instantly crystallize while the saturation is satisfied 

at the surface of the droplet. Interestingly, the rate of nucleation and crystal growth determine the time 

to crystallization in the solution [48]. Indeed, gas bubbles can have a positive effect on crystallization, 

as commented by Nakamura [49], Matsumoto [50] and Deora [51]. During bubble formation and 

rupture, several processes may trigger crystallization. For instance, the inflation and rupture of the 

cavitation bubbles may cause transient pressure due to dramatic changes in the pressure, possibly 

leading to improved crystallization [52]. It is speculated that a similar cavitation phenomenon during 

hot stage microscopy might occur during spray-drying, but this cannot be validated at present since it 

is hard to observe experimentally during the spray drying process. However, the morphology and size 

of mannitol crystals within the particle are difficult to observe through the microscope since the 

wetting angle of droplets (A, B and C) on hydrophobic glass slide are in the range of 93° to 98° and 

the mannitol crystals overlap to compose the particle. Hence, the relationship between the morphology 

of mannitol crystals and the roughness of the mannitol particles is not yet clear. On the other hand, the 

particles appear irregular spheroidal since internal bubbles escape violently from the film of droplets 

[40, 53]. With the increase in NH4HCO3 concentration, a large number of minute bubbles were 

observed to break through the droplet film or particle shell. Furthermore, too many bubbles led to 

unstable droplets that easily broke and coalesced. At NH4HCO3 concentrations above 2.0%, the 

particles had an extremely irregular shape and were agglomerated. 
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3.5 Investigation on polymorphism 

The DSC curves of all samples as well as commercial mannitol (Fig. 4) revealed a single melting peak 

at 168.9 ± 1Ԩ, indicating the presence of either Į-mannitol or ȕ-mannitol [36]; no melting events 

appeared in the DSC curve at approximately 155Ԩ (the melting point of į-mannitol). Therefore, the 

presence of į-mannitol was excluded. The XRD pattern of commercial mannitol corresponded to 

ȕ-mannitol, but all three spray-dried samples were a mixture of Į- and ȕ-mannitol. The peaks at 9.4°, 

13.8° and 17.4° of 2ș indicated the presence of Į-mannitol, while the peaks at 10.6°, 14.7° and 16.8° 

of 2ș indicated the presence of ȕ-mannitol [26]. With regards to the height of peaks at 13.8° (Į) and 

14.7° (ȕ) (Fig. 5), the peak intensity of sample A was greater at 14.7° (ȕ) compared to C, but lower at 

13.8° (Į) compared to C; a similar pattern was observed for peaks at 16.8° (ȕ) and 17.4° (Į). Therefore, 

the proportion of Į-mannitol increased with increasing NH4HCO3 concentration. Quantitative analysis 

of the XRD data [54, 55] was applied to calculate the content of Į-mannitol. The Į-mannitol content 

in samples A, B and C was 4.76%, 44.55% and 59.86%, respectively (Fig. 6). Therefore, spray-dried 

mannitol was composed of a mixture of Į-mannitol and ȕ-mannitol, in agreement with previous 

findings [28, 33]. Interestingly, variations in the concentration of NH4HCO3, as well as changes in the 

outlet temperature [28] and the concentration of the mannitol solution [33], leads to control of the Į- 

and ȕ-mannitol ratio. Moreover, the use of ethanol also favoured the formation of Į-mannitol, since an 

ethanol-water system has a higher drying rate compared to pure water under the same drying 

conditions [9, 56].   

3.6 In vitro deposition properties 

As shown in Table 1, all engineered microparticles provided a sharply higher FPF for inhalable dry 

powders than commercial mannitol, likely due to changes in the properties of commercial mannitol, 
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such as density and aerodynamic diameter, following spray drying. Furthermore, the FPF increased 

with increasing concentration of NH4HCO3 in the feed solution; sample C had the highest FPF (29.1 ± 

2.4%) among the four samples. It is likely that both the rough surface and the high percentage of 

Į-mannitol contributed to this high FPF. Previous studies reported that rough surfaced carriers had an 

enhanced DPI performance [10, 17, 57]. Additionally, Į-mannitol generates more cohesive and 

adhesive powders due to its high dispersive surface energy (74.9 mJm–2) compared to that of 

ȕ-mannitol (40.0 mJm–2) [48]. Tang et al. [58] concluded that high surface energies in powders lead to 

an improvement in the respirable fractions of the API. The FPF of inhalable dry powders is affected by 

many factors, including size, polymorphism and morphology, which together influence aerosol 

performance. The proposed synthesis method controls the morphology and the polymorph of mannitol 

particles by altering the concentration of NH4HCO3 in the feed solution during spray drying.  

4. Conclusion 

NH4HCO3 was found to form mannitol particles with rough surfaces and spheroid shape when used as 

an additive in the spray-drying process. Furthermore, gas bubbles formed by the decomposition of 

NH4HCO3 were found to have a positive effect on the crystallization of mannitol during the droplet 

drying process. The concentration of NH4HCO3 in the mannitol solution significantly affected the 

particle aerodynamic diameter, morphology and polymorphic properties. The proportion of Į-mannitol 

increased from 4.76% to 59.86% with increasing concentration of NH4HCO3. In addition, NH4HCO3 

was not detected in spray-dried mannitol particles, indicating its complete decomposition during the 

spray-drying process. Increasing the proportion of Į-mannitol, leading to high dispersion surface 

energy and rough surface particles contributed to increasing the FPF. The highest FPF of 29.1 ± 2.4% 
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was achieved using 5.00% w/v of mannitol and 2.00% w/v of NH4HCO3, which had the highest 

surface roughness and Į-mannitol fraction.  
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Tables and Figures 

Table 1  

Micromeritic properties of spray-dried mannitol* 

Sample 

 

D50 

(ȝm) 
Dae 

(ȝm) 
ȡtap 

(g/cm3) 

ȡbulk 

(g/cm3) 
H CI 

FPF 

(%) 

Tout 

(Ԩ) 

CM 109 86.7 0.63 0.33 1.9 0.5 7.5±0.4 - 

A 9.58 5.41 0.32 0.14 2.4 0.6 18.8±0.8 65 

B 10.5 6.4 0.37 0.16 2.3 0.6 20.1±1.1 65 

C 12.4 7.8 0.40 0.20 2.0 0.5 29.1±2.4 65 

*  CI – Carr index, defined by eq. (1); H - Hausner ratio, defined by eq. (2) and FPF – fine particle 

fraction 

*  CM – commercial mannitol 

Table 2 

Budesonide content and homogeneity of the blends*  

Blend Run1 (%) Run2 (%) Run3 (%) Average (%) CV (%) 

CM 0.99 1.00 0.99 0.99 0.93 

A 1.01 1.01 1.02 1.02 0.53 

B 1.02 1.03 1.05 1.03 1.21 

C 1.05 1.05 1.05 1.05 0.89 

*  CM – commercial mannitol; CV - coefficient of variation 
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Fig. 1. Infrared spectrum for spray dried mannitol with different concentration of NH4HCO3, 

commercial mannitol (CM), A-0%, B-1.67%, C-2.00%. 

 

Fig. 2. SEM micrographs of mannitol samples spray dried at different concentration of NH4HCO3, 

(a)A-0%, (b) B-1.67%,(c) C-2.00%; (盰) SEM, (盹) 2D plot, (眀) 3D plot. 

 

 

(ĉ)  

(Ċ)  

(ċ)  
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Fig. 3. The effect of bubbles on crystallization of mannitol during droplet drying, (a) A-0%, (b) 

B-1.67%, (c) C-2.00%. 

 

Fig. 4. DSC traces of mannitol samples commercial mannitol (CM), A-0%, B-1.67% and C-2.00%. 

Heating rate: 10K/min. one tick mark of the y-axis represents 22 mW. 

 



  

21 

 

Fig. 5. XRPD for spray dried mannitol with different concentration of NH4HCO3: commercial 

mannitol (CM), A-0%, B-1.67%, C-2.00%.  

 
Fig. 6. Proportion of Į-mannitol polymorphs in samples of commercial mannitol (CM), A-0%, 

B-1.67%, C-2.00%. 
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Highlights 

1. Mannitol particle morphology and polymorph are controlled by NH4HCO3 and mixture 

solvent. 

2. Surface roughness and polymorphism are determined by concentration of NH4HCO3. 

3. The rough surface and Į mannitol increased the fine particle fraction of inhalation dry 

powders. 

4. Bubbles improved the nucleation and growth of mannitol crystals. 

 


