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Lattice Boltzmann method is used to determine the hydrodynamic force 

Flow past a spherical particle in a wide range of Reynolds numbers 

Flow past a non-spherical particle in a wide range of Reynolds numbers 

Simulation results in good agreement with experimental data or empirical correlations 

 

  



Abstract 

Lattice Boltzmann method was used to predict the fluid-particle interaction for 

arbitrary shaped particles. In order to validate the reliability of the present approach, 

flow past a single stationary spherical, cylindrical or cubic particle is conducted in a 

wide range of Reynolds number (0.1̆Rep˘1000). Simulated results indicate that the 

drag coefficient is closely related to the particle shape, especially at the high Reynolds 

number. The resolution of spherical particle plays a key role in accurately predicting 

the drag coefficient at high Reynolds numbers. For the non-spherical particle, the drag 

coefficient is more influenced by the particle morphology at moderate or high 

Reynolds numbers than at low ones. Good agreements between the simulated drag 

coefficient values and the experimental date or empirical correlations are achieved for 

both the spherical and non-spherical particles. 
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1. Introduction 

The fluid-particle flow occurs widely in natural and industrial processes, such as 

dust and pollutant in air, sediment grains transport in rivers, gas/liquid-particle flows 

in chemical reactors and many others (Holzer and Sommerfeld, 2009; Ouchene et al., 

2015). The comprehensive knowledge about the drag force on a single particle is 

essential for understanding the complexly physics of fluid-particle flow. Numerous 

efforts have been focused on the fluid drag on a spherical particle to obtain an 

appropriate correlation (Fair and Geyer, 1954; Haider and Levenspiel, 1989; Yow et 

al, 2005). Most of the experimental drag coefficient values were obtained by particle 

settling experiments at low Reynolds number and by wind tunnel experiments at high 

Reynolds number (Holzer and Sommerfeld, 2009). Several correlations for the 

spherical particle have been proposed in the literature with different accuracy and 

range of applicability (Brown and Lawler, 2003). Based on a critical review of the 

published data, Clift et al. (1978) proposed a correlation consists of 6 polynomial 

equations with 18 fitted constants. This correlation shows better goodness of fit to the 

408 experimental data reported in the literature. Brown and Desmond (2003) 

reviewed the historical experimental efforts about the fluid dynamics drag on a 

spherical particle since the beginning of 20th century, and concluded that the 

correlation by Clift et al. (1978) is the best for drag coefficient for spheres, despite of 

the slight discontinuities at some transition points from one Reynolds number range to 

another. 

A noteworthy fact is that non-spherical particles rather than perfect spheres are 

generally involved in practical fluid-particle systems. Such shape diversity adds 

difficulties in estimating the fluid-particle interaction (Rong et al., 2015). For the 

non-spherical particles, Holzer and Sommerfeld (2008) plotted the experimental drag 



coefficients verse Reynolds numbers, for a number of different shapes including 

spheres, disks and plates, lengthwise spheroids and streamline bodies, isometric 

particles (e.g., cubes, tetrahedrons and octahedrons) and some irregular shaped 

particles. It was observed that the particle shape had a strong influence on the profile 

of drag coefficient. The correlations for spherical particle were not valid for the 

non-spherical particle since the drag coefficient was closely related to particle shape. 

Up to now, several drag correlations for non-spherical particles have been proposed 

from the experimental data (Haider and Levenspiel, 1989; Ganser, 1993; Holzer and 

Sommerfeld, 2008). Haider and Levenspiel (1989) proposed the first generalized 

correlation to associate the drag coefficient with the Reynolds number for spherical 

particle and non-spherical particle, the so-called sphericity was introduced to describe 

the effect of particle shape. Ganser (1993) assumed that each isolated particle 

experiences a Stokes’s regime where drag was proportional to velocity and a 

Newton’s regime where drag was proportional to the square of velocity, and then 

developed a correlation for both spherical and non-spherical particles containing the 

Stokes’ shape factor and the Newton’s shape factor. A simple correlation for the drag 

coefficient of an arbitrary shaped particle was established based on a large number of 

experimental data published in the literature (Holzer and Sommerfeld, 2008). The 

mean relative deviation between this correlation and 2061 experimental data for 

different shapes was 14.1%, which was much lower than that of 383% and 348% for 

correlations of Haider and Levenspiel (1989) and Ganser (1993), respectively. The 

commonly used correlations for spherical and non-spherical particles are list in 

Table1. 

 

Table 1 Drag correlation for single particle 



 Correlation 

Clift et al. (1978) 

ܥ ൌ ʹͶܴ݁  ͳ͵   ǡ ܴ݁ ൏ ͲǤͲͳ  ܥ ൌ ʹͶܴ݁ ൣͳ  ͲǤͳ͵ͳͷܴ݁ሺǤ଼ଶିǤହ௪ሻ൧   ǡ    ͲǤͲͳ  ܴ݁  ʹͲ ܥ ൌ ʹͶܴ݁ ሺͳ  ͲǤͻ͵ͷܴ݁Ǥଷହሻ   ǡ   ʹͲ  ܴ݁  ʹͲ lααଵ ܥ ൌ ͳǤͶ͵ͷ െ ͳǤͳʹͶʹݓ  ͲǤͳͷͷͺݓଶ   ǡ    ʹͲ  ܴ݁  ͳͷͲͲ lααଵ ܥ ൌ െʹǤͶͷͳ  ʹǤͷͷͷͺݓ െ ͲǤͻʹͻͷݓଶ  ͲǤͳͲͶͻݓଷ                       ͳͷͲͲ  ܴ݁  ͳʹͲͲͲ lααଵ ܥ ൌ െͳǤͻͳͺͳ  ͲǤ͵Ͳݓ െ ͲǤͲ͵ݓଶ     ǡ   ͳʹͲͲͲ  ܴ݁  ͶͶͲͲͲ  lααଵ ܥ ൌ െͶǤ͵͵ͻͲ  ͳǤͷͺͲͻݓ െ ͲǤͳͷͶݓଶ    ǡ    ͶͶͲͲͲ  ܴ݁  ͵͵ͺͲͲͲ w ൌ lααଵ ܴ݁, ߶ is the sphericity 

Haider and Levenspiel 

(1989) 

ܥ ൌ ʹͶܴ݁ ሾͳ  ሿܴ݁ܣ  ቂͳܥ  ோቃ A ൌ exβሺʹǤ͵ʹͺͺ െ ǤͶͷͺͳ߶  ʹǤͶͶͺ߶ଶሻ B ൌ ͲǤͲͻͶ  ͲǤͷͷͷ߶ C ൌ exβ ሺͶǤͻͲͷ െ ͳ͵ǤͺͻͶͶ߶  ͳͺǤͶʹʹʹ߶ଶ െ ͳͲǤʹͷͻͻ߶ଷሻ D ൌ exβ ሺͳǤͶͺͳ  ͳʹǤʹͷͺͶ߶ െ ʹͲǤ͵ʹʹ߶ଶ  ͳͷǤͺͺͷͷ߶ଷሻ ߶ is the sphericity 

Ganser 

(1993) 

ଶܭܥ ൌ ʹͶܴ݁ܭଵܭଶ ሾͳ  ͲǤͳͳͳͺሺܴ݁ܭଵܭଶሻǤହሿ  ͲǤͶ͵Ͳͷͳ  ଷଷହோభమ ܭଵ ൌ ቀଵଷ  ଶଷ ߶ሺିభమሻቁିଵ െ ʹǤʹͷ ௗೡ  for isometric shaped particle ܭଵ ൌ ቀଵଷ ௗௗೡ  ଶଷ ߶ሺିభమሻቁିଵ െ ʹǤʹͷ ௗೡ   for nonisometric shaped particle  ܭଶ ൌ ͳͲଵǤ଼ଵସ଼ሺି lααభబ థሻబǤఱళరయሻ ߶ is the sphericity 

Holzer and Sommerfeld 

(2008) 

ܥ ൌ ͺܴ݁ ͳඥ߶צ  ͳܴ݁ ͳඥ߶  ͵ξܴ݁ ͳ߶యర  ͲǤͶʹͳͲǤସሺି lαα థሻబǤమ ͳ߶ୄ ߶צ is the crosswise sphericity ߶ୄ is the lengthwise sphericity 

 

Numerical simulation is an effective alternative method for predicting the flow 

past a single particle. Most of these investigations were limited to low-to-moderate 

Reynolds numbers, based on the Finite Volume (FV) method. Johnson and Patel 

(1999) simulated the flow of incompressible viscous fluid past a sphere over flow 

regime for Reynolds number up to 300. Their numerical results showed good 



agreement with the experimental observations. Bagchi et al. (2001) investigated the 

flow and heat transfer past a sphere in a uniform cross-flow for Reynolds numbers up 

to 500. Atefi et al. (2007) carried out computations to determine the fluid drag of 3-D 

flow past a stationary sphere at low and moderate Reynolds numbers in the range of 

0.1~200. For the case of non-spherical particle, Dwyer and Dandy (1990) performed 

the simulations of flow past a non-spherical particle in a moderate Reynolds numbers 

range (10≤Rep≤66), the effect of particle shape and orientation on the dynamics force 

and heat transfer characteristics were investigated in their study. Saha (2004, 2006) 

simulated the flow transition and heat transfer past a cube in Reynolds number range 

of 20~400. Valil and Green (2009) simulated the flow past two dimensional cylinders 

for Reynolds numbers in the range of 1~40, the effect of aspect ratios and inclination 

angle on the drag and lift coefficients were analyzed in their work. Richter and 

Nikrityuk (2013) investigated the dynamic force and heat transfer process for flow 

past ellipsoidal and cubic particles. On the other hand, the Lattice Boltzmann (LB) 

method was developed to calculate the fluid-particle hydrodynamics force by Ladd 

(1994a; 1994b). The most notable feature of LB method is that the computational cost 

scales linearly with the number of particles. In the past 20 years, the increasing efforts 

have been carried out on flow past single particle or arrays of particles (Peng and Luo, 

2008; Holzer and Sommerfeld, 2009; Rong et al., 2013; Zhou and Fan, 2015). Peng 

and Luo (2008) simulated the steady and unsteady flows past a 2-dimensional circular 

cylinder with the Reynolds number of 20 and 100. Rong et al. (2009) investigated the 

flow past a sphere for Reynolds number up to 400. The drag, lift and torque for flow 

past a non-spherical particle was determined in the Reynolds number range of 

0.3~240 by Holzer and Sommerfeld (2009). Although both the FV and LB methods 

have been applied to simulate the flow past a single spherical or non-spherical particle, 



most of these investigations focused on the flow at low or moderate Reynolds 

numbers (Rep≤500). 

Discrete element method (DEM) has become an effective alternative to describe 

the movement of non-spherical particle. Several methods have been developed for 

modelling different shaped particles in DEM: composite particles, smooth and 

continuous surface particles, combined surface particles and digital particles (Favier 

et al., 1999; Jia and Williams, 2001; Jia et al., 2007; Wachs et al., 2012; Boon et al., 

2013). Each method has its advantages and disadvantages in terms of accuracy, 

versatility, complexity and speed (Dong et al., 2015). In the investigations described 

in this series, DigiDEM coupled with LB method is used to simulate particle 

movements in fluidised beds. DigiDEM is an implementation of the DEM, but instead 

of spheres it uses voxels (3d pixels) to represent particles (Caulkin et al, 2009). The 

basic concept of this voxel based approach is that any shaped particle – including its 

internal structure, surface texture as well as the overall shape – can be represented by 

a coherent collection of voxels. The resolution depends on how accurate the shape 

needs in particular applications (Jia and Williams, 2001; Jia et al., 2007). Compared 

with other methods, the digital approach is not limited to mathematically easily 

describable shapes. The voxels are used to represent an arbitrary shaped particle; the 

computational cost is dependent on the total number of voxels and relatively 

independent of shape complexity. Since both DigiDEM and LB method operate on 

the same regular lattice grids, it is conceptually easy to couple the two, and the 

coupling has the potential for describing fluid-particle interactions better than existing 

methods for fluidised beds involving particles of arbitrary shapes. Accurate prediction 

of drag force on individual particle is fundamental in understanding the hydrodynamic 

behaviour of a fluidised bed. In order to validate the predictive ability of the program, 



a LB implementation is tested over a much wider range of Reynolds number for 

different shapes in this study. The fluid drag acting on a particle is represented in 

terms of the drag coefficient. The influences of particle resolution, Reynolds number 

and particle shape on the drag coefficient are carefully analysed, and results compared 

with the experimental data and the empirical correlation published in the literature. 

 

2. Mathematical model and numerical method 

2.1. Lattice Boltzmann method 

The LB method is originated from the Lattice Gas Automata (LGA). Compared to 

the traditional CFD method that solve the Navier-Stokes equation for the macroscopic 

fluid dynamics, i.e. pressure and velocity, the LB method can be used to simulate 

fluid flow in terms of the particle distribution function, which exist at each of the grid 

nodes that make up the fluid domain (Yu and Fan, 2010; Li et al., 2016). The particle 

distribution functions relate the probable amount of fluid particles moving with a 

discrete speed in a discrete direction at each lattice node at each time increment. The 

particle distribution functions are analogous to the continuous, microscopic density 

function of the Boltzmann equation. For the LB method, time and space coordinates 

are discretized with velocity range in phase space limited to a finite set of vectors that 

represent the directions in which the fluid particles can travel. The D3Q19 model is 

employed in this study, as shown in Fig. 1. It has 18 discrete lattice velocities with 

one fluid particle at rest. Components of D3Q19 lattice are listed in matrix as 

ࢉ ൌ c Ͳ ͳ െͳͲ Ͳ ͲͲ Ͳ Ͳ       Ͳ Ͳ Ͳͳ െͳ ͲͲ Ͳ ͳ     Ͳ ͳ െͳͲ ͳ ͳെͳ Ͳ Ͳ      െͳ ͳ ͳെͳ െͳ ͲͲ Ͳ ͳ     െͳ െͳ ͳͲ Ͳ Ͳͳ െͳ ͳ     Ͳ Ͳ Ͳͳ െͳ െͳͳ ͳ െͳ    Ͳͳെͳ൩  (1) 

 



 

Fig. 1. Schematic of D3Q19 lattice 

 

The basic LB method algorithm involves the streaming and collision processes at 

each node and each time step: streaming process propagates particle distribution 

function value between neighbour nodes (Eq. 2); collision process redistributes the 

functions that arrive at each node (Eq. 3), as expressed: 

୧݂ሺݔ  ܿ୧οݐǡ ݐ  οݐሻ ൌ ୧݂כሺݔǡ  ሻ                     (2)ݐ

୧݂כሺݔǡ ሻݐ ൌ ୧݂ሺݔǡ ሻݐ  ȳ୧ሺ݂ሺݔǡ  ሻሻ                    (3)ݐ

where ǻx is the lattice spacing, ǻt is the explicit time step, ݂୧כሺݔǡ ǡݔሻ and ୧݂ሺݐ  ሻ areݐ

the post-collision and pre-collision distribution functions, respectively. ȳ୧ሺ݂ሺݔǡ  ሻሻ isݐ

the collision operator, it controls the relaxation rate of particle distribution function.  

Kinetic model: The relaxation process of the LB method acts on the 

non-equilibrium part of the distribution functions at a node to drive them towards 

equilibrium. By assuming that the collision operator relaxes the local particle 

distribution functions at a single rate it can be simplified to, in conjunction with an 
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appropriate equilibrium distribution function, the Bhatnagar-Gross-Krook (BGK) 

model was proposed by researchers, the collision term in BGK model is written as 

ȳ୧൫݂ሺݔǡ ሻ൯ݐ ൌ െ ଵத ቂ ୧݂ሺݔǡ ሻݐ െ ୧݂ሺୣ୯ሻሺݔǡ  ሻቃ                (4)ݐ

here, Ĳ is the relaxation time and it controls the rate at which the distribution functions 

tend toward equilibrium value, and fluid viscosity as follows 

ߥ ൌ ଵଷ ሺɒ െ ଵଶሻ ο୶మο୲                           (5) 

where ǻx is the lattice spacing, ǻt is the time increment, and the lattice speed is 

defined as c = ǻx/ǻt. ୧݂ሺୣ୯ሻሺݔǡ  ሻ is the equilibrium distribution function which isݐ

obtained from the macroscopic values of the velocity and density.  

୧݂ሺୣ୯ሻ ൌ ɘ୧ɏ ቂͳ  ୡή୳ୡ౩మୡమ  ሺୡή୳ሻమଶୡ౩ర െ ୳మଶୡ౩మቃ                   (6) 

For the D3Q19, it can be given as following 

୧݂ሺୣ୯ሻ ൌ ଵଷ ɏ ቂͳ െ ଷଶ ୳మୡమቃ ǡ            i ൌ Ͳ                 (7) 

୧݂ሺୣ୯ሻ ൌ ଵଵ଼ ɏ ቂͳ  ͵ ୡή୳ୡమ  ଽଶ ሺୡή୳ሻమୡర െ ଷଶ ୳మୡమቃ ǡ           i ൌ ͳ̱        (8) 

୧݂ሺୣ୯ሻ ൌ ଵଷ ɏ ቂͳ  ͵ ୡή୳ୡమ  ଽଶ ሺୡή୳ሻమୡర െ ଷଶ ୳మୡమቃ ǡ         i ൌ ̱ͳͺ        (9) 

where ɘ୧ is the weight factor for the i velocity direction, ȡ and u are the macroscopic 

density and velocity, respectively.  

It necessary to point out that the Navier-Stokes equations can be recovered in the 

near-incompressible limit with isotropy, Galilean invariance and a velocity 

independent pressure from the lattice BGK model through the Chapman-Enskog 

expansion (Owen et al., 2011; Delbosc et al., 2014) as 



பப୲   ή ሺɏuሻ ൌ Ͳ                         (10) 

பሺ୳ሻப୲   ή ሺɏuuሻ ൌ െβ  ɋሺଶሺɏuሻ  ൫ ή ሺɏuሻ൯ሻ          (11) 

with an error proportional to O (Ma3) in space and proportional to O (Ma·∆t) in time, 

where Ma=u/cs is the Mach number of the system, β ൌ cୱଶɏ is the pressure, cୱ ൌcȀξ͵ is the speed of sound. 

 

2.2. Subgrid turbulence model 

In order to model the unresolved scales of motion at high Reynolds numbers, the 

Smagorinsky model is used to describe the physical effects (Smagorinsky, 1963). This 

model relates the eddy viscosity to the local strain rate tensor, as follows 

ɋ୲୭୲ୟ୪ ൌ ɋ  ɋ୲                        (12) 

where Ȟ is the total effective viscosity, Ȟ0 and Ȟt are the physical viscosity and eddy 

viscosity, respectively. The eddy viscosity can be calculated from the local stress 

tensor 

ɋ୲ ൌ CοଶȁSതȁ                          (13) 

where C is the Smagorinsky constant, ο is the filter width, and ȁSതȁ is the magnitude 

of the local stress tensor 

ȁSതȁ ൌ ටʹSതஒSതஒ                       (14) 

Sതஒ ൌ ଵଶ ሺப୳ഥಉப୶ಊ  ப୳ഥಊப୶ಉሻ                     (15) 

In the LB method, the fluid viscosity is governed by the relaxation time. So the 



eddy viscosity is incorporated into local relaxation time Ĳs as  

ɒୱ ൌ ͵ɋ୲୭୲ୟ୪  ଵଶ ൌ ͵ሺɋ  CοଶȁSതȁሻ  ଵଶ             (16) 

The local intensity of the strain tensor is computed from the non-equilibrium 

momentum flux tensor 

ςഥ ஒ ൌ σ c୧c୧ஒሺf୧ െ f୧ሺୣ୯ሻሻଵ଼୧ୀଵ                  (17) 

The solution of the intensity of local stress tensor is:  

ȁSതȁ ൌ ଵେమ ሺටɋଶ  ͳͺCଶοଶඥςஒςஒ െ ɋ           (18) 

 

2.3. Flow configuration 

The influence of computational domain size on the time-averaged drag coefficient 

was previously carried out to obtain the values for unbounded flow. Based on the 

independency simulation at lower and higher Reynolds numbers, the domain size 

related to the geometry of 12d × 10d × 10d was found to be adequate in this study. 

The computational domain is plotted in Fig. 2. The single particle is fixed in the flow 

domain. The no-slip boundary condition is imposed on the particle surface. In relation 

to this configuration, a uniform flow with constant velocity is specified at the inlet, 

and the periodic boundary is imposed at the side walls. The stress-free boundary 

condition without effect on the flow in the upstream is employed at the outlet. In the 

present study, the Reynolds number of particle is based on the relative velocity of the 

fluid with respect to the particle and the kinematic viscosity, which is defined as 

ܴ݁ ൌ ௨ௗఔ                           (19) 

where u is the averaged fluid velocity through the center of the particle, Ȟ is the 



kinematic viscosity, d is the characteristic length. For the non-sphere particle, the 

diameter of the volume-equivalent sphere is used to define the Reynolds number and 

the drag coefficient. The hydrodynamic drag force is defined as the parallel 

component of the combined shear and pressure forces acting on the surface of the 

immersed particle, as follows ܨ ൌ ଵଶ  ଶ                       (20)ݑܣߩܥ

here CD is the drag coefficient, Ap is the projected area, and for the non-spherical 

particle it is calculated with the diameter of the volume-equivalent sphere. 

10 D
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x
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Fig. 2. Computational domain of the flow past a single particle 

 

3. Results and discussion 

3.1. Flow past a stationary spherical particle 

The resolution of spherical particle is determined by the numbers of lattices for 

discretizing the diameter of the sphere. As shown in Fig. 3, the particle diameter has a 

great impact on the particle resolution, which is increased with increasing the particle 

diameter. The increase in resolution results in a decrease of the sphere roughness, and 

a smoother sphere is obtained under the higher resolution. Fig. 4 presents the 



evolution of drag coefficient at Reynolds numbers (Rep) of 3 and 722. As expected, 

the flow around the sphere is steady at low Rep, the predicted drag coefficient keeps 

almost constant after 6000 time steps. With the increase in Rep, the flow will change 

from steady to unsteady flow. Saha (2004) and Holzer and Sommerfeld (2009) 

investigated the transition flow from lower Rep to moderate Rep for cube and sphere, 

respectively. At higher Rep (Rep = 722), the variation of the drag coefficient is more 

pronounced with a stronger oscillation, which is derived from the appearance of 

vortex shedding at higher Rep. Combining the results for both the low and high Rep, 

the time step from 6000 to 10000 is applied to calculated the time-averaged drag 

coefficient in the following discussion. 
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Fig. 3. Digitization of sphere particle 
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Fig. 4. Instantaneous behavior of drag coefficient (dp = 40 voxels) 



 

Fig. 5 exemplarily indicates the time-averaged drag coefficient (CD) as a function 

of spherical particle resolution. Here, two well-known correlations are used to verify 

the predicted ability of digital coupling with Lattice Boltzmann methods, i.e. Clift et 

al correlation (1978) and Haider and Levenspiel correlation (1989). The correlation of 

Haider and Levenspiel (1989) was derived from experimental data for spherical, 

isometric and non-isometric particles in terms of Reynolds number and sphericity, 

which is calculated as the ratio between the surface area of the volume equivalent 

sphere and the surface area of the considered particle. Good agreement between the 

two correlations is obtained, whilst only a small difference observed at the low Rep. 

Significant deviations have occurred between the correlation predicted data and the 

simulated CD for dp = 10 voxels. With increasing the sphere diameter (particle 

resolution), the simulated results are tend to close to the correlation predicted data for 

different Rep. The difference between the simulated result and correlation prediction 

increases with the increase in Rep.  
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Fig. 5. Effect of particle resolution on the drag coefficient at different Reynolds 

number 

 

The profiles of time-averaged drag coefficient in a wide range of Reynolds 

number are plotted in Fig. 6. It is obvious that the CD is not sensitive with the number 

of cells for discretizing the sphere diameter at lower Rep (Rep<10). The simulated 

results are consistent with the correlation prediction and experimental data. In the 

current work, the experimental data are corrected from 480-point raw data with 

eliminating the influence of the wall effect (Brown and Lawler, 2003). When the Rep 

is higher than 10, the simulated result is closely dependent on the particle resolution, 

and the influence of particle resolution on the relative error in CD increases with 

increasing the Rep. Meanwhile, the over prediction of CD tend to decrease with 

increasing the particle resolution. Despite the present comparison is only performed in 

the relevant range of Rep, as the Rep continues to increase higher than 1000, the 

behavior of CD progressively changes to tend asymptotically towards a constant value 

under different particle resolutions. The deviations of CD at the high Rep are attributed 

to the decrease in represented resolution along the radial direction of sphere. 

Therefore, a higher resolution is necessary for the accurate prediction of flow past a 



fixed sphere particle at high Rep.  
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Fig. 6. Comparison of the drag coefficient of sphere particle against experimental data 

and empirical correlation 

 

3.2. Flow past a stationary non-spherical particle 

The drag force acting on a non-spherical particle is expected to differ from a 

spherical particle due to its geometrical shape. Three empirical correlations are 

employed to describe the profiles of non-spherical particle drag coefficient in this 

study. As can be seen in Figs. 7 and 8, all correlations show a decreasing trend in CD 

with increasing Rep. Different correlations are in good agreement with each other at 

low Rep (Rep<10) for both the square cylindrical and cubic particles. For higher Rep 

values, CD becomes less sensitive to the change of Rep. The minimum CD is predicted 

at intermediate Rep by the the correlations of Haider and Levenspiel (1989) and 

Ganser (1993), but not by the correlation of Holzer and Sommerfeld (2008).  

The predicted profiles for non-spherical particle are similar to that of the spherical 



particle. The drag coefficient is slightly higher than that of spherical particle, this 

trend is more obvious at high Reynolds numbers. Comparison of the numerical results 

and those from the derived correlations demonstrates the good prediction of CD at low 

Rep for both cubic and cylindrical particles. However, an interesting observation is 

exhibited in the region from moderate Rep to high Rep. The simulated values tend to 

agree with the correlation of Holzer and Sommerfeld (2008) for cylinder. On the other 

hand, the difference occurs for the cubic particle, the correlation of Ganser (1993) 

predicts more accurate drag coefficients before the transform point, whilst Fig.8b 

shows the good agreement between the numerical results and the prediction of Haider 

and Levenspiel (1989) after the transform point. This phenomenon is consistent with 

the finding of Holzer and Sommerfeld (2008). They pointed out that the correlation of 

Haider and Levenspiel (1989) and Ganser (1993) predict more accurate CD than that 

of Holzer and Sommerfeld (2008) correlation for the isometric particle (cube in this 

study), the mean relative deviations between experimental data and the correlations of 

Haider and Levenspiel (1989) and Ganser (1993) are approximate 6.5%, while 10.9% 

for the correlation of Holzer and Sommerfeld (2008). However, for the non-isometric 

particle (cylinder), the mean relative deviations between the experimental data and the 

correlations of Haider and Levenspiel (1989) and Ganser (1993) are 42.3% and 32.4%, 

respectively. A slightly better drag coefficient is predicted by the correlation of Holzer 

and Sommerfeld (2008) with relative error of 29%. Moreover, it is worth noting that 

the current resolution for cylinder (L = D = 40 voxels) and cube (L = 40 voxels) 

produce an accurate and reasonable results. This also implies that the deviation for 

sphere is largely due to the decrease in resolution in the radial direction for sphere. 
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           (a) Overall view             (b) Enlarged view of local region 

Fig. 7. Comparison of the simulated drag coefficient against empirical correlations 

(cylindrical particle) 
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           (a) Overall view             (b) Enlarged view of local region 

Fig. 8. Comparison of the simulated drag coefficient against empirical correlations 

(cubic particle) 

 

4. Conclusions 

Flow past a spherical or non-spherical particle has been conducted over a wider 

range of Reynolds numbers than previously reported. The results have been analyzed 

and compared with published experimental data and empirical correlations. The main 

findings can be summarized as follows. The various tests for spherical or 

non-spherical particle confirm the reliability of the present new computational method, 

good agreement between the simulated drag coefficient and the experimental date or 



empirical correlations is achieved in a wide Reynolds number region. The prediction 

accuracy for sphere is not sensitive to the resolution at low Reynolds number 

(Rep<10), but becomes so in the moderate to high Reynolds number range 

(10<Rep<1000). Moreover, differences in the morphology of non-spherical particles 

result in different drag coefficient profile, and this becomes more evident with 

increasing Reynolds number. The simulated drag coefficients for cylindrical particle 

(non-isometric particle) and cubic particle (isometric particle) are consistent with the 

empirical correlations, which are established based on a large number of experimental 

data from the literature. This adds our confidence for the coupling of DigiDEM and 

LB method for predicting the fluid-particle flow. The next part of the series will focus 

on ….???????? 
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