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Abstract 1

The substitution of fossil by renewable energy sources is a major strategy in reducing CO2 2

emission and mitigating climate change. In the transport sector, which is still mainly 3

dependent on liquid fuels, the production of second generation ethanol from lignocellulosic 4

feedstock is a promising strategy to substitute fossil fuels. The main prerequisites on 5

designated crops for increased biomass production are high biomass yield and optimized 6

saccharification for subsequent use in fermentation processes. 7

We tried to address these traits by the overexpression of a sucrose-phosphate synthase gene 8

(SoSPS) from sugarcane (Saccharum officinarum) in the model grass Brachypodium 9

distachyon. The resulting transgenic B. distachyon lines not only revealed increased plant 10

height at early growth stages but also higher biomass yield from fully senesced plants, which 11

was increased up to 52 % compared to wild-type. Additionally, we determined higher sucrose 12

content in senesced leaf biomass from the transgenic lines, which correlated with improved 13

biomass saccharification after conventional thermo-chemical pretreatment and enzymatic 14

hydrolysis. Combining increased biomass production and saccharification efficiency in the 15

generated B. distachyon SoSPS overexpression lines, we obtained a maximum of 74 % 16

increase in glucose release per plant compared to wild-type. Therefore, we consider SoSPS 17

overexpression as a promising approach in molecular breeding of energy crops for optimizing18

yields of biomass and its utilization in second generation biofuel production.19

20

21

Abbreviations 22

SoSPS 23

Sucrose-phosphate synthase from sugarcane (Saccharum officinarum) 24

T-DNA 25

Transfer DNA 26

Ubi 27

Ubiquitin promoter 28

HEPES 29

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 30

31
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Introduction 1

The combination of an increasing, global energy demand and decreasing fossil energy 2

resources that can be conventionally explored not only results in higher atmospheric CO23

levels with their observed and expected impact on climate change (Ash et al., 2013), but also 4

fosters explorations for fossil energy sources in sensitive ecosystems (Finer et al., 2008; 5

Jernelov, 2010; Sojinu et al., 2010). To face these challenges and to mitigate climate change, 6

a key strategy is the substitution of fossil by renewable energy sources. Because liquid fossil 7

fuels have a predominant role in the transport sector, second generation biofuels from 8

lignocellulosic feedstock reveal a high potential in substituting fossil fuels (Sims et al., 2010). 9

The production of the biofuel ethanol, which is a key player in the biofuel market 10

(Vimmerstedt et al., 2012), from lignocellulosic biomass is mainly restricted by the high 11

recalcitrance of the plant cell wall towards degradation, which is determined by cellulose 12

crystallinity but also lignin and hemicellulose content (Chen and Dixon, 2007; Hall et al., 13

2010; Yoshida et al., 2008). Different approaches have been launched to improve efficiency 14

of lignocellulosic ethanol production ranging from cell wall modifications in feedstock via 15

molecular breeding (Fu et al., 2011; Pauly and Keegstra, 2010; Wilkerson et al., 2014), 16

physical and chemical pretreatment to break and degrade the tight polymer network of the cell 17

wall (Blanch et al., 2011; Socha et al., 2014; Xu and Huang, 2014) and identification of 18

advanced enzymes for cell wall hydrolysis (Arfi et al., 2014; Inoue et al., 2014; Zhang et al., 19

2012), to engineering of improved microorganisms for fermentation of cell wall-derived 20

saccharides (Chung et al., 2014; Hasunuma et al., 2013).  21

Besides saccharification and efficient fermentation, the availability of lignocellulosic 22

feedstock is a decisive factor to meet the projected increased demand for renewable energy in 23

general and lignocellulosic ethanol in special. Because the currently available biomass waste 24

form agriculture or forestry industries might not be sufficient, an extended cultivation of 25

bioenergy crops has been considered as a favourable solution (Somerville et al., 2010). To 26

decrease the competition of arable land of crops, which are cultivated for food and feed 27

production versus energetic utilization, a major prerequisite on energy crops is a high biomass 28

yield.29

In our study, we tried to address these two demands on lignocellulosic feedstock for biofuel 30

production, improved saccharification and biomass yield, by following a strategy of 31

overexpressing a sucrose-phosphate synthase (SPS) gene in the model grass Brachypodium 32

distachyon for metabolic engineering. SPS (EC 2.4.1.14) catalyses UDP-glucose and fructose-33

6-phospahte conversion into sucrose-6-phosphate, which can then be hydrolysed to sucrose by 34
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a sucrose-phosphate phosphatase (Huber and Huber, 1996). Especially in grasses, SPS has a 1

major function in regulating sucrose biosynthesis (Castleden et al., 2004). Because sucrose is 2

the main photosynthetic product and, therefore, a decisive factor for plant growth, 3

productivity has been correlated with SPS activity. For maize (Zea mays) and rice (Oryza 4

sativa), genetic studies have shown a linkage between yield and plant growth QTLs5

(quantitative trait loci) and SPS activity (Causse et al., 1995; Ishimaru et al., 2004; Prioul et 6

al., 1999); and in sugarcane (Saccharum officinarum), sucrose accumulation in stems 7

correlated with SPS activity (Grof et al., 2007; Zhu et al., 1997). Therefore, SPS8

overexpression has been used to modify plant development. Heterologous overexpression of 9

an SPS gene from maize in tomato (Lycopersocum esculentum) resulted in increased fruit 10

yield (Laporte et al., 1997; Micallef et al., 1995) where best results were obtained with an SPS 11

activity in transgenic plants which was approximately twice as high as in wild-type plants 12

(Laporte et al., 2001). Similar to tomato, overexpression of a maize SPS gene increased tuber 13

weight and total yield in transgenic potato (Solanum tuberosum) plants (Ishimaru et al., 2008) 14

as well as increased plant height and biomass production but also delayed flowering in 15

transgenic tobacco (Nicotiana tabacum) lines (Coleman et al., 2010; Park et al., 2008). 16

Unlike dicotyledonous plants, results from SPS overexpression in grasses are relatively 17

limited, but overexpression of a maize SPS gene in rice, which resulted in taller plants at early 18

growth stages (Ishimaru et al., 2004), indicated the applicability of this molecular breeding 19

strategy for improving biomass production in grasses. Because results from SPS20

overexpression on yield and saccharification of senesced, dry biomass from grasses have not 21

been reported, but would be very important to increase efficiency of second generation 22

ethanol production, we focussed on these traits in the transgenic B. distachyon lines generated 23

in this study. We chose the model grass B. distachyon to test the effect of SPS overexpression 24

on biomass yield and saccharification due to efficient transformation protocols (Christiansen 25

et al., 2005), easy cultivation and fast generation cycles (Draper et al., 2001), but also 26

similarities in cell wall composition and biotechnological biomass application with other 27

monocotyledonous crops (Bevan et al., 2010; Gomez et al., 2008; Meineke et al., 2014). 28

Because of the high, SPS-dependent sucrose production in sugarcane (Grof et al., 2007; Zhu 29

et al., 1997), we selected the sucrose-phosphate synthase B gene (SoSPS) from sugarcane, 30

which showed highest homology to successfully applied SPS genes from maize and rice 31

(Huang et al., 2013), for heterologous overexpression in B. distachyon.  32

Our results revealed a positive effect of SoSPS overexpression at early stages of B. distachyon33

growth and increased yield of senesced biomass at the final developmental stage of the plant. 34
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In addition, the sucrose content in senesced leaf biomass was higher than in control samples 1

from wild-type plants, which correlated to improved biomass saccharification. Therefore, we 2

propose SoSPS expression as a promising strategy for combining improved biomass 3

production and saccharification in designated grasses and monocotyledonous energy crops for 4

lignocellulosic biofuel production.5

6
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Materials and Methods 1

2

Plant material 3

B. distachyon (inbred line Bd21 (Vogel et al., 2006)) was cultivated as described in Meineke 4

et al. (2014). For determination of biomass production, plants that reached their final 5

developmental stage due to complete, natural senescence with subsequent drying for 2 weeks 6

without irrigation were harvested after 4 month. For quantification of sucrose content and 7

saccharification efficiency, plant material was separated into stem biomass, including all 8

nodes, and leaf biomass. Roots and spikelets were excluded from this analysis. Biomass was 9

homogenized with a mill fitted with a 0.2 mm mesh screen for the determination sucrose10

content and saccharification efficiency.11

12

Cloning and B. distachyon transformation 13

To generate a vector construct for the overexpression of the sugarcane (S. officinarum) 14

sucrose-phosphate synthase B gene SoSPS (GenBank accession No. JN584485.1) under 15

control of the ubiquitin promoter from maize (Zea mays), SoSPS was amplified from 16

sugarcane complementary DNA (cDNA) using primers in PCR reactions that provide DNA 17

recombination sequences (attB sites) at their 5’ and 3’ ends (SoSPS-5’attB: 5’-18

GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGCC GGGAACGAGTGGA; SoSPS-19

3’attB: 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCCATGCCGCTAGAAGTCTT20

GG) for subsequent utilization with the Gateway cloning technology (Life Technologies, 21

USA). For cDNA synthesis, RNA was isolated from sugarcane leaves using peqGOLD 22

TriFast (Peqlab, Germany) and used with the Maxima First Strand cDNA Synthesis Kit 23

(Thermo Scientific, USA) according to the manufacturer’s instructions. After introduction 24

into the donor vector pDONR221 (Life Technologies) via BP Clonase-mediated 25

recombination, SoSPS was introduced into the monocotyledonous plant expression vector 26

p7i586 (DNA Cloning Service, Germany), via LR Clonase-mediated recombination. This 27

vector also provided C-terminal fusion with the fluorescence tag mCherry (Shaner et al., 28

2004) after successful expression and resistance to the herbicide Basta, which was conferred 29

by the bar gene (Block et al., 1987) under control of the double 35S promoter from the 30

cauliflower mosaic virus. The SoSPS expression vector was transformed into Agrobacterium 31

tumefaciens strain GV3101. Agrobacterium-mediated B. distachyon transformation followed 32

the protocol from Christiansen et al. (2005) and produced four independent Ubi:SoSPS lines. 33

For detailed studies, only homozygous lines in the T3 generation were used.34
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Gene expression analysis 1

To confirm expression of the SoSPS-mCherry fusion construct in transformed B. distachyon2

lines, RNA was isolated from wild-type and four generated Ubi:SoSPS lines using peqGOLD 3

TriFast (Peqlab) according to the manufacturer’s instructions. For cDNA synthesis, the 4

Maxima First Strand cDNA Synthesis Kit (Thermo Scientific) was used. The expression of 5

Actin (Primer, 5’Act: 5’-GCTGGGCGTGACCTAACTGAC and 3’Act: 5’-6

ATGAAAGATGGCTGGAAAA GGACT; primer sequences derived from B. distachyon7

Actin sequence, GenBank accession No. XM_003578821) was used as reference for the 8

expression of the SoSPS-mCherry fusion construct (5’SoSPS: 5’-9

CTGTGGACTGCTACCAAGAC and 3’mCherry: 5’-GCTTGACGTAGGCCTTCGAG) in 10

PCR reactions using the Q5 High-Fidelity DNA Polymerase (New England Biolabs, USA). 11

Identity of amplified PCR products was confirmed by DNA sequencing. 12

13

Southern blot analysis 14

Genomic DNA from B. distachyon wild-type and four generated Ubi:SoSPS lines was 15

digested with the restriction enzymes HindIII (Thermo Scientific, USA), separated on a 1.0 % 16

Agarose/TBE gel and blotted onto a Hybond NX membrane (GE Healthcare, UK). A DIG 17

(dioxygenin)-labelled (Roche Diagnostics, Germany) DNA probe specific for the bar18

resistance gene of the plant expression vector (Primer for PCR amplification: 5’bar: 5’-19

GCACCATCGTCAACCACTACATC; 3’bar: 5’-AAACCCACGTCATGCCAGTTC) was 20

used for overnight hybridization at 68°C. Hybridization and washing of blots were performed 21

according to the manufacturer’s instructions.22

23

Confocal laser-scanning microscopy 24

Leaf samples were mounted between a microscope slide and coverslip in water. Micrographs 25

were captured using the LSM 780 confocal laser-scanning microscope (Carl Zeiss 26

Microimaging, Germany). For localization of SoSPS-mCherry, the fluorochrome of the fusion 27

protein was excited at 561 nm by using a diode-pumped solid-state laser. Emission filtering 28

was achieved using a 586- to 638-nm bandpass filter. Image processing was performed using 29

integral functions of the ZEN 2010 (Carl Zeiss Microimaging) operating software.30

31

Sucrose-phosphate synthase activity assay 32

Protein extraction and sucrose-phosphate synthase activity assay were performed according to 33

Baxter et al. (2003) with some modifications. 0.5 g leaf tissue from four-week-old 34
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B. distachyon wild-type and four generated Ubi:SoSPS lines were ground in liquid nitrogen 1

with 1 mg of insoluble polyvinyl polypyrrolidone (all chemicals purchased at Sigma-Aldrich, 2

Germany if not indicated otherwise). Four volumes of extraction buffer (50 mM HEPES/KOH 3

pH 7.5, 10 mM MgCl2, 1 mM EDTA, 2 mM dithiothreitol, 1 mM phenylmethylsulphonyl 4

fluoride, 1 mM benzamidine, 5 mM ε-amino-n-caproic acid, 0.1% (v/v) Triton X-100, and 5

10% (v/v) glycerol) were added and samples were centrifuged at 4°C and 12,000 x g for 2 6

min. Supernatants were transferred to spin columns (Vivaspin 6, 50.000 MWCO, GE 7

Healthcare, USA), and samples were filtered at 4°C and 4,000 x g for 3 h. After re-dissolving 8

the proteins in 800 µl assay buffer (50 mM HEPES-KOH pH 7.5, 20 mM KCl, and 4 mM 9

MgCl2), 200 µl aliquots, additionally containing either 12 mM UDP-glucose, 10 mM 10

fructose-6-phosphate, and 80 mM glucose-6-phosphate for sucrose synthesis or no hexose 11

phosphates to provide blank values, were incubated at 25°C for 20 min. To stop the reaction, 12

samples were incuabted at 95°C for 5 min, followed by a centrifugationt 4°C and 12,000 x g 13

for 5 min. 5 M KOH was added to supernatants (ratio 1:1 (v/v)) to destroy unreacted hexose 14

phosphates and incubated at 95°C for 5 min. The fructosyl moiety of sucrose was quantified 15

using the anthrone test (Lunn and Furbank, 1997). Four Volumes of 0.14 % anthrone reagent 16

in 14.6 M H2SO4 were added; and absorbance was measured at 620 nm. Amounts of sucrose-17

6-phosphate were calculated using a standard curve with 0 – 300 nm sucrose.18

19

Determination of sucrose content 20

The extraction and determination of sucrose in B. distachyon leaf and stem biomass was based 21

on the description by Stitt et al. (1989). Sucrose was extracted from 7.5 mg of lyophilized 22

plant material by a double treatment with 80 % ethanol (250 µl and 150 µl) for 30 min at 23

95°C. For the third extraction step, 50% ethanol was used. After centrifugation at 1500 rpm24

for 10 min, the supernatants of each step were collected and combined. The absorbance of a25

200 µl reaction mixture containing 2.3 mM ATP, 2.3 mM NADP, 0.23 U glucose-6-26

phosphate dehydrogenase (Roche, Germany) and 5 µl sample extract in HEPES/KOH buffer 27

(100 mM HEPES/KOH, 3 mM MgCL2, pH 7.0) was measured in a 96 well plate until the OD 28

was stable. 4 µl hexokinase (9000 U ml-1), phosphoglucose isomerase (600 U ml-1; both from 29

Roche Diagnostics) and invertase (dissolved in HEPES/KOH buffer; Sigma, Germany) were 30

added in a sequential manner. The absorbance was measured after addition of each enzyme 31

until it was stable. The generated NADPH is considered equimolar to glucose; and glucose 32

amounts were calculated by using the following equation: µmol NADPH = ΔOD/(2.85*6.22).33

The sucrose content was calculated based on the determined glucose amounts.34



9 

Determination of saccharification efficiency 1

The saccharification efficiency was determined by the release of glucose from B. distachyon2

biomass after thermo-chemical pretreatment with diluted sulphuric acid followed by 3

enzymatic hydrolysis with the enzyme mixture Accellerase 1500 (Genencor, Netherlands). 4

Glucose concentration in the supernatant of processed biomass was determined with a 5

refractive index detector connected to a HPLC system. Biomass pretreatment, hydrolysis as 6

well as glucose quantification was performed according to the description in Meineke et al.7

(2014). 8

9

Statistical analysis 10

Descriptive statistics including the mean and the standard error of the mean (SE) along with 11

the Tukey range test for multiple comparison procedures in conjunction with an ANOVA 12

were used to determine significant differences. P < 0.05 was considered significant.13

14

15
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Results1

2

Genetic and biochemical characterization of transgenic B. distachyon lines 3

From Agrobacterium-mediated transformation of B. distachyon calli, we obtained four 4

Ubi:SoSPS lines, which we analysed in homozygous T3 generations. Southern blot analysis 5

confirmed integration of the T-DNA into the genome and genetic independence of the four 6

lines (Supplemental Fig. 1A). The sugarcane sucrose-phosphate gene SoSPS fused to the 7

fluorescence gene mCherry was expressed in all four lines (Supplemental Fig. 1B), which 8

correlated with detection of SoSPS-mCherry in cytosolic strands of the respective B. 9

distachyon lines but not the wild-type (Supplemental Fig. 1C). A cytosolic localization of 10

SoSPS was expected from previous results and the general formation of sucrose in the cytosol 11

of leaf cells (Huber and Huber, 1992). All transgenic B. distachyon lines with confirmed 12

SoSPS-mCherry expression revealed a significantly higher sucrose-phosphate synthase 13

activity in leaf tissue than the wild-type, except for line #1 where a tendency of higher 14

sucrose-phosphate synthase activity was determined (Fig. 1).15

16

Early plant growth 17

Because the overexpression of SPS genes could increase plant growth (Baxter et al., 2003; 18

Ishimaru et al., 2008; Park et al., 2008), we tested for similar phenotypes in the transgenic 19

B. distachyon Ubi:SoSPS lines. Two-week-old Ubi:SoSPS plants were about 15 % (line #1, 3 20

and 4) to 25 % (line #2) higher than wild-type (Supplemental Fig. 2). We also observed an 21

increase in plant height ranging from 18 % (line #4) to 25 % (line #2) for the Ubi:SoSPS lines 22

after three weeks of growth (Fig. 2), but not at later stages of plant growth. Not only plant 23

height but also the number of leaves of the three-week-old plants reflected the accelerated 24

development of Ubi:SoSPS lines at relatively early growth stages compared to wild-type. 25

Whereas wild-type plants showed 3 and only occasionally 4 leaves at this growth stage, leaf 26

number was increased to 4 to 5 in Ubi:SoSPS lines (Supplemental Fig. 3).27

28

Senesced biomass 29

For characterization for senesced biomass, which would be preferably used for 30

biotechnological applications like ethanol fermentation, we defined parameters for the 31

selection of two Ubi:SoSPS lines for subsequent experiments with senesced biomass: i) 32

significantly higher sucrose-phosphate synthase activity than wild-type (Fig. 1), ii) significant 33

increase in plant height and number of leaves during early plant growth compared to wild-34
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type (Fig. 2 and Supplemental Fig. 3), and iii) number of T-DNA integrations into the genome 1

(Supplemental Fig. 1) to evaluate a putative effect on phenotype determination. Based on 2

these parameters, we selected Ubi:SoSPS lines #2 and #4. Both lines revealed i) significantly 3

higher sucrose-phosphate synthase activity (Fig. 1) and ii) a significant increase in plant 4

height and number of leaves with line #2 constantly showing strongest increase (Fig. 2 and 5

Supplemental Figs. 2 and 3). Concerning the number of T-DNA integrations, line #2 revealed 6

multiple T-DNA integration whereas line #4 was the only line with a single T-DNA 7

integration (Supplemental Fig. 1). 8

The total dry weight of senesced biomass excluding roots was increased in Ubi:SoSPS lines 9

#2 and #4 by 22 % and 52 %, respectively, compared to wild-type (Fig. 3A). Separation of the 10

total biomass into the three organs stem, leaf and spikelet revealed a relative shift form 11

spikelet to leaf biomass whereas the relative proportion of stem biomass remained stable (Fig. 12

3B). As a result, the relative proportion of leaf biomass increased from 14 % in wild-type to 13

about 20 % in the two Ubi:SoSPS lines. To further examine the decrease in the relative 14

proportion of spikelet biomass in the Ubi:SoSPS lines, we determined the number of kernels 15

per plant and the kernel weight. Whereas the total number of kernels per plant was not 16

significantly different between wild-type and Ubi:SoSPS lines (about 50 kernels per plant), 17

we observed a drop of the kernel weight from about 2 mg in wild-type to about 1.7 mg in the 18

two Ubi:SoSPS lines (Supplemental Fig. 4).19

As expected from SoSPS overexpression, we determined higher sucrose levels in senesced 20

leaf biomass of Ubi:SoSPS lines than wild-type, where the sucrose content increased by 52 % 21

for line #2 and 22% for line #4 (Fig. 4A). The sucrose level in stem biomass was generally 22

lower than in leaf biomass and was not different between wild-type and Ubi:SoSPS lines (Fig. 23

4A). The increase in sucrose content of leaf biomass from Ubi:SoSPS lines correlated with 24

improved saccharification efficiency, which was measured by the release of glucose from 25

biomass after thermo-chemical pretreatment with diluted sulphuric acid and subsequent 26

hydrolysis using the commercially available enzyme mix Accellerase 1500. We determined 27

an increase in relative saccharification efficiency of leaf biomass by 10 % for Ubi:SoSPS line 28

#2 and by 5 % for line #4 whereas relative saccharification efficiency of stem biomass was 29

not changed comparing wild-type and Ubi:SoSPS lines. Considering only senesced, dry leaf 30

and stem biomass for saccharification in processes leading to lignocellulosic ethanol 31

production, the combination of higher leaf and stem biomass production (Fig. 3) and 32

improved saccharification of leaf biomass of the Ubi:SoSPS lines (Fig. 4B) resulted in an 33

increase in saccharification per plant by 37 % for line #2 and by 74 % for line #4.34
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Discussion 1

In our study, we showed that overexpression of the sugarcane sucrose-phosphate synthase 2

gene SoSPS in the model grass B. distachyon was able to improve biomass yield and 3

saccharification, which are two important traits for lignocellulosic feedstock and its utilization 4

in biomass fermentation for ethanol production. Whereas previous studies mainly 5

concentrated on growth phenotypes and altered sucrose content as well as SPS activity in 6

developing plants due to SPS overexpression (Coleman et al., 2010; Galtier et al., 1993; 7

Ishimaru et al., 2008; Ishimaru et al., 2004; Park et al., 2008), we were especially interested in 8

effects on senesced, dry biomass because it would represent the favoured state of the biomass 9

for harvesting and subsequent utilization in biorefineries for ethanol fermentation. Even 10

though a main source of lignocellulosic feedstock could be stover and straw from major field 11

crops like maize, wheat (Triticum aestivum) and rice or designated energy crops like 12

Miscanthus x giganteus (Dohleman and Long, 2009; Heaton et al., 2008) and switchgrass 13

(Panicum virgatum) (Keshwani and Cheng, 2009), which all belong to the economically 14

important family of Poaceae, results from SPS overexpression in grasses were rather limited. 15

Ishimaru et al. (2004) showed an increase in plant height of about 25 % in 30-days-old rice 16

lines overexpressing maize SPS but no results of possibly increased biomass yield. We 17

observed a similar increase in plant height in 21-days-old B. distachyon line with SoSPS18

overexpression as in rice and could additionally show higher biomass yield from senesced 19

plants, confirming previous calculations on the linkage between plant height and biomass 20

production (Niklas and Enquist, 2001). Because increased plant growth due to SPS21

overexpression was also shown for tobacco and potato (Baxter et al., 2003; Ishimaru et al., 22

2008), the developmental effect of SPS overexpression seems to be a general effect directly 23

linked to higher SPS activity, which would be related to a higher capacity in carbon 24

assimilation and carbon partitioning (Galtier et al., 1993; Huber and Huber, 1992; Worrell et 25

al., 1991). Consequently, SPS overexpression and increased SPS activity has been associated 26

with modifying sink capacity in leaves and is reflected by the increase in the sucrose/starch 27

ratio in respective transgenic lines (Baxter et al., 2003; Galtier et al., 1993; Ono et al., 1999). 28

These observations combined with the fact that sucrose production can be an important factor 29

in limiting carbon export from leaves (Foyer and Galtier, 1996) would also explain the higher 30

sucrose content in leaves and the shift of the biomass ratio from spikelets to leaves in the 31

SoSPS overexpression B. distachyon lines. Unlike in tobacco with an increased number of 32

flowers in SPS overexpression lines (Baxter et al., 2003), we did not find alterations in flower 33

numbers as indicated by the unchanged total number of kernels per plant. However, the kernel 34
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weight was reduced in the SoSPS overexpression B. distachyon lines, which was in contrast to 1

previous findings in tomato with an increased fruit yield with maize SPS overexpression 2

(Laporte et al., 2001; Laporte et al., 1997) and might be the consequence of altered carbon 3

partitioning reflected by the increased sucrose content of leaves. This negative effect on 4

kernel yield should be considered and tested in those approaches where SoSPS overexpression 5

would be used to generate possible dual-use plants providing grain for food and feed 6

production and improved biomass conversion, which we demonstrated in the generated SoSPS7

overexpression B. distachyon lines with a significant increase in saccharification efficiency of 8

senesced, dry biomass. Because higher saccharification directly correlated with the increased 9

sucrose content in leaf biomass of the SoSPS overexpression lines, an acid-catalysed10

hydrolysis of sucrose during biomass pretreatment with diluted sulphuric acid (Bower et al., 11

2008) would explain elevated glucose release from processed, transgenic biomass. However, 12

even without complete chemical hydrolysis, increased amounts of sucrose in optimized 13

biomass could directly contribute to higher ethanol production because this disaccharide can 14

be hydrolysed to glucose and fructose by invertases, which are secreted by Saccharomyces 15

cerevisiae during biomass fermentation (Gascon et al., 1968) and subject to metabolic 16

engineering for improved ethanol yield (Basso et al., 2011). Ethanol yield also depends on the 17

performance of hexose transporters, which enable the uptake of the two monosaccharides into 18

S. cerevisiae cells where they can be utilized for ethanol fermentation (De La Fuente and Sols, 19

1962; Zuchowska et al., 2015).  20

21
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Figure legends 

Figure 1 Sucrose-phosphate synthase activity of Ubi:SoSPS B. distachyon lines.  

For determination of sucrose-phosphate synthase activity, four-week-old leaves from 

B. distachyon wild-type (wt) and SoSPS overexpression lines (Ubi:SoSPS, C-terminal fusion 

of SoSPS with fluorochrome mCherry) #1, #2, #3 and #4 were used. Letters a, b indicate 

groups with significant difference, P < 0.05 based on Tukey’s test with n = 3 biological 

independent experiments. Error bars represent ± SE.

Figure 2 Early stage growth phenotype of Ubi:SoSPS B. distachyon lines.  

Plant height of three-week-old plants from B. distachyon wild-type (wt) and SoSPS

overexpression lines (Ubi:SoSPS). Values represent the mean of three independent biological 

experiments with n = 6 individual plants for each line in each experiment. Letters a, b, c

indicate groups with significant difference, P < 0.05 based on Tukey’s test. Error bars 

represent ± SE.

Figure 3 Biomass production of Ubi:SoSPS B. distachyon lines.  

All experiments were done with biomass of fully senesced and dried biomass of 4-month-old 

of B. distachyon wild-type (wt) and SoSPS overexpression lines Ubi:SoSPS #2 and #4. (A)

Total biomass production (excluding roots). (B) Ratio between spikelet, leaf and stem 

biomass. Values represent the mean of three independent biological experiments with n = 6

individual plants for each line in each experiment. Letters a, b, c indicate groups with 

significant difference, P < 0.05 based on Tukey’s test. Error bars represent ± SE.

Figure 4 Sucrose content and saccharification efficiency of Ubi:SoSPS B. distachyon lines.

All experiments were done with biomass of fully senesced and dried biomass of four-month-

old of B. distachyon wild-type (wt) and SoSPS overexpression lines Ubi:SoSPS #2 and #4. 

(A) Relative sucrose amounts in leaf and stem biomass determined in enzymatic assays. (B)

Saccharification efficiency determined by release of glucose from pretreated and hydrolysed 

leaf biomass. (A, B) Letters a, b, c, d indicate groups with significant difference, P < 0.05 

based on Tukey’s test with n = 3 biological independent experiments. Error bars represent ± 

SE.
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