
Discordant Voting Processes on Finite Graphs∗†

Colin Cooper1, Martin Dyer2, Alan Frieze3, and Nicolás Rivera4

1 Department of Informatics, King’s College London, London, UK
colin.cooper@kcl.ac.uk

2 School of Computing,University of Leeds, Leeds, UK
M.E.Dyer@leeds.ac.uk

3 Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, PA, USA
alan@random.math.cmu.edu

4 Department of Informatics, King’s College London, London, UK
nicolas.rivera@kcl.ac.uk

Abstract
We consider an asynchronous voting process on graphs which we call discordant voting, and
which can be described as follows. Initially each vertex holds one of two opinions, red or blue
say. Neighbouring vertices with different opinions interact pairwise. After an interaction both
vertices have the same colour. The quantity of interest is T , the time to reach consensus, i.e. the
number of interactions needed for all vertices have the same colour.

An edge whose endpoint colours differ (i.e. one vertex is coloured red and the other one
blue) is said to be discordant. A vertex is discordant if its is incident with a discordant edge. In
discordant voting, all interactions are based on discordant edges. Because the voting process is
asynchronous there are several ways to update the colours of the interacting vertices.

Push: Pick a random discordant vertex and push its colour to a random discordant neighbour.
Pull: Pick a random discordant vertex and pull the colour of a random discordant neighbour.
Oblivious: Pick a random endpoint of a random discordant edge and push the colour to the
other end point.

We show that ET , the expected time to reach consensus, depends strongly on the underlying
graph and the update rule. For connected graphs on n vertices, and an initial half red, half blue
colouring the following hold. For oblivious voting, ET = n2/4 independent of the underlying
graph. For the complete graph Kn, the push protocol has ET = Θ(n logn), whereas the pull
protocol has ET = Θ(2n). For the cycle Cn all three protocols have ET = Θ(n2). For the star
graph however, the pull protocol has ET = O(n2), whereas the push protocol is slower with
ET = Θ(n2 logn).

The wide variation in ET for the pull protocol is to be contrasted with the well known model
of synchronous pull voting, for which ET = O(n) on many classes of expanders.

1998 ACM Subject Classification C.2.4 Distributed Systems, F.2 Analysis of algorithms, G.2
Discrete mathematics

Keywords and phrases Distributed consensus, Voter model, Interacting particles, Randomized
algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.145

∗ A full version of this paper is available at http://arxiv.org/abs/1604.06884.
† This work was supported in part by EPSRC grant EP/M005038/1, “Randomized algorithms for computer

networks”, NSF grant DMS0753472,and Becas CHILE.

EA
T

C
S

© Colin Cooper, Martin Dyer, Alan Frieze, and Nicolás Rivera;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 145; pp. 145:1–145:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.145
http://arxiv.org/abs/1604.06884
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

145:2 Discordant Voting Processes on Finite Graphs

1 Introduction

We consider a type of asynchronous distributed voting process on graphs which we call
discordant voting, and which can be described as follows. Initially each vertex holds one of
two opinions, red or blue say. Neighbouring vertices of different colours, i.e. whose opinions
differ, interact pairwise. After an interaction both vertices have the same colour. If, at some
step, all vertices have the same colour, we say that a consensus has been reached.

The problem of reaching consensus in graph by means of local interactions is an abstraction
of the behavior of both human society and computer networks. As a consequence the process of
voting on graphs has been widely studied. Distributed voting finds application in various fields
of computing including consensus and leader election in large networks [4, 12], serialisation
of read and write in replicated data-bases [10], and the analysis of social behavior in game
theory [21]. Voting algorithms are usually simple, fault-tolerant, and easy to implement
[12, 14]. Recently, there has been considerable interest in population protocols. In this model
the interacting vertices can make limited computations using a finite state machine to address
a wide range of problems in distributed computing, see e.g. [2].

The classical model, synchronous pull voting, is reasonably well understood. If the colours
of the vertices are initially distinct, the randomized process takes Θ(n) expected steps to
reach consensus on many classes of expander graphs on n vertices. This holds for the complete
graph Kn (Aldous [1]), and almost all r-regular random graphs [7]. For general results based
on the eigenvalue gap and variance of the degree sequence see [6]. Hassin and Peleg [12]
and Nakata et al. [17] considered the two-party pull voting model on connected graphs, and
discussed its application to consensus problems in distributed systems.

In contrast to the case of synchronous voting, where only the pull protocol is well defined,
for asynchronous voting, there are at least three ways to update the colours of the interacting
vertices.

Push: Pick a random vertex and push its colour to a random neighbour.
Pull: Pick a random vertex and pull the colour of a random neighbour.
Oblivious: Pick a random endpoint of a random edge and push the colour to the other
end point.

Discordant voting originated in the complex networks community as a model of social
evolution (see e.g. [11], [18]). The general version of the model allows rewiring. The interacting
vertices can break edges joining them and reconnect elsewhere. This serves as a model of
social interaction in which vertices will either change their opinion or their friends.

Holme and Newman [13] investigated discordant voting as a model of a self-organizing
network which restructures based on the acceptance or rejection of differing opinions among
social groups. At each step, a random discordant edge uv is selected, and an endpoint
x ∈ {u, v} chosen with probability 1/2. With probability 1− α the opinion of x is pushed to
the other endpoint y, and with probability α, y breaks the edge and rewires to a random
vertex with the same opinion as itself. Simulations suggested the existence of threshold
behavior in α. This was investigated further by Durrett et al. [8] for sparse random graphs
of constant average degree 4. The paper studies two rewiring strategies, rewire-to-random,
and rewire-to-same, and finds experimental evidence of a phase transition in both cases.
Basu and Sly [3] made a formal analysis of rewiring for Erdos-Renyi graphs G(n, 1/2) with
1−α = β/n, β > 0 constant. They found that for either strategy, if β is sufficiently small the
network quickly disconnects maintaining the initial proportions. As β increases the minority
proportion decreases, and in rewire-to-random a positive fraction of both opinions survive.

Although discordant voting seems a natural model of local interaction, its behavior, is

C. Cooper, M. Dyer, A. Frieze, and N. Rivera 145:3

not well understood even in the simplest cases. The aim of this paper is a fundamental
study of expected time to consensus in the absence of rewiring. As discordant voting always
chooses an edge between the red and blue sets, it should be more efficient, and thus finish
faster than an asynchronous pull voting process which ignores this information, and takes
Ω(n2) steps on many classes of sparse graphs (see [5]). However, we find the performance of
discordant voting protocols vary considerably with the structure of the underlying graph,
and sometimes in a quite counter-intuitive way.

We suppose that the initial vertex colours in the two-party voting model are red and
blue, and let R(t), B(t) denote the sets of vertices with the given colours at any step t. For
the oblivious protocol, the expected time to completion is the same for any connected graph
on n vertices and is independent of graph structure or the number of edges. It depends only
on the initial number of vertices of each colour (R(0), B(0)). Whenever a discordant edge
is chosen, the number of blue vertices in the graph increases (resp. decreases) by one with
probability 1/2. This is equivalent to an unbiased random walk on the line (0, 1, ..., n) with
absorbing barriers, starting from R(0) = r red vertices. Thus ET = r(n− r) (see Feller [9,
XIV.3]).
I Remark. Oblivious protocol. Let T be the time to consensus in the two-party asynchronous
discordant voting process starting from any initial coloring with an equal number of red and
blue vertices R = r,B = n− r. For any connected n vertex graph, ET (Oblivious) = r(n− r).

In stark contrast to the oblivious protocol, the discordant push and pull protocols
can exhibit very different expected times to consensus, and which depend strongly on the
underlying graph in question.

I Theorem 1. Let T be the time to consensus of the asynchronous discordant voting process
starting from any initial coloring with an equal number of red and blue vertices R = B = n/2.
For the complete graph Kn, and for random graphs Gn,p, np ≥ logn

√
n, ET (Push) =

Θ(n logn), and ET (Pull) = Θ(2n).

For reasons of brevity we do not reproduce the proof for Gn,p here, but will make it available
in the full version of this paper. The interesting point is that for the complete graph Kn and
random graphs Gn,p the different protocols give very different expected completion times,
which vary from Θ(n logn) for push, to Θ(n2) for oblivious to Θ(2n) for pull. On the basis
of this evidence, our initial view was that there should be a meta-theorem of the "push is
faster than oblivious, oblivious is faster than pull" type. Intuitively, this is supported by
the following argument. Suppose red (R) is the larger colour class. Choosing a discordant
vertex uniformly at random, favors the selection of the larger class. In the push process, red
vertices push their opinion more often, which tends to increase the size of R. Conversely, the
pull process tends to re-balance the set sizes. If R is larger, it is recoloured more often.

If the graph has limited expansion, the behavior of discordant voting differs considerably
from the above examples. For the cycle Cn, all three protocols are similar.

I Theorem 2. Let T be the time to consensus of the asynchronous discordant voting process
starting from any initial coloring with an equal number of red and blue vertices R = B = n/2.
For any of the Push, Pull or Oblivious protocols on the cycle Cn, ET = Θ(n2).

At this point we were left with a difficult choice. Either to produce evidence for a relationship
of the form ET (Push) = O(ET (Pull)), or to refute it. Mossel and Roch [16] found slow
convergence of the iterated prisoners dialemma problem (IPD) on caterpillar trees. Intuitively
push voting is aggressive, whereas pull voting is altruistic, and thus similar to cooperation in
IPD. Motivated by this, we found the star graph Sn as a counter example.

ICALP 2016

145:4 Discordant Voting Processes on Finite Graphs

I Theorem 3. Let T be the time to consensus in the two-party asynchronous discordant
voting process starting from any initial coloring with an equal number of red and blue vertices
R = B = n/2. For the star graph Sn, ET (Push) = Θ(n2 logn), and ET (Pull) = O(n2).

For stars, experiments show a clear difference in ET for three protocols. For cycles the
difference is smaller and depends on the initial colouring. See Fig. 4 of Section 5.1.

A major problem in analysing discordant voting, is that the effect of recolouring a vertex
is not always monotone. For each of the graphs studied, the way to bound ET differs. The
proof of the pull voting result for the cycle Cn in particular, is somewhat delicate, and
requires an analysis of the optimum of a linear program based on a potential function.

Asynchronous discordant voting model

We next give a formal definition of the discordant voting process. Given a graph G = (V,E),
with n = |V |. Each vertex v ∈ V is labelled with an opinion X(v) ∈ {0, 1}. We call X a
configuration of opinions. We can think of the opinions as having colours; e.g. red (0) and
blue (1), or black (0) and white (1) (see e.g. Figure 2). An edge e = uv ∈ E is discordant if
X(u) 6= X(v). Let K(X) denote the set of discordant edges at time t. A vertex v is discordant
if it is incident with any discordant edge, and D(X) will denote the set of discordant vertices
in X. We consider three random update rules for opinions Xt at time t.
Push: Choose vt ∈ D(Xt), uniformly at random, and a discordant neighbour ut of vt

uniformly at random. Let Xt+1(ut)← Xt(vt), and Xt+1(w)← Xt(w) otherwise.
Pull: Choose vt ∈ D(Xt), uniformly at random, and a discordant neighbour ut of vt uniformly

at random. Let Xt+1(vt)← Xt(ut), and Xt+1(w)← Xt(w) otherwise.
Oblivious: Choose {ut, vt} ∈ K(Xt) uniformly at random. With probability 1/2, Xt+1(vt)←

Xt(ut), with probability 1/2, Xt+1(ut)← Xt(vt), and Xt+1(w)← Xt(w) otherwise.
These three processes are Markov chains on the configurations in G, in which the opinion of
exactly one vertex is changed at each step. Assuming G is connected, there are two absorbing
states, when X(v) = 0 for all v ∈ V , or X(v) = 1 for all v ∈ V , where no discordant vertices
exist. When the process reaches either of these states, we say that is has converged. Let T
be the step at which convergence occurs. Our object of study is ET .

Structure of the paper. In Section 2 we prove results for a Birth-and-Death chain which
we call the Push chain. This chain can be coupled with many aspects of the discordant
voting process. We then prove Theorems 1, 2 and 3 in that order.

2 Birth-and-Death chains

A Markov chain (Xt)t≥0 is said to be a Birth-and-Death chain on state space S = {0, . . . , N}
if given Xt = i then the possible values of Xt+1 are i+ 1, i or i− 1 with probability pi and
qi respectively. We assume that q0 = pN = 0, and p0 = 1, qN = 1, and pi > 0, qi > 0
otherwise. Denote by EiTj the expected hitting time of state j starting from state i, i.e.
Tj = min{t ≥ 0 : Xt = j, X0 = i}. We summarize the results we require on Birth-and-Death
chains (see Peres, Levin and Wilmer [15, 2.5]).

A probability distribution π satisfies the detailed balance condition, if

π(i)P (i, j) = π(j)P (j, i), for all i, j ∈ S. (1)

C. Cooper, M. Dyer, A. Frieze, and N. Rivera 145:5

Birth-and-Death chains with pi = P (i, i + 1), qi = P (i, i − 1) can be shown to satisfy the
detailed balance equations. It follows from this, (see e.g. [15]) that

Ei−1Ti = 1
qiπ(i)

i−1∑
k=0

π(k) (2)

An equivalent formulation (see [15]) is E0T1 = 1/p0 = 1 and in general

Ei−1Ti =
i−1∑
k=0

1
pk

qk+1 · · · qi−1

pk+1 · · · pi−1
, for i ∈ {1, . . . , N}. (3)

In writing this expression we follow the convention that if k = i− 1 then qk+1···qi−1
pk+1···pi−1

= 1 so
that the last term is 1/pi−1. Note also that the final index k on pk is k = N − 1, i.e. we
never divide by pN = 0.

Starting from state 0, let TM be the number of transitions needed to reach state M
for the first time. For any M ≤ N , we have that E0TM =

∑M
i=1 Ei−1Ti. For example,

E0T1 = 1
p0

= 1 and E0T2 = 1 + 1
p1

+ q1
p0p1

etc. Thus, for M ≥ 1

E0TM =
M∑
i=1

Ei−1Ti =
M∑
i=1

i−1∑
k=0

1
pk

i−1∏
j=k+1

qj
pj
. (4)

We next define a Birth-and-Death chain, the push chain, which features in our analysis.
The chain has states {0, 1, ..., i, ..., N} where N = n/2 (assume n ≥ 2 even). The transition
probabilities from state i given by P (i, i+ 1), Q(i, i+ 1) = 1− P (i, i+ 1).

Let Zt be the state occupied by the push chain at step t ≥ 0. Let δ ∈ {−1, 0,+1} be
fixed. When applying results for the push chain in our proofs, we will state the value of δ we
use. The transition probability pi = P (i, i+ 1) from Zt = i, is given by

pi =


1, if i = 0
1/2 + i/n+ δ/n, if i ∈ {1, . . . , n/2− 1}
0, if i = n/2

. (5)

For a proof of the following lemma see [5].

I Lemma 4. Let E0TM be the expected hitting time of M in the push chain Zt starting from
state 0. For any M ≤ N ,

E0TM ≤ 2N logM +O(1). (6)

For any
√
N ≤M = o(N3/4), there exists a constant C > 0 such that

E0TM ≥ C(N log(M/
√
N) +

√
N). (7)

3 Voting on the complete graph Kn

For the complete graph Kn, the probability B increases at a given step is B(t)/n, whereas in
the pull process it is R(t)/n = 1−B(t)/n. The chain defined by Yt = max{R(t), B(t)}−n/2
is a Birth-and-Death chain. We study the time that takes Yt to reach N = n/2 starting
from 0.

ICALP 2016

145:6 Discordant Voting Processes on Finite Graphs

1

2

3

4
567

8

9

10

11

12

13
14 15 16

17

18

(a) All X(i) = i mod 2 (b) Lower bound configuration

Figure 1 A cycle with n = 18. Example colourings.

Push process. For the push model, the process Yt is identical to the push chain Zt with
transitions pi given by (5), with δ = 0. The result of Theorem 1 that ET (Push) = Θ(n logn)
follows from Lemma 4.

Pull process. As pull is the opposite of push, the pull process Yt has transitions given by
pi = 1− pi, i.e. . Thus p0 = 1, pi = 1/2− i/n if i ∈ {1, . . . , N − 1}, and pN = 0.

Let wk =
(

n
N+k

)
, k = 0, 1, . . . , N . Then wk satisfies the detailed balance equation (1).

Hence we have π(k) = wk/W , where W = w0 + w1 + · · ·+ wN . It follows from (2) that

Ei−1Ti = 2n
n+ 2i ·

1(
n

N+i
) · i−1∑

k=0

(
n

N + k

)
.

Putting i = N we have

EN−1TN =
N−1∑
k=0

(
n

N + k

)
= 1

2

(
2n − 2 +

(
n

N

))
= Ω(2n).

On the other hand, an upper bound

N∑
i=1

Ei−1Ti ≤ 2 · 2n ·
N∑
i=1

1(
n

N+i
) = O(2n),

follows from a result of Sury [19], that

N∑
i=1

1(
n

N+k
) = n+ 1

2n
n∑
i=0

2i

i+ 1 = O(1).

4 Voting on the cycle

An n-cycle G, with V = [n], has E = {(i, i + 1) : i ∈ [n]}, where we identify vertex n + i

with vertex i. See Fig. 1(i).
If X(i) 6= X(i+ 1) = X(i+ 2) = · · · = X(j) 6= X(j + 1), we say i+ 1, i+ 2, . . . , j is a

run of vertices of length (j − i) (1 ≤ j − i < n). Note that the number of runs is equal to the
number of discordant edges k(X). Also k is even, since red and blue runs must alternate,

C. Cooper, M. Dyer, A. Frieze, and N. Rivera 145:7

so we can write r(X) = 1
2k(X), and k0 = 2r0 = k(X0). Thus r(X) is the number of paths

of a given colour. A singleton is a run of length 1. Since they lie in two discordant edges,
singletons require special treatment. Let s(X) denote the number of singletons. There are
κ = 2k − s discordant vertices, so k ≤ κ ≤ 2k.

We wish to determine the convergence time T for an arbitrary configuration X0 of the
push or pull process to reach an absorbing state XT with XT (i) = XT (1) (i ∈ [n]). In this
process, the run lengths behave rather like symmetric random walks on the line. However,
an analysis using classical random walk techniques [9] seems problematic. There are two
main difficulties. Firstly, the k “walks” (run lengths) are correlated. If a run is long, the
adjacent runs are likely to be shorter, and vice versa. Secondly, when the recoloured vertex
is a singleton, the three adjacent runs are combined, so three walks suddenly merge into one.
One of the three runs is a singleton, but the other two may have arbitrary lengths. We use
the random walk view only for a lower bound on the convergence time.

I Lemma 5. Let G is an n-cycle, with n = 2N even, and suppose the process starts with
X0(i) = 0 (i = 1, . . . , N), X0(i) = 1 (i = N + 1, . . . , n), then E[T] = Ω(n2).

Let Lt be the length of (say) the red run at step t, so L0 = N , (see Fig. 1(ii)), and
LT ∈ {0, n}. The number of runs k(Xt) can only be reduced from two to zero if either Lt = 1
or Lt = n− 1, when one of the runs is a singleton. Up to this point, Lt is a symmetric simple
random walk and the push and pull processes proceed identically. Thus E[T] is bounded
below by the expected time for a symmetric simple random walk started at N to reach either
1 or (n− 1). By Remark 1, E[T] ≥ (N − 1)2 = Ω(n2).

4.1 Upper bound for push voting: Proof that E[T] = O(n2)
Let the k runs in X have lengths `1, `2, . . . , `k respectively, thus

∑k
i=1 `i = n. Thus T is the

first t for which k(Xt) = r(Xt) = 0, (a cycle is not a path). For an upper bound on E[T], we
define a potential function

ψ(X) =
k∑
i=1

√
`i ,

where ψ(X) = 0 if and only if k(X) = 0. The important feature of ψ is that it is a separable
and strictly concave function of the `i (i ∈ [k]).

I Lemma 6. For any configuration X on the n-cycle with k runs, ψ(X) ≤
√
kn.

Proof. If k = 0, this is clearly true. Otherwise, if k ≥ 2, by concavity we have ψ(X)/k =
1
k

∑k
i=1
√
`i ≤

√
1
k

∑k
i=1 `i =

√
n/k, so ψ(X) ≤

√
kn. J

Observe that k(Xt+1) = k(Xt) at step t of either the push or pull process, unless the
recoloured vertex is a singleton, in which case we may have k(Xt+1) = k(Xt) − 2. Thus
{t : k(Xt) = 2r} is an interval [tr, tr−1), which we will call phase r of the process.

Let vt = v ∈ D(Xt) be the active vertex, i.e. the vertex selected to push in the push rule,
or pull in the pull rule. Let δv be the expected change in ψ, i.e.

δv = E[ψ(Xt+1)− ψ(Xt) | vt = v].

If there are κ = 2k − s discordant vertices, the total expected change δ in ψ is

δ = E[ψ(Xt+1)− ψ(Xt)] = 1
κ

∑
v∈D

δv. (8)

ICALP 2016

145:8 Discordant Voting Processes on Finite Graphs

`v

`u

u

v

(A) u and v not singleton

`w

`u

`v=1

u

v

w

(B) u not singleton, v singleton

`w

`q

w

`u=1

`v=1

u

v

q

(C) u and v both singleton

Figure 2 Cases for discordant edge uv.

We will show that δ is negative, so ψ(Xt) is monotonically decreasing with t, in expectation.
Unfortunately we cannot simply bound δv for each v ∈ D, since it is possible to have δv > 0.
Thus we will consider discordant edges. We partition the set K of discordant edges uv into
three subsets, Note that k can change only if uv ∈ B ∪ C.
(A) A = {uv : u and v not singleton};
(B) B = {uv : u not singleton, v singleton};
(C) C = {uv : u and v both singleton}.
See Fig. 2. Let `z be the length of the run containing discordant vertex z, for z ∈ {u, v, w, q}.

Now let

λuv =


√
`u +

√
`v, uv ∈ A ;√

`u + 1
2
√
`v, uv ∈ B ;

1
2
√
`u + 1

2
√
`v, uv ∈ C .

δuv =


δu + δv, uv ∈ A ;
δu + 1

2δv, uv ∈ B ;
1
2δu + 1

2δv, uv ∈ C .

Each singleton is in two discordant edges, all other discordant vertices in one, and each run
is bounded by two discordant vertices. Therefore

ψ = 1
2

∑
v∈D

√
`v =

∑
uv∈K

λuv , δ = 1
κ

∑
v∈D

δv = 1
κ

∑
uv∈K

δuv .

We will show that δuv < 0 for all uv ∈ K. For the proof of the following lemma see [5].

I Lemma 7. For all three cases (A)–(C), and for all uv ∈ K,
For push voting, δuv < − 1

5 (`−3/2
v + `

−3/2
u). For pull voting, δuv < − 1

10 (`−3/2
v + `

−3/2
u).

The following proof that E[T] = O(n2) is for push voting. The upper bound on E[T] for
pull voting is at most twice that for push. Using Lemma 7 we evaluate δ in (8).

δ = 1
κ

∑
v∈D

δv = 1
κ

∑
uv∈K

δuv ≤ −
1

5κ
∑
uv∈K

(`−3/2
v + `−3/2

u) < − 1
5κ
∑
v∈D

`−3/2
v .

Thus

E[ψ(Xt+1)] < ψ(Xt)−
1

5κ
∑
v∈D

`−3/2
v .

Since f(x) = x−3 is a convex function, E[f(X)] ≥ f(E[X]) by Jensen’s inequality [20, 6.6],
so

1
κ

∑
v∈D

`−3/2
v ≥

(1
κ

∑
v∈D

√
`v

)−3
=
(κ

2ψ(Xt)

)3
≥
(k

2ψ(Xt)

)3
,

C. Cooper, M. Dyer, A. Frieze, and N. Rivera 145:9

Therefore,

E[ψ(Xt+1)] < ψ(Xt)−
1
5

(k

2ψ(Xt)

)3
= ψ(Xt)−

k3

40ψ(Xt)3 . (9)

Recall that for r ∈ [r0], phase r of the process, during which the number of runs is k = 2r, is
the interval [tr, tr−1). During phase r, by Lemma 6, ψ(Xt) ≤

√
kn. Using this in (9) gives

E[ψ(Xt+1)]− ψ(Xt) ≤ − 1
40k

3/(kn)3/2 = − 1
40 (k/n)3/2 . (10)

Let γr = 1
40 (2r/n)3/2. Then (10) implies that Yt = ψ(Xt)+(t−tr)γr is a supermartingale [20,

10.3] during phase r, and tr−1 is a stopping time. Let ϕr = E[ψ(Xtr)], and let mr =
E[tr−1 − tr]. The optional stopping theorem [20, 10.10] implies that

ϕr−1 + γrmr = E[ψ(Xtr−1) + γr(tr−1 − tr)] ≤ E[ψ(Xtr)] = ϕr ,

which implies

ϕr − ϕr−1 ≥ γrmr = 1
40mr(2r/n)3/2 (r ∈ [r0]) . (11)

Note, in particular, that ϕr ≥ ϕr−1 for all r ∈ [r0]. When r0 = 1
2k(X0), tr0 = 0 and, since

r(XT) = k(XT) = 0, when t0 = T then ϕ0 = 0.
Let xr = ϕr − ϕr−1 ≥ 0, for r ∈ [r0], so ϕr =

∑r
i=1 xj ≤

√
2rn. Also, from (11), we have

mr ≤ 40xr(n/2r)3/2 = 10
√

2n3/2xr/r
3/2, so E[T] =

∑r0
j=1 mj < 10

√
2n3/2∑r0

j=1 xr/r
3/2.

Thus E[T] is bounded above by T ?, the optimal value of the following linear program.

T ? = max 10
√

2n3/2∑r0
r=1 xr/r

3/2

such that
∑r
j=1 xj ≤

√
2rn (r ∈ [r0])

xj ≥ 0 (j ∈ [r0]) .

(12)

This linear program can be solved by a greedy procedure.

I Lemma 8. Let 0 < b1 < b2 < · · · < bν and c1 > c2 > · · · > cν > 0. Then the linear
program max

∑ν
j=1 cjxj subject to

∑r
j=1 xj ≤ br, xr ≥ 0 (r ∈ [ν]) has optimal solution

x1 = b1, xj = bj − bj−1 (j = 2, 3, . . . , ν).

Proof. This solution has objective function value c1b1 + c2(b2 − b1) + · · · + cν(bν − bν−1).
The dual linear program is min

∑ν
i=1 biyi subject to

∑ν
i=j yi ≥ cj , yj ≥ 0 (j ∈ [ν]), and has

feasible solution yν = cν , yj = cj − cj+1 (j ∈ [ν − 1]). Then the dual objective function has
value bνcν + bν−1(cν−1 − cν) + · · ·+ b1(c1 − c2). However,

c1b1 + c2(b2 − b1) + · · ·+ cν(bν − bν−1) = bνcν + bν−1(cν−1 − cν) + · · ·+ b1(c1 − c2) .

Since the objective function values are equal, it follows that the two solutions are optimal in
the primal and dual respectively. J

Thus, the optimal solution to (12) is xr =
√

2nr−
√

2n(r − 1) =
√

2nr(1−
√

1− 1/r) ≤√
2n/r, for r ∈ [r0], since 1− y ≤

√
1− y for 0 ≤ y ≤ 1. Thus

T ? ≤ 10
√

2n3/2
r0∑
j=1

xr/r
3/2 ≤ 10

√
2n3/2

r0∑
j=1

√
2n/

(√
r r3/2) = 20n2

r0∑
r=1

1/r2 < (10π2/3)n2 ,

since
∑∞
r=1 1/r2 = π2/6. Thus we have an absolute bound of E[T] = O(n2).

ICALP 2016

145:10 Discordant Voting Processes on Finite Graphs

r + 1, b− 1, R

r, b, B

r, b, R

r − 1, b+ 1, B

r − 1, b+ 1, R

r − 2, b+ 2, B

S(r + 1) S(r) S(r − 1)

b
b+1

r−1
r

1
b+1

1
r+1

1
b+2

1
r

Figure 3 Star graph: Pseudo-states for the push process.

5 Theorem 3: Voting on the star graph Sn

In this section we prove ET (Push) = Θ(n2 logn). The result that ET (Pull) = O(n2) is given
in [5].

Let (r, b,X) denote the coloring of the star graph Sn on n vertices in which there are
r red vertices b = n − r blue vertices. The central vertex has colour X ∈ {R,B}. In the
case of the push process, the transitions from state (r, b, R) are to state (r+ 1, b− 1, R) with
probability 1/(b+ 1) and to state (r− 1, b+ 1, B) with probability b/(b+ 1). The transitions
from state (r − 1, b+ 1, B) are to (r, b, R) with probability (r − 1)/r and to (r − 2, b+ 2, B)
with probability 1/r. For the purposes of discussion we group the states (r,R) = (r, b, R)
and (r − 1, B) = (r − 1, b+ 1, B) into a single pseudo-state S(r).

The transitions probabilities within or between S(r+ 1) or S(r−1) are shown in Figure 3,
and are derived as follows. Let X,Y ∈ {R,B}. For a particle occupying a state (of colour) X
in S(r) let PX(Y, r) be the probability of exit from S(r) via state Y . For example PR(R, r)
is the probability that a particle starting at (r,R) eventually exits from S(r) via state (r,R)
to state (r + 1, R) in S(r + 1). Thus

PR(R, r) = 1
b+ 1

(
1 + b

b+ 1
r − 1
r

+ · · ·+
(

b

b+ 1
r − 1
r

)k
+ · · ·

)
,

so that

PR(R, r) = 1
b+ 1

1
1− [b(r − 1)/(b+ 1)r] = r

n
.

Similarly let PB(R, r) be the probability that a particle currently at (r− 1, B) in S(r) moves
from S(r) to (r + 1, R) in S(r + 1). Then

PB(R, r) = r − 1
r

PR(R, r) = r − 1
n

.

In summary, starting from state X ∈ {R,B} of S(r), for 1 ≤ r ≤ n − 1 the transition
probability pX(r) from S(r) to S(r + 1) (resp. transition probability pX(b) from S(r) to
S(r − 1)) is given by

pX(r) =
r − 1(X=B)

n
, pX(b) =

b+ 1(X=B)

n
. (13)

States (0, B) (i.e. S(0)) and (n,R) (i.e. S(n)) are absorbing.
Let i = max(r, b)− n/2. To obtain lower and upper bounds on the number of transitions

between pseudo-states S(r) before absorption, we can couple the process with a biassed

C. Cooper, M. Dyer, A. Frieze, and N. Rivera 145:11

random walk on the line L = {0, 1, ..., n/2} with a reflecting barrier at 0 and an absorbing
barrier at n/2. We assume n is even here. For 0 < i < n/2, let pi be the probability of a
transition from i to i+ 1 on L, and let qi = 1− pi be the probability of a transition from i

to i− 1. It follows from (13) that to obtain bounds on the number of transitions between
pseudo-states S(r) before absorption we can use a value of pi given by

pi = 1/2 + (i+ 1)/n Lower bound, pi = 1/2 + (i− 1)/n Upper bound. (14)

We next consider the number of loops, for example (r,R)→ (r− 1, B)→ (r,R), made within
S(r) before exit. For a particle starting from state X of S(r) let CXY = CXY (r) be the
number of loops before exit at state Y . Let λ = b

b+1
r−1
r and ρ = λ/(1− λ)2, then

ECRR =
∑
k≥0

1
b+ 1kλ

k = 1
b+ 1

λ

(1− λ)2 = ρ
1

b+ 1 .

Similarly,

ECBR = ρ
r − 1
r(b+ 1) , ECRB = ρ

b

r(b+ 1) , ECBB = ρ
1
r
.

The conditional expectations µXY (r) = ECXY (r)/PX(Y, r) are given by

µXY (r) =


ρnr

1
b+1 , XY = RR

ρnr
1
b+1 , XY = BR

ρ n
n−r

b
r(b+1) , XY = RB

ρ n
n−r+1

1
r , XY = BB

. (15)

The value of ρ = (rb(r − 1)(b+ 1))/n2. In particular if b, r = (1 + o(1))n/2 then, whatever
colours X,Y

µXY (r) = (1 + o(1))n4 . (16)

Let N = n/2. Starting from r = b = N let T ′N be the number of transitions between states
S(r) to reach max(r, b) = N + n/2. Referring to (14), we consider a biassed random walk
with transition probabilities of Z = max{r, b} − n/2 given by

pi =


1, if i = 0
1/2 + i/n+ δ/n, if i ∈ {1, . . . , n/2− 1}
0, if i = n/2

, (17)

where we set δ = 1 for a lower bound on the number of steps T ′ to absorption, and δ = −1
for an upper bound. The walk in (17) is the push chain Zt with transitions given by (5) as
analysed Section 2. Referring to (5) and (4) we set δ = 0 for a lower bound on E0TM . For
M = N3/4, from Lemma 4,

E0TM ≥ Θ(1)
M∑

i=
√
N

N

i
≥ Θ(N) log M√

N
= Θ(n logn).

For all states i =
√
N, ..., N3/4, the corresponding value of r = (1 + o(1))n/2. Referring to

(16), whatever the type of transition XY between S(r) and neighbouring states, µXY (r) =
(1 + o(1))n/4. Let µ = minX,Y (µXY (r) : n/2 ≤ r ≤M), then µ ≥ n/5. As E0TN ≥ E0TM =
Θ(n logn) we have that

ET (Push) ≥ µ E0TM = Ω(n2 logn).

The upper bound follows by a similar argument. Put δ = −1 in (5), and use Lemma 4.

ICALP 2016

145:12 Discordant Voting Processes on Finite Graphs

5.1 Discordant voting: Simulation results for star graph and cycle

0

20000

40000

60000

0 100 200 300 400 500
Number of vertices(n)

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 (
T

)

Cycle graph: Discordant voting
 Push, Pull and Oblivious protocols

0

50000

100000

150000

200000

0 100 200 300 400 500
Number of vertices(n)

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 (
T

)

Star graph: Discordant voting
 Push, Pull and Oblivious protocols

Figure 4 Legend: Push (Square), Pull (Triangle), Oblivious ET = n2/4 (Solid line). Left plot:
Cycle, initial colouring alternating red-blue (see Fig.1(i)), Right plot: Star graph, random colouring
R(0) = B(0) = n/2. Each plot point consists of at least 15 replications.

References
1 D. Aldous and J. Fill. Reversible markov chains and random walks on graphs, 2002.

Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/
~aldous/RWG/book.html.

2 J. Aspnes and E. Ruppert. An introduction to population protocols. In Middleware for
Network Eccentric and Mobile Applications, pages 97–120. Springer, 2009.

3 R. Basu and A. Sly. Evolving voter model on dense random graphs. arXiv preprint.
arXiv:1501.03134, 2015.

4 S. Brahma, S. Macharla, S. Pal, and S. Singh. Fair leader election by randomized voting.
In Distributed Computing and Internet Technology, pages 22–31. Springer, 2004.

5 C. Cooper, M. Dyer, A. Frieze, and N. Rivera. Discordant voting processes on finite graphs
(full version). arXiv preprint. arxiv.org/abs/1604.06884, 2015.

6 C. Cooper, R. Elsasser, H. Ono, and T. Radzik. Coalescing random walks and voting on
connected graphs. SIAM Journal on Discrete Mathematics, 27(4):1748–1758, 2013.

7 C. Cooper, A. Frieze, and T. Radzik. Multiple random walks in random regular graphs.
SIAM Journal on Discrete Mathematics, 23(4):1738–1761, 2009.

8 R. Durrett, J. Gleeson, A. Lloyd, P. Mucha, F. Shi, D. Sivakoff, J. Socolar, and C. Varghese.
Graph fission in an evolving voter model. Proceedings of the National Academy of Sciences,
109(10):3682–3687, 2012.

9 W. Feller. An introduction to probability theory and its applications, volume 2. John Wiley
& Sons, 2008.

10 D. Gifford. Weighted voting for replicated data. In Proceedings of the seventh ACM
symposium on Operating systems principles, pages 150–162. ACM, 1979.

11 T. Gross and H. Sayama. Adaptive networks. Springer, 2009.
12 Y. Hassin and D. Peleg. Distributed probabilistic polling and applications to proportionate

agreement. Information and Computation, 171(2):248–268, 2001.

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

C. Cooper, M. Dyer, A. Frieze, and N. Rivera 145:13

13 P. Holme and M. Newman. Nonequilibrium phase transition in the coevolution of networks
and opinions. Physical Review E, 74(5):056108, 2006.

14 B. Johnson. Design & analysis of fault tolerant digital systems. Addison-Wesley Longman
Publishing Co., Inc., 1988.

15 D. Levin, Y. Peres, and E. Wilmer. Markov chains and mixing times. AMS Bookstore,
2009.

16 E. Mossel and S. Roch. Slow emergence of cooperation for win-stay lose-shift on trees.
Machine Learning, 67(1-2):7–22, 2007.

17 T. Nakata, H. Imahayashi, and M. Yamashita. Probabilistic local majority voting for the
agreement problem on finite graphs. In Computing and Combinatorics, pages 330–338.
Springer, 1999.

18 H. Sayama, I. Pestov, J. Schmidt, B. Bush, C. Wong, J. Yamanoi, and T. Gross. Modeling
complex systems with adaptive networks. Computers & Mathematics with Applications,
65(10):1645–1664, 2013.

19 B. Sury. Sum of the reciprocals of the binomial coefficients. European Journal of Combin-
atorics, 14(4):351–353, 1993.

20 D. Williams. Probability with martingales. Cambridge University Press, 1991.
21 Deng X and C. Papadimitriou. On the complexity of cooperative solution concepts. Math-

ematics of Operations Research, 19(2):257–266, 1994.

ICALP 2016

	Introduction
	Birth-and-Death chains
	Voting on the complete graph Kn
	Voting on the cycle
	Upper bound for push voting: Proof that E[T]=O(n*n)

	Theorem 3: Voting on the star graph Sn
	Discordant voting: Simulation results for star graph and cycle

