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ABSTRACT

Many potassium channel families are over-expressed in cancer, but their 

mechanistic role in disease progression is poorly understood. Potassium channels 

modulate membrane potential (V
mem

) and thereby influence calcium ion dynamics and 
other voltage-sensitive signaling mechanisms, potentially acting as transcriptional 

regulators. This study investigated the differential response to over-expression and 

activation of a cancer-associated potassium channel, the intermediate conductance 

calcium-activated potassium channel (IK), on aggressive behaviors in mammary 

epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic 

breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast 

epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was 

assessed. IK over-expression increased primary tumor growth and metastasis of 

MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer 
type that increased IK is sufficient to promote cancer aggression. The primary tumors 
had similar vascularization as determined by CD31 staining and similar histological 

characteristics. Interestingly, despite the increased in vivo growth and metastasis, 

neither IK over-expression nor activation with agonist had a significant effect on 
MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased 

MCF-10A proliferation and invasion through Matrigel but had no effect on migration 

in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell 
aggression in vivo. Our data provide novel evidence supporting IK and downstream 

signaling networks as potential targets for cancer therapies.

INTRODUCTION

Breast cancer is one of the most common forms of 

cancer with roughly 230,000 new cases per year and is 

responsible for 40,000 deaths in the United States alone. 

About 1 in every 8 women will be diagnosed with breast 

cancer at some point in her lifetime. Women diagnosed 

with localized breast cancer have an excellent prognosis 

with over 98% 5 year survival. Unfortunately, patients 

with metastases have only a 25.9% 5 year survival 

highlighting the need for treatments aimed at metastasis 

[1]. A major hindrance to the development of better breast 

cancer treatments is a lack of understanding of what drives 

disease progression to metastasis. For decades it has been 

known that some cancers remain in a benign state for long 

time periods while others quickly progress to malignancy, 

and that generally only a subset of tumor cells are 

capable of metastasis. Although many metastasis-specific 
pathways have been described, our understanding of the 

upstream signals that activate these pathways, and the 

www.impactjournals.com/oncotarget/ Oncotarget, Advance Publications 2017



Oncotarget2www.impactjournals.com/oncotarget

factors that cause certain cells to metastasize while nearby 

syngeneic cells do not, remain largely unknown [2].

Over the past decade ion channels have been 

receiving increased attention for their roles in cancer 

progression. Numerous cancer types have altered ion 

channel expression, with expression of certain channels 

correlating with cancer stage [3]. In various cases, 

inhibiting these channels leads to a decrease in cancer-

associated behaviors including primary tumor growth 

and metastasis in vivo [4–6]. Most studies have focused 

on ion channels as downstream targets of signaling 

pathways that execute critical mechanical functions 

required for aggressive behaviors. For instance, inhibiting 

certain chloride and potassium channels responsible for 

generating changes in cell volume decreases cell migration 

and proliferation [7]. However, evidence suggests ion 

channels may have upstream regulatory roles as well, and 

little is known about the ability of ion channel activity to 

initiate signaling cascades to promote aggressive cancer 

behaviors [8, 9].

The intermediate conductance calcium-activated 

potassium channel (IK) is over-expressed in numerous 

cancer types including breast, prostate, uterus, stomach, 

colorectal, pancreas, pituitary gland, and brain cancers 

[10] and inhibiting IK decreases cancer cell proliferation, 

migration, and in vivo tumor growth and metastasis  

[11–16]. Based on these results, the widely held theory in 

the field is that IK is a downstream effector of signaling 
pathways and is required in the late steps of enacting 

aggressive cancer behaviors. However, IK may have 

additional upstream instructive roles and its activity may 

be sufficient to initiate aggressive behaviors through 
its effect on calcium dynamics. In prostate cancer 

cells, activation of IK with its agonist was sufficient to 
significantly increase intracellular calcium concentrations 
suggesting IK could regulate downstream calcium-

dependent signaling pathways [17]. Furthermore, IK 

activation was sufficient to increase prostate cancer 
proliferation, providing additional evidence of the ability 

of IK to activate signaling pathways [12]. However, the 

possible sufficiency of IK to promote aggressiveness has 
not been previously studied in breast cancer cells.

In the present study, our aims were (1) to investigate 

whether increased IK activity was sufficient to promote 
proliferation in breast epithelial cells and cancer cells 

and (2) to investigate whether an increase in IK was also 

sufficient to increase other aggressive cancer behaviors, 
including tumor growth and metastasis in vivo. We chose 

to use the metastatic breast cancer cell line MDA-MB-231 

because IK inhibition studies demonstrated decreased 

proliferation, migration, and colony formation indicating 

IK has an important physiological role in aggressive 

behaviors in this cell line [18]. Surprisingly, we found 

that MDA-MB-231 in vitro proliferation, invasion, 

and migration were not affected by IK over-expression 

or activation. Interestingly, however, increased IK 

decreased proliferation and invasion of the spontaneously 

immortalized breast epithelial non-tumorigenic MCF-

10A cell line but had no effect on migration. In contrast 

to the in vitro results, we found that over-expressing IK 

in MDA-MB-231 was sufficient to increase primary 
tumor growth and metastasis in mice. This study is the 

first to demonstrate the sufficiency of IK to increase 
cancer aggression in vivo and suggests the possibility of 

key differences in behavioral response to IK activation 

between tumorigenic and non-tumorigenic cells, although 

more cell lines must be tested to determine a potential 

trend. Our results indicate that IK plays an important 

instructive role in cancer progression and suggest the 

possibility of unique signaling mechanisms that could be 

used as specific targets.

RESULTS

IK over-expression increases potassium current 

and hyperpolarizes V
mem

In order to test the sufficiency of increased IK to 
induce increased aggression in the breast cancer cell line 

MDA-MB-231, we first generated cells with increased IK 
expression. Cells were infected by a retrovirus encoding 

either IK and red fluorescent protein (RFP) or RFP alone 
as vector control and selected for RFP using fluorescence 
activated cell sorting (FACS) (Supplementary Figure 

1). MDA MB 231 have previously been reported to 

endogenously express IK [19](data accessible at NCBI 

Geo database GSE41678). We confirmed that IK was 
expressed in control cells (MDA-MB-231-RFP) by RT-
PCR and that cells infected with IK virus (MDA-MB-231-
IK) had significantly increased IK expression (p = 0.0027, 
2-sample t-test, Figure 1A). Overexpression was further 

confirmed at the protein level by immunofluorescence 
(Figure 1B).

To validate functional activity of the over-expressed 

IK channel, the electric current density and V
mem

 of 

individual cells were measured in the presence or absence 

of 200 μM of the IK agonist 1- Ethylbenzimidazolinone 
(1-EBIO). It should be noted that 1-EBIO is also an 

agonist of the closely related small conductance calcium 

activated potassium channels (SK) [20]. However, SK 

transcripts were below the limit of detection using RT-
PCR suggesting that IK is more prevalent. Furthermore, 
treatment of MDA-MB-231 with the IK specific antagonist 
TRAM-34 inhibits most calcium-sensitive potassium 
current indicating that SK has lower endogenous activity 

[18]. Electrophysiological recordings were acquired in 

the cell attached configuration using a perforated patch in 
order to best maintain the endogenous cytosolic contents 

and preserve V
mem

. 1-EBIO treatment had no effect on 

current density of control MDA-MB-231-RFP cells  
(q = 0.15; 1-way ANOVA of 0 mV current density). 
Similarly, IK over-expression had no effect on current 
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density in the absence of 1-EBIO (q = .31; 1-way ANOVA 
of 0 mV current density). However, in MDA-MB-231-IK 

cells, 1-EBIO treatment significantly increased the current 
density from 0.98 ± 2.32 pA/pF to 32.33 ± 13.60 pA/pF (p < 

.001, q = 12.30 1-way ANOVA of 0 mV current density; 
Figure 1C). Furthermore, the current density of MDA-

MB-231-IK treated with 1-EBIO was significantly larger 
than either untreated or 1-EBIO treated control cells (q = 
11.31 and q = 11.14 respectively, 1-way ANOVA of 0 mV 
current density). The reversal potential for MDA-MB-231-

IK EBIO treated cells was -76.21 ± 2.58 mV, relatively near 

the potassium reversal potential predicted by the Nernst 

Figure 1: Functional contribution of IK over-expression to current density and V
mem

. (A) IK mRNA expression levels 
relative to GAPDH in total RNA collected from MDA-MB-231 infected with pMIG-RFP (Cont.) or pMIG-IK (IK) and selected for RFP 
fluorescence by FACS. Data are presented as mean with standard error of the mean (SEM) of 3 independent replicates (** significant 
difference p < 0.01, 2 sample t-test). (B) MDA-MB-231 control or MDA-MB-231-IK were fixed on coverslips and immunofluorescence 
microscopy was performed using antibodies to IK (green) with DAPI (blue) staining of the nuclei. Increased intensity of the green IK 
staining is evident in the MDA-MB-231-IK sample. (C) Endogenous and 1-EBIO induced current-voltage relationship in control and 

IK-expressing cells recorded in the cell attached perforated patch configuration from MDA-MB-231 cells. Data are presented as mean 
± SEM from a minimum of 7 recordings. The current density was significantly increased in MDA-MB-231-IK 1-EBIO treated cells as 
compared to control vehicle treated, control 1-EBIO treated, and MDA-MB-231-IK vehicle treated cells (*** p < 0.001, 1-way ANOVA 
of 0 mV current density) (D) V

mem
 averaged over 20 seconds from recordings of same cells as C. Data points represent individual cells, 

bars show mean with SEM (*** indicates significantly different than vehicle treated control p < .001, 1-way ANOVA). (E) V
mem

 recording 

of representative MDA-MB-231 control cell (top) and MDA-MB-231-IK cell (bottom) with bath solution exchanged to 1-EBIO solution 

beginning at 30 seconds and continuing through duration of recording. There is a ~7 second delay between when the solutions are changed 

and when the new solution reaches the cells.
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equation (-89.9 mV), indicating the current was comprised 

primarily of potassium flux. These data suggest that MDA-
MB-231-IK cells express significantly more functional IK 
channels than control MDA-MB-231-RFP cells.

IK over-expression without agonist treatment did 

not significantly alter the V
mem

 of MDA-MB-231 cells 

(control -26.3 ± 8.2 mV, MDA-MB-231-IK -33.5 ± 16.5 

mV, q = 1.34, 1-way ANOVA). However, there was 
a greater range of V

mem
 values in the MDA-MB-231-

IK population (range of -6.4 to -67.6 mV) compared to 

control cells (range of -13.9 to -40.6 mV; p = 0.045; F 
test to compare variance) with the IK population being 

skewed towards hyperpolarized (control -0.26, MDA-

MB-231-IK -0.62, adjusted Fisher-Pearson standardized 
moment coefficient), suggesting IK over-expression leads 
to increased basal levels of conductance in some cells or 

is transiently active (Figure 1D). Application of 1-EBIO 

significantly hyperpolarized the V
mem

 of MDA-MB-231-

IK cells to -73.9 ± -2.8 mV (p < .001, paired 2-sample 

t-test). 1-EBIO also hyperpolarized the V
mem

 in control 

cells, although this was not statistically significant (-40.3 
± 17.7 mV; p = 0.06 paired 2-sample t-test). Additionally, 
control cells exhibited a fluctuation in V

mem
 at the time of 

1-EBIO application, suggesting the presence of active IK 

or SK channels (Figure 1E).

MDA-MB-231 in vitro proliferation, invasion, 

and migration are unaffected by IK over-

expression and activation

We next investigated the effect of IK expression 

and activity on in vitro behaviors of MDA-MB-231 cells. 

IK is endogenously activated by calcium signaling and 

its activation is highly temporally and spatially regulated 

which may be important to its downstream function [13]. 

We wanted to compare the effect of increased IK current 

responding to endogenous temporal and spatial activation 

as well as to low and high levels of continuous pan-IK 

activation. Cells over-expressing IK were expected to 

maintain endogenous activation patterning but with larger 

currents. We therefore compared the behavioral response 

of control and IK over-expressing cells treated or untreated 

with agonist.

It has been previously reported that IK over-

activation by agonist treatment increases proliferation 

in prostate cancer cells [12]. Here, we monitored the 

proliferation of both control and IK over-expressing 

MDA-MB-231 cells over 4 days in the presence or 

absence of 1-EBIO. We found that there was no significant 
difference in proliferation across any of the conditions 

(Day 4: p = 0.33 1-way ANOVA; Figure 2A). We next 
evaluated in vitro behaviors associated with metastasis. 

The ability of cells to invade was assayed in vitro using 

a transwell assay in which the number of cells invading 

across a Matrigel-coated membrane in response to a 

serum gradient was quantified. There was no significant 
difference in the number of invading cells across any 

of the conditions (p = 0.32 1-way ANOVA; Figure 2B). 
Similarly, migration in a scratch wound assay was not 

altered, with no significant difference in the surface area 
of wound recovery after 10 h (p = 0.41 1-way ANOVA; 
Figure 2C). These results suggest that increased IK 

activity is not sufficient to increase in vitro measures of 

MDA-MB-231 cell aggression.

IK over-expression and activation decreases 

colony formation of MDA-MB-231 Cells

The ability to form colonies in soft agar is used as 

an in vitro measure of transformation and tumor forming 

Figure 2: IK over-expression and activation with 1-EBIO had no effect on MDA-MB-231 proliferation, invasion, or 
migration. (A) Proliferation of control and IK over-expressing MDA-MB-231 cells was quantified over 4 days for cells treated with 
vehicle control or 1-EBIO. There was no significant difference in cell number on any day (Day 4: p = 0.33, 1-way ANOVA). (B) Invasion 

through Matrigel coated transwell after 16 h using FBS as a chemoattractant. Average number of cells per field of view with 4 fields of view 
per sample and 4 replicates in each of 3 independent experiments. There was no significant difference in the number of invading cells across 
any condition (p = 0.32, 1-way ANOVA) (C) A confluent layer of MDA-MB-231 control or MDA-MB-231-IK was scratched and healing 
was assessed after 10 h with vehicle control or 1-EBIO treatment. There was no significant difference in the normalized surface area of 
wound recovery (p = 0.41, 1-way ANOVA). All data presented as mean with SEM of three independent replicates.



Oncotarget5www.impactjournals.com/oncotarget

ability. Inducing expression of oncogenes such as c-MYC 

or RAS in non-tumorigenic cell lines can confer colony 
forming ability which correlates with tumor formation 

in mouse xenografts demonstrating the capacity of this 

assay to assess conversion to a malignant phenotype [21]. 

MDA-MB-231 cells are highly malignant and therefore 

readily form colonies. Given that IK is over-expressed 

in many metastatic cancers, we anticipated increased IK 

activity would increase colony formation. Surprisingly, 

colony formation in IK-expressing cells was decreased 

to 64% as compared to untreated control and was 

further decreased to 30% by 1-EBIO treatment (Figure 

3A–3B; p < 0.001 1-way ANOVA). 1-EBIO similarly 
reduced the colony formation of control MDA-MB-231 

cells to 32% of untreated cells. These data suggest that 

treatment with 1-EBIO, which induces constant IK 

activation, more severely inhibits colony formation than 

elevated transiently activated IK induced by increased IK 

expression.

IK activation decreases MCF-10A proliferation 

and invasion

MDA-MB-231 cells are highly aggressive and 

so the lack of effect of IK expression/activity on cell 

proliferation, migration, and invasion may be due to an 

inability to further augment these already aggressive 

behaviors. We therefore tested the effect of increased IK 

expression and activation in the non-tumorigenic breast 

epithelial MCF-10A cell line. We created an IK over-

expressing population of MCF-10A cells. As with MDA-

MB-231, MCF-10A-IK cells had dramatically increased 

IK expression (p < 0.001, 2-sample t-test; Supplementary 
Figure 2A) and increased current density at 0 mV with 

1-EBIO treatment from 0.483 +/- 0.344 pA/pF in control 

cells to 22.90 +/- 18.46 pA/pF in MCF-10A-IK (p < .001, 

q = 7.30 1-way ANOVA, Supplementary Figure 2B). IK 

over-expression without agonist treatment hyperpolarized 

the V
mem

 of MCF-10A cells from -21 ± 6.3 mV in control 

cells to -47 ± 14.7 mV in MCF-10A-IK cells (p < 0.001, 

1-way ANOVA; Supplementary Figure 2C) indicating the 
overexpressed channels were activated by endogenous 

signaling. Application of 1-EBIO hyperpolarized MCF-

10A control cell V
mem

 to -31 ± 7.4 mV (p < 0.01, paired t 

test) indicating that the cells have endogenous IK or SK 

channels. 1-EBIO treatment induced a larger effect on 

MCF-10A-IK cells, hyperpolarizing the V
mem

 to -69 ± 

6.9 mV (p < 0.01, paired t-test). Although the effect of 

1-EBIO treatment may have been partially mediated by 

SK channel activation, we were not able to detect SK 

transcripts by RT-PCR suggesting SK has either very low 
or no expression in MCF-10A cells. In summary, these 

data demonstrate that IK overexpression in MCF-10A 

cells induces a similar change in electrical properties to 

MDA-MB-231 cells.

We next studied the effect of IK expression and 

activity on in vitro measures of aggression in MCF-10A 

cells. IK over-expression alone had no effect on MCF-10A 

cell proliferation, but activation of IK by 1-EBIO treatment 

significantly decreased proliferation of control MCF-10A 
cells by 33 ± 4 % and IK expressing cells by 43 ± 16 % 

(p < 0.01, 1-way ANOVA; Figure 4A). MCF-10A invasion 
was significantly decreased by both IK over-expression 
and activation (p < 0.001, 1-way ANOVA; Figure 4B). 

Figure 3: MDA-MB-231 soft agarose colony formation is decreased by both IK expression and IK activation. (A) Bright 

field images of crystal violet stained MDA-MB-231 control and MDA-MB-231-IK cells grown in soft agarose and treated with vehicle 
control or 1-EBIO for 28 days. (B) Quantification of colonies from A. Data presented as mean with standard deviation of three independent 
replicates, *** indicates significantly different than vehicle treated control, +++ significant difference between indicated samples (p < 0.001 
1-way ANOVA).
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It should be noted that in the control condition, less than 

1% of the cells loaded in the upper chamber invaded to 

the lower chamber reflecting similar basal invasion levels 
as has been reported elsewhere and significantly reduced 
as compared to MDA-MB-231 [22–24]. However, no 

significant change in cell migration using a wound scratch 
assay was observed across any condition (p = 0.28, 1-way 
ANOVA; Figure 4C). Finally, we tested the effect of IK 
expression and activity on colony-forming ability. MCF-

10A is an immortal but not transformed cell line and is 

unable to form colonies in soft agarose but can be induced 

to form colonies by expression of strong oncogenes [25]. 

Neither MCF-10A control nor MCF-10A-IK cells were 

able to form colonies with or without 1-EBIO treatment 

(Supplementary Figure 3).

IK over-activation by 1-EBIO causes MCF-10A 

but not MDA-MB-231 cells to accumulate in G2

We initially hypothesized that the differential 

proliferative response between MCF-10A and MDA-

MB-231 cells was due to a difference in apoptosis 

sensitivity. High potassium currents have been reported 

to induce apoptosis and one possibility was that MCF-

10A cells are sensitive to large potassium currents while 

MDA-MB-231 cells could be protected by anti-apoptotic 

signaling that is often active in highly metastatic cells 

[26]. To test this, we measured the percentage of apoptotic 

and dead cells to determine if the decrease in MCF-

10A cell number following IK activation was due to an 

increase in cell death. Control and IK over-expressing 

cells were cultured for 24 hours in 1-EBIO or vehicle 

control and stained with Annexin-V-FITC, which binds 

external phosphatidylserine an early marker of apoptosis, 

and violet dead cell stain. FACS was used to quantify 

the percentage of labeled cells. There was no significant 
difference in the percentage of apoptotic or dead cells 

across all cell conditions for both MCF-10A and MDA-

MB-231 cells (Figure 5A, 5C). We next investigated 

changes in the cell cycle distribution in the same samples 

using propidium iodide staining. 1-EBIO treatment 

increased the percentage of control and IK-overexpressing 

MCF-10A cells in the G2 phase (from 14.80 ± 3.71 % 

to 18.48 ± 3.27 % in control MCF-10A cells and from 

16.08 ± 2.18 % to 21.4 ± 5.1 % in MCF-10A-IK cells; p < 
0.01, 1-way ANOVA; Figure 5C). However, no significant 
differences were found in any of the conditions for MDA-

MB-231 cells (p = 0.29, 1-way ANOVA; Figure 5D). The 
increased G2 accumulation was therefore observed in the 

same populations that had decreased proliferation. These 

data suggest that in MCF-10A cells the G2/M checkpoint 

includes a requirement for decreased IK activity and/or 

depolarization and that MDA-MB-231 cells are able to 

evade this requirement, possibly due to strong pro-growth 

signaling active in this cell line.

IK expression increases MDA-MB-231 primary 

tumor growth and metastasis

Given the various effects of IK expression and 

activity on cellular aggressiveness in vitro, we next 

assessed the effect of IK over-expression on in vivo 

tumor growth and metastasis. MDA-MB-231 control and 

MDA-MB-231-IK cells were injected into the mammary 

fat pad of 6 wk old female Rag2-/- Il2rg-/- mice. Caliper 

measurements were used to estimate the tumor volume 

over 4 wks of tumor growth. Primary tumor growth 
was significantly increased in MDA-MB-231-IK tumors 

Figure 4: 1-EBIO treatment decreased MCF-10A proliferation and invasion but had no effect on migration. (A) Control 

and IK over-expressing MCF-10A proliferation was quantified over 4 days for cells treated with vehicle control or 1-EBIO (** p < 0.01 
indicates significantly different than vehicle control, 1-way ANOVA). (B) Invasion through Matrigel-coated transwell after 24 h using horse 

serum and EGF as a chemoattractant. Average number of cells per field of view with 4 fields of view per sample and 4 replicates in each of 
3 independent experiments (*** p < 0.001 indicates significantly different than vehicle treated control, +++ p < 0.001 indicates significant 
difference between indicated samples, 1-way ANOVA). (C) A confluent layer of MCF-10A control or MCF-10A-IK was scratched and 
treated with vehicle control or 1-EBIO. Healing was assessed after 12 h by quantifying the surface area of wound recovery (no significant 
difference across all conditions; p = 0.28, 1-way ANOVA). All data presented as mean with SEM of three independent replicates.



Oncotarget7www.impactjournals.com/oncotarget

beginning 17 days post cell injection (p < 0.05, 2-sample 

t test; Figure 6A). To demonstrate that the tumors were 
derived from the injected cells, tumor sections were 

stained for human nuclear antigen (HNA) and cells 

stained positively throughout the bulk of the tumor 

(Figure 6B). MDA-MB-231-IK tumors showed higher IK 

immunoreactivity compared to control tumors, suggesting 

that IK over-expression was retained in vivo (Figure 6B). 

Despite the increase in tumor size, there was no significant 
difference in the number of Ki67 positive proliferating 

cells in 28 day tumor sections (p = 0.27, 2-sample t-test; 
Figure 6C). There was also no significant difference 
in the number of cleaved caspase-3 positive apoptotic 

cells in tumor sections at day 28 (p = 0.15, 2-sample 
t-test; Figure 6E). However, there was a trend towards 
increased Ki67+ cells and reduced caspase-3+ cells in 

the IK-overexpressing tumors, suggesting that increased 

proliferation and/or reduced apoptosis may contribute to 

the increased size of these tumors. In addition, as these 

measurements were taken at the end of the experiment, 

they may underestimate a larger difference in proliferation 

or apoptosis that occurred earlier on in the growth of the 

tumor.

We next investigated whether the primary tumors 

also displayed differences in aggressive phenotypes. 

Staining of primary tumor sections with H&E revealed 

Figure 5: 1-EBIO treatment increased G2 phase accumulation in MCF-10A but had no effect on MDA-MB-231. Control 

and IK over-expressing MCF-10A (A) and MDA-MB-231 (C) cells were treated with vehicle control or 1-EBIO for 24 h, stained with 

annexin-FITC and violet dead stain, and analyzed by flow cytometry to quantify the percentage of positively stained cells (no significant 
difference in annexin-V or dead stained cells across any condition, 1-way ANOVA). (B, D) Plot of cell count versus propidium iodide 
(PI) fluorescence to analyze cell cycle. Arrow marks fluorescence intensity corresponding to G2 phase. Plot is representative of three 
independent replicates (MCF-10A **p < 0.01, MDA-MB-231 p = 0.29, 1-way ANOVA). All data presented as mean with SEM of three 
independent replicates.
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similar local invasion into surrounding muscle and 

fibroadipose tissue from both MDA-MB-231 control and 
MDA-MB-231-IK primary tumors (Figure 7A). To assess 

vascular density, primary tumor sections were stained 

with the endothelial marker CD-31 and the number of 

vessels per square millimeter was quantified. There was 
no significant difference in the vascular density between 
control and MDA-MB-231-IK tumors and surprisingly if 

anything there was a trend towards denser vascularization 

in control cells (p = 0.14, 2-sample t-test, Figure 7B).
We also assessed metastatic dissemination by 

comparing the number of cells metastasizing to the 

lung. Lungs were sectioned and stained with anti-

HNA antibody and the number of metastasizing cells 

was quantified. There was a significant increase in the 
number of metastasizing cells/mm2 in MDA-MB-231-IK 

injected mice as compared to control (p < 0.01, 2-sample 

t-test; Figure 8A-8B). In summary, IK over-expression 
significantly increased primary tumor growth as well as 
dissemination of cells to lung tissue.

DISCUSSION

Despite decades of research, metastatic cancer 

continues to have high rates of recurrence and patient 

mortality. A better understanding of the molecular 

pathways that promote aggressive behaviors is needed in 

order to develop treatments aimed at preventing metastasis. 

IK channels play important functions in proliferation, 

migration, and invasion as shown by a decrease in these 

behaviors in vitro and in vivo with IK inhibition or knock-

down [11, 14, 27, 28]. In this study we investigated 

whether IK was also sufficient to promote these behaviors, 
as sufficiency would suggest IK plays important roles in 
upstream signaling pathways driving disease progression. 

We found that over-expression of IK was sufficient to 
increase primary tumor growth and metastasis but that it 

had cell line dependent differential effects on aggressive 

behaviors in vitro. This study adds to data from inhibition 

studies suggesting differences in behavioral response 

to potassium channel activation between cell lines of 

different tumor aggressiveness [15, 29]. Furthermore, there 

was no significant change in MDA-MB-231 proliferation 
in response to IK activation, which is in contrast to the 

previously reported increased proliferation of prostate 

cancer cell lines [12, 17]. These results suggest important 

differences exist in the signaling networks downstream of 

IK activation between different cell lines and support the 

investigation of primary tissue and tumors to determine if 

these differences correlate with disease state.

In support of the initial hypothesis that increased 

IK activity promotes cancer progression, in vivo primary 

tumor growth and metastasis of MDA-MB-231 to the 

lung was increased by IK over-expression. MDA-

MB-231 control and MDA-MB-231-IK cells developed 

similarly aggressive primary tumors with no observable 

difference in local tissue invasion or vascularity. This may 

be because MDA-MB-231 cells are endogenously highly 

invasive and it may be difficult to observe potentiation 
in primary tumors. The in vivo data are in contrast to 

the effect of IK over-expression on in vitro proliferation 

and aggressive behaviors of MDA-MB-231 cells. While 

there was no significant effect of IK on proliferation, 
migration, or invasion, it is interesting to note that there 

was a trend of MDA-MB-231-IK having the highest 

value in each assay. It is possible that IK over-expression 

results in a small increase of each behavior that is 

challenging to detect within the inherent variability of 

the assays. But in vivo where the effect of all of these 

behaviors is combined during tumor growth, the overall 

effect is amplified and becomes statistically significant. 
Alternatively, we speculate the opposing in vitro and 

in vivo results could reflect a requirement for signaling 
from the surrounding tumor microenvironment. It is well 

known that many in vivo factors with important effects 

on cancer cell behavior are not recapitulated in vitro and 

often treatments that reduce aggressive in vitro behaviors 

have no effect in vivo [30–32]. Microenvironmental 

factors that influence IK activation and signaling have not 
been studied extensively and may have important roles. 

For example, growth-promoting effects of IK signaling 

may require highly specialized spatio-temporal activation 

that is not recapitulated in vitro. IK signaling may be 

initiated by interactions with stromal cell types, activation 

of specific adhesion molecules, or microenvironmental 
factors such as hypoxia or inflammatory cytokines, as 
potassium conductance has been shown to be sensitive 

to all of these factors [33, 34]. As a specific example, 
signaling from the human eag-related gene 1 potassium 

channel (hERG1) is dependent on interactions with 
integrin receptors, demonstrating one mechanism by 

which potassium channel activity is linked to a feature 

of the surrounding microenvironment [35, 36]. Further 

experiments are needed to determine how IK activity is 

responsive to microenvironmental factors.

Migration of both MCF-10A and MDA-MB-231 

cells was unaffected by IK over-expression and activation 

suggesting IK activity is insufficient to drive migration. 
Prior studies have reported that IK inhibition decreases 
migration in MDA-MB-231 and have supported a role for 

activation of IK specifically on the lagging edge [13, 18]. 
Activation lacking spatial regulation, such as occurs with 

addition of agonist, may have counteracting effects. The 

effect of increased IK expression on spatially restricted 

activation is not known. Activation of IK has been 

reported to increase intracellular calcium [17], allowing 

for the possibility of a positive feed-back loop whereby 

activation of some channels increases intracellular calcium 

which then activates additional channels. High expression 

of IK could increase positive feedback mechanisms and 

cause spatially restricted signals to be propagated to larger 

portions or the entire cell.
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Figure 6: IK over-expression increases in vivo tumor growth of MDA-MB-231. (A) MDA-MB-231 control (n = 11) and 
MDA-MB-231-IK (n = 9) cells were injected into the inguinal mammary fat pad of 6 wk old female mice and tumor size was plotted over 
time. Data presented as mean with SEM (* p < .05, ** p < .01, ***p < .001 2 sample t-test). (B) Fixed primary tumor sections stained 

with antibody to human nuclear antigen (green) with DAPI (blue) staining of the nuclei (top) or with anti-IK antibody (green; bottom). 
(C) Quantification of Ki67 positive (left) and active Caspase-3 positive (right) cells in primary tumor sections with representative images 
of Ki67 and active caspase-3 (green) staining with DAPI (blue) staining of the nuclei shown below. There was no significant difference in 
the percentage of either Ki67 or active caspase-3 positive cells (p = 0.27, 2-sample t-test and p = 0.15, 2-sample t-test).
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IK expression and activation decreased in vitro 

invasion of MCF-10A but not MDA-MB-231 cells. This 

effect was most pronounced in IK over-expressing cells 

treated with agonist and thus the degree to which MCF-

10A invasion was inhibited correlated with the level of 

IK activity. Given that there was no change in MCF-10A 

migration, the decreased invasion is likely related to 

either an inability to degrade the ECM or dysregulation of 

volume control preventing volume reduction required to 

pass through the pores in the membrane. Further studies 

are needed to distinguish these two possibilities as well 

as to understand why MCF-10A but not MDA-MB-231 

invasion is sensitive to increased IK currents. Surprisingly, 

IK expression and activation decreased MDA-MB-231 

colony formation. Further studies are needed to delineate 

a mechanism for this result.

In contrast to increased proliferation seen in 

prostate cancer cells, neither IK over-expression nor 

activation with 1-EBIO caused a change in MDA-MB-231 

proliferation, suggesting the mechanism downstream of 

IK activation may not be conserved across cancer types 

[12]. Additionally, proliferation of the non-tumorigenic 

cell line MCF-10A was decreased by IK activation in 

both control and IK over-expressing cells but not by IK 

over-expression alone. There was no change in apoptosis 

or cell death suggesting the diminished cell number 

was due to a decrease in the rate of cell division. MCF-

10A control and IK over-expressing cells treated with 

1-EBIO had a significant increase in the percentage of 
cells in G2 while IK over-expression alone had no effect 

on cell cycle distribution. MDA-MB-231, which had 

no change in proliferation across any condition, also 

Figure 7: No evidence of increased aggression in primary tumor. (A) Primary tumor sections stained with H&E. (B) Quantification 
of vessel density in primary tumors (top) with representative CD31 stained sections (bottom, green - CD31, blue - nuclei stained with DAPI; 
p =0.14, 2-sample t-test).
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had no significant difference in the percentage of cells 
in G2. Thus, the accumulation of MCF-10A cells in G2 

mirrored the decrease in proliferation, suggesting constant 

IK activation decreases proliferation of MCF-10A by 

inhibiting progression from G2 to mitosis. Changes in 

potassium channel activity and V
mem

 are associated with 

progression through check points of the cell cycle with 

depolarization and a decrease in potassium channel 

activity typically occuring during G2 [5]. Activation of IK 

may prevent depolarization during late G2 and progression 

to mitosis. Further investigation is needed to determine if 

G2 accumulation is due to hyperpolarization specifically, 
as this would for the first time indicate a requirement for 
depolarization as part of the G2 checkpoint. The different 

response seen between MDA-MB-231 and MCF-10A 

cells suggests the cell lines may have distinct bioelectric 

profiles with altered sensitivity to bioelectric events. 
This may be a result of differences in expression of 

bioelectric sensors including proteins related to calcium 

signaling, or a difference in the ability to compensate 

for the increased potassium current. Understanding the 

bioelectric requirements of the G2 checkpoint may help 

elucidate novel therapies designed to utilize differences in 

sensitivity to target specific cell populations.
One possible mechanism to explain the contrasting 

behavioral response between MCF-10A and MDA-

MB-231 is a difference in expression of IK binding 

partners and other closely associated proteins that differ 

between the two cell types. IK signaling is dependent 

on interactions with beta-1-integrin and TRP member 
calcium channels in other cell types [17, 37]. Little is 

known about variability of associated proteins and how 

it affects behavioral response. There are many members 

within the TRP calcium channel family each with 
unique activation properties and thus IK associated with 

different members may have a different effect on calcium 

Figure 8: IK over-expression increases metastasis to the lung. (A) Quantification of HNA positive cells in lung tissue sections 
collected 4 weeks after mice were injected in the mammary fat pad with MDA-MB-231 cells. Data are mean with SEM of 3 sections per 

mouse control n =8, IK n = 9 p < 0.01, 2-sample t-test). (B) Representative image of HNA staining (green) with DAPI (blue) counterstain 
in full lung section with arrows indicating positive cells.
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dynamics and downstream signaling. While some studies 

have investigated the requirement of associated proteins 

to IK signaling, none have investigated the effect of 

substituting related family members to gauge the response 

to a more subtle perturbation of the system. Additionally, 

a recent study found anomalous downstream responses to 

different IK inhibitors likely caused by maintenance of 

high intracellular calcium in response to one inhibitor but 

not the other [38]. Together with our work, these findings 
suggest the downstream response to IK modulation is 

complex and point to mechanisms that may make the 

response cell-type specific. Analysis of additional cell lines 
and primary cells is needed to determine if the divergent 

behavioral responses to IK stimulation are characteristic 

of specific cell types or disease states and to elucidate the 
mechanism driving the different behaviors.

Prior studies have placed the cancer-associated ion 
channel IK within a growing number of channels that 

are required to support aggressive tumor behaviors. This 

study is the first to demonstrate that IK is also sufficient to 
promote in vivo cancer growth and metastasis. Our findings 
suggest that IK has a greater impact on signaling pathways 

driving cancer progression, likely calcium-sensitive 

pathways, than previously thought. Ion channels are an 

intriguing potential mechanism of metastasis initiation as 

they are highly sensitive to microenvironmental factors 

and therefore could explain why only a small percentage 

of syngeneic cells go on to form metastases. The results of 

this study support the ability of IK to increase aggression 

of already transformed cancer cells. The ability of IK to 

promote tumor growth and metastasis in vivo points to 

the potential of IK-inhibiting drugs to decrease cancer 

progression. Furthermore, the opposing behavioral 

response between cancerous MDA-MB-231 and non-

tumorigenic MCF-10A cell lines warrants further study 

to determine if there are unique mechanisms conferring 

different sensitivities that could be utilized to formulate 

targeted therapies.

MATERIALS AND METHODS

Generation of pMIG expression plasmid

The retroviral expression plasmid pMIG and a 

plasmid containing tagRFP (RFP- red fluorescent protein) 
were purchased from Addgene (#12282 and #37537). 

A plasmid containing the IK complete coding sequence 

was purchased from Genecopoeia (GC-0G00902). The 

IK coding sequence in tandem with P2A and tagRFP 
was inserted into pMIG to replace the IRES and green 
fluorescent protein (GFP) sequence using the Gibson 
cloning method following manufacturer instructions 

(NEB). Briefly, primers were designed to amplify pMIG 
excluding the IRES-GFP sequence (forward primer 5’ 
GCCAAGCTTATCGATAAAATAAAAGA, reverse 

primer 5’ AATTCCGGCGCCTAGAGA). Primers for 

the channels and tagRFP were designed with 15-40 
bp overhanging sequences to match the adjacent DNA 

sequence of the final plasmid and to insert the P2A 
sequence (IK forward primer 5’ CTAGGCGCCGGAATT
ACCATGGGCGGGGATCTGG, reverse primer 5’ TCTC
CTGCTTGCTTTAACAGAGAGAAGTTCGTGGCTCC

GGATCCCTTGGACTGCTGGCTGGG; tagRFP forward 
primer 5’ TCTCTCTGTTAAAGCAAGCAGGAGACGT
GGAAGAAAACCCCGGTCCTGTGTCTAAGGGCGAA 

GAGCTGA, reverse primer 5’ CCTACAGGTGGGGTC
TCACTTGTACAGCTCGTCCATGCC). All fragments 

were amplified by PCR and gel purified. A Gibson 
reaction was performed using three DNA fragments, the 

pMIG backbone, channel, and tagRFP, to create the final 
plasmid (pMIG-IK). A plasmid with only tagRFP inserted 
was generated as a control (pMIG-RFP).

Retrovirus production and transduction

Two days prior to transfection, 2 × 106 293 Plat 
GP cells (Cell Biolabs) were plated on a 10 cm dish. 
Transfection was performed with 60 μL of lipofectamine 
2000, 6 μg of VSV packaging plasmid, and 12 μg of 
pMIG-Channel-P2A-RFP plasmid per manufacturer 
instructions. Cells were incubated in the DNA:liposome 

complex overnight in a final volume of 6 mL. At 72 hours 
post transfection, virus media was collected and filtered 
through a 45 μm filter. Human breast epithelial cell lines 
were transduced by incubating 50% confluent cells with 
virus in media supplemented with 6 μg/mL polybrene for 
24 hours. At 72 hours post-transduction, retrovirus treated 

cells were placed in media containing 50 μg/mL G418 for 
selection. Retrovirus infected cells were expanded for later 
FACS sorting.

Cell cultivation

MCF-10A and MDA-MB-231 cell line were 

purchased directly from ATCC which certified the identity 
of the cell lines by STR analysis and also certified the cell 
lines as pathogen-free. Cells were maintained following 

ATCC recommendations.

IK activation

Cells were treated with 200 µM 1-EBIO diluted 

from a 400 mM 1-EBIO stock solution in dimethyl 

sulfoxide (DMSO) resulting in a final concentration of 
0.05% DMSO in the cell medium. Control samples were 

treated with an equivalent concentration of DMSO as 

vehicle control.

Electrophysiology

Patch clamp recordings were performed in the cell 
attached perforated patch configuration and data were 
recorded with an Axon DigiData 1550 (Axon Instruments) 
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data acquisition system and an Axopatch 200B (Molecular 

Devices) amplifier. Data were low pass filtered at 5 kHz, 
sampled at 50 kHz, and analyzed using pClamp 10 

software (Axon Instruments). Patch pipettes were pulled 
from thin-wall borosilicate glass with a P-97 micropipette 
puller (Sutter Instruments) and fire polished resulting 
in 4-7 MΩ resistance pipettes. Pipettes were filled with 
intracellular electrode solution (5 mM NaCl, 145 mM 

KCl, 2 mM MgCl
2
, 1 mM CaCl

2
, 1.57 mM ethylene 

glycol-bis(2-aminoethylether)-N-N-N’-N’-tetraacetic 

acid (EGTA), 10 mM 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES), pH adjusted to 7.4 with 1 
M KOH) supplemented with 150 ng/ml Nystatin to induce 

pore formation. Prior to recording, cells plated on glass 
coverslips were perfused with external bath solution (144 

mM NaCl, 5.4 mM KCl, 1 mM MgCl
2
, 2.5 mM CaCl

2
, 

5.6 mM Glucose, 5mM HEPES, adjusted to pH 7.2 with 
1 M NaOH). After initial seal formation, with a minimal 

seal resistance cut off of 1.0 GΩ, perforation was assayed 
by monitoring the capacitive current transient to a 2.5 

mV step with -30 mV holding potential. Recordings were 
acquired once the series resistance was below 75 MΩ. 
V

mem
 recordings were taken for 30 seconds in control 

extracellular solution supplemented with vehicle control 

with no fluid-flow, during 30 seconds of bath exchange 
with the same solution, during 30 seconds of bath 

exchange with bath solution containing 200 uM 1-EBIO, 

and for 30 seconds in 200 µM 1-EBIO with no fluid flow. 
The reported V

mem
 values are the average from the last 

20 seconds recorded in static fluid from each condition. 
For the current-voltage protocol, cells were held at -30 

mV followed by 50 ms test pulses between -120 mV and 

80 mV in 40 mV steps. Current density was calculated 

by dividing the average current during the voltage step 

without leak subtraction by the whole cell capacitance.

RNA isolation, purification, and quantitative 
PCR

RNA was isolated from confluent cells in a 6-well 
plate. Cells were rinsed with PBS and 200 μL RNA-later 
(Ambion) was added before scraping and transferring 

cells to a 1.5 mL tube. RNA was purified using an RNeasy 
mini kit (Qiagen) per manufacturer instructions. The 

concentration of RNA was determined with a NanoDrop 
2000 (Thermo Scientific). Reverse transcription reactions 
were performed with 1 μg of RNA in a 20 μl reaction 
using iScript Reverse Transcription Supermix (Bio-Rad) 
following manufacturer instructions. Transcript expression 

levels were quantified with a Bio-Rad CFX96 Real Time 
System. Reactions were performed in 20 μL using iQ 
SYBR Green Supermix (Bio-Rad) and 40 ng cDNA with 
the following reaction conditions: 95 ° C 10 min, 40 cycles 

of 95° C 30 sec, 58° C 1 minute, 72 C° 1 minute. The 

primers used to amplify an IK fragment were forward 

primer 5’ CTGCTGCGTCTCTACCTGG and reverse 

primer 5’ AGGGTGCGTGTTCATGTAAAG and GAPDH 
was used as the housekeeping gene with forward primer 

5’ TTCGACAGTCAGCCGCATCTTCTT and reverse 
primer 5’ ACCAAATCCGTTGACTCCGACCTT. To 
detect SK and compare to IK expression levels, QPCR 
was performed using Taqman probes (Thermo Scientific) 
for SK, IK, and GAPDH with Taqman universal master 
mix II (Thermo Scientific) following manufacturer’s 
instructions.

Proliferation assay

MCF-10A cells were plated at 7.5 × 103 cells/cm2 

and MDA-MB-231 cells were plated at 1 × 104 cells/

cm2 in 6 well plates. Cells were allowed to attach in 

normal medium for 3 h followed by exchange to media 

supplemented with drug treatment. Cells were trypsinized 

and counted with a TC 10 automated cell counter (BioRad) 
daily for 4 days with a media change after 2 days.

Apoptosis, cell death, and cell cycle analysis

Cells were plated at 5 × 104 cells/cm2 and allowed 

to attach for 3 hours. Medium was exchanged to medium 

supplemented with vehicle or 200 µM 1-EBIO and cells 

were incubated for 24 h. To quantify the percentage of 

apoptotic and dead cells, cells were trypsinized, washed 

in PBS, and incubated in 0.1% Live/Dead Fixable Violet 
Dead Cell stain for 30 min. Cells were washed in Annexin 

V Binding Buffer and incubated in Annexin V conjugated 

to FITC diluted 1:125 in Annexin V Binding Buffer 

(Invitrogen). For cell cycle analysis, cells were fixed in 
70% ethanol and washed in phosphate-buffered saline 

(PBS). Cells were incubated in 50 ng/mL propidium 
iodide (Invitrogen), 250 ng/mL RNase diluted in PBS 
for 1hr. Cell fluorescence was detected using an LSR II 
(Becton Dickenson) fluorescent cell analyzer and data 
were analyzed with FlowJo software.

Migration assay

MDA-MB-231 cells were plated at 2.5 × 105 cells/

cm2 in a 24 well plate and were serum starved in 1% FBS 

media overnight. A scratch was made with a yellow tip 

and medium was exchanged with low serum medium 

containing drug treatment. Phase contrast images were 
acquired of the initial scratch. 10 h post scratch, cells 

were incubated in 0.5 µg/mL calcein AM for 15 minutes 

and fluorescent images were acquired. ImageJ was used 
to calculate wound healing by first manually outlining the 
wound at time 0 hr to create a region of interest (ROI). 
The fluorescent 10 h image of calcein AM stained cells 
was converted to a binary image such that white pixels 

corresponded to the surface area covered by cells. The 

percentage of white pixels within the initial wound ROI 
was quantified to measure wound healing. Scratch assays 
with MF-10A cells were performed similarly but 24-well 
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plates were seeded with 3.75 × 105 cells/cm2 cells, low 

serum medium consisted of normal MCF-10A medium 

with 0.5% horse serum and 2 ng/mL EGF, and bright field 
images were acquired 0 h and 12 h after scratching and 

the area of the scratch wound was measured with image J.

Invasion assay

The day prior to invasion assays, cells were placed 

in low serum medium. Basement membrane coated 

transwells with 6.5 mm diameter and 8 μm pore size (BD 
Biosciences) were pre-incubated with 500 μL DMEM in 
the upper chamber for 2 hours. MDA-MB-231 cells were 

diluted to 2.5 × 105 cells/mL and MCF-10A cells were 

diluted to 5 × 105 cells/mL in low serum media and 200 

μL of the cell suspension was placed in the upper chamber 
giving 5 × 104 and 1 × 105 cells per well respectively. The 

bottom chamber was filled with 600 μL of normal full 
serum media as a chemoattractant. After 16 h for MDA-

MB-231 cells or 24 h for MCF-10A cells, transwells were 

rinsed in PBS and cells were scraped off of the upper 
chamber. Remaining cells were fixed in 4% PFA for 10 
minutes. Transwells were rinsed in PBS and stained with 
1 μg/mL 4’, 6-Diamidino-2-Phenylindole Dihydrochloride 
(DAPI) for 10 minutes. The number of invading cells was 
counted in 4 fields of view for each sample.

Colony formation assay

MCF-10A cells were plated at 3 × 104 cells per 

well and MDA-MB-231 were plated at 5 × 103 cells per 

well of a six well plate. The wells were first coated in 
1.5 mL of 0.8% agarose diluted in normal culture media. 

Cells were plated in 1.5 mL of 0.4% agarose diluted in 

normal culture media and the agarose was allowed to 

set at room temperature for 1 hr. Samples were cultured 

for 4 weeks with 0.5 mL culture media added on top of 

the culture media with media exchanges every 2-3 days. 

After 4 weeks, samples were fixed in 10% formalin for 
30 minutes and incubated in .005% crystal violet for 1 hr. 

Samples were rinsed in water until the washes were clear 

of stain. Images were acquired using a ChemiDoc XRS+ 
gel imager (BioRad) and associated software. Colonies 
were counted using ImageJ.

Orthotopic breast tumor model

All procedures involving animals were approved by 

the University of York Ethical Review Process and under 
the authority of a UK Home Office project License. Six 
week old female Rag2-/-, Il2rg-/- mice (Yorkshire Cancer 

Research Unit, University of York) were selected at 
random for MDA-MB-231 control or MDA-MB-231-IK 

injection. A 5 × 105 cell suspension was prepared in 20% 

v/v matrigel in saline and injected into the left inguinal 

mammary fat pad of isoflurane anaesthetized mice. A 
total of 14 and 11 mice were injected with MDA-MB-231 

control and MDA-MB-231-IK cells respectively across 

4 independent experiments. Tumors did not take in 3 of 

the control and 2 of the IK expressing mice and were not 

included in analysis giving n = 11 for MDA-MB-231 
control and n = 9 for MDA-MB-231-IK. The length and 
width of primary tumors was measured daily with calipers 

and the tumor volume was calculated as 0.5 × (length × 

width2). Mice were euthanized 28 days after injection and 

tumors and lungs were fixed in 4% paraformaldehyde and 
frozen.

Immunohistochemistry

H&E staining and immunohistochemistry were 

performed as described [39]. The following primary 

antibodies were used: mouse anti-IK (1:20; Alomone); 
rabbit anti-Ki67 (1:5000; Abcam); rabbit anti-activated 
caspase-3 (1:200; R&D Systems); rabbit anti-CD31 (Santa 
Cruz Biotechnology); mouse anti-HNA (1:100; Millipore). 
Secondary antibodies were Alexa-488-conjugated goat 

anti mouse/rabbit (1:500; Invitrogen). Samples were 
mounted in Prolong Gold with DAPI (Invitrogen). 
Sections were scanned at 20X using a Zeiss AxioScan.
Z1 slide scanner. Images were exported into ImageJ for 
processing. Brightness/contrast was adjusted using the 

ImageJ “Auto” function. Density of Ki67+ or activated 

caspase-3+ cells, CD31+ vessel structures, and metastasis 

to lungs were measured across scanned images of whole 

sections, blinded to treatment [39, 40].

Statistics

Statistics were analyzed in Prism 5 and significance 
was determined using a two sample t-test or a one-way 

ANOVA followed by either a Dunett post test (to compare 

multiple conditions to a single control) or a Tukey post 

test (for a comparison of all conditions), alpha = 0.05. 
In cases where a comparison is made between two 

specific conditions from within an ANOVA the q value 
is given, otherwise only the p-value is given. All results 

are presented as mean with standard deviation from 3 

independent experiments unless otherwise noted.

Abbreviations

1-EBIO - 1- Ethylbenzimidazolinone

DAPI - 4’, 6-Diamidino-2-Phenylindole Dihydrochloride
DMSO - dimethyl sulfoxide

EGTA - ethylene glycol-bis(2-aminoethylether)-N-

N-N’-N’-tetraacetic acid

FACS – fluorescence activated cell sorting
FBS – fetal bovine serum

HEPES - 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic  
acid

IK - intermediate conductance calcium-activated 

potassium channel

PBS - phosphate-buffered saline
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RFP – red fluorescent protein
ROI – region of interest
SK – small conductance calcium-activated potassium 

channel

V
mem

 – membrane potential
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