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From optimal stopping boundaries

to Rost’s reversed barriers
and the Skorokhod embedding

Tiziano De Angelis*

March 28, 2017

Abstract

We provide a new probabilistic proof of the connection between Rost’s solution of
the Skorokhod embedding problem and a suitable family of optimal stopping prob-
lems for Brownian motion, with finite time-horizon. In particular we use stochastic
calculus to show that the time reversal of the optimal stopping sets for such problems
forms the so-called Rost’s reversed barrier.

MSC2010: 60G40, 60J65, 60J55, 35R35.

Key words: optimal stopping, Skorokhod embedding, Rost’s barriers, free-boundary
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1 Introduction

In the 60’s Skorokhod [30] formulated the following problem: finding a stopping time
7 of a standard Brownian motion W such that W, is distributed according to a given
probability law p. Many solutions to this problem have been found over the past 50 years
via a number of different methods bridging analysis and probability (for a survey one may
refer for example to [23]). In recent years the study of Skorokhod embedding was boosted
by the discovery of its applications to model independent finance and a survey of these
results can also be found in [19].

In this work we focus on the so-called Rost’s solution of the embedding (see [28]) and
our main contribution is a new fully probabilistic proof of its connection to a problem of
optimal stopping. One of the key differences in our approach compared to other existing
proofs of this result ([9] and [21]) is that we tackle the optimal stopping problem directly.
Moreover, we rely only on stochastic calculus rather than using classical PDE methods,
as in [21], or viscosity theory, as in [9].

Here we consider Rost’s solutions expressed in terms of first hitting times of the time-
space Brownian motion (£, W;);>o to a set usually called reversed barrier [4]. A purely
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Optimal stopping and Rost’s barriers 2

probabilistic construction of Rost” s barrier relevant to the present work was recently
found in [7] in a very general setting. Cox and Peskir [7] proved that given a probability
measure g one can find a unique couple of left continuous functions b, ¢ : [0, 0c0) — R, with
b increasing and ¢ decreasing, such that W stopped at the stopping time 7, . := inf{t >
0 : Wy < c(t)or Wy > b(t)} is distributed according to p. The curves b and ¢ are the
boundaries of Rost’s reversed barrier set and the stopping time 7, fulfils a number of
optimality properties, e.g. it has the smallest truncated expectation among all stopping
times realising the same embedding.

The optimal stopping problem object of our study is pointed out in [7, Remark 17]
and it was originally linked to Rost’s embedding via PDE methods by McConnell [21],
Sec. 13]. Let T' > 0, let v and p be probability measures with cumulative distributions
F, and F),, denote B a Brownian motion and consider the optimal stopping problem

sup EG(B,;) with G(z):= 2/ (Fu(2) = Fu(2))dz, z€R (1.1)
0<7<T 0

where 7 is a stopping time of B. In this paper we prove that under mild assumptions on
w and v (cf. Section [2)) it is optimal in to stop (t, Bt)t>o at the first exit time from an
open set Cr C [0, 7] x R (continuation set) which is bounded from above and from below
by two right-continuous, monotone functions of time (one of these could be infinite). For
each T > 0 we denote Dy := {[0,T] x R} \ Cr (stopping set) and we construct a set
D as the extension to [0,00) of the time reversal of the family {Dy, T > 0}. Then we
show that such D_ is a Rost’s barrier in the sense that if W" is another Brownian motion
(independent of B) with initial distribution v, the first hitting time o, of (¢, W}) to the
set D, gives W2 ~ p.

Our study was inspired by the work of McConnell [2I]. He studied a free-boundary
problem, motivated by a version of the two sided Stefan problem, where certain boundary
conditions are given in a generalised sense that involves the measures p and v used in
(1.1). His results of existence uniqueness and regularity of the solution rely mostly upon
PDE methods and some arguments from the theory of Markov processes. McConnell
showed that the free-boundaries of his problem are the boundaries of a Rost’s reversed
barrier embedding the law p (analogously to the curves b and ¢ of [7]) and he provided
some insights as to how these free-boundaries should also be optimal stopping boundaries
for problem .

In the present paper we adopt a different point of view and begin by performing a
probabilistic analysis of the optimal stopping problem . We characterise its optimal
stopping boundaries and carry out a deep study of the regularity of its value function. It
is important to notice that the second derivative of G in only exists in the sense of
measures (except under the restrictive assumption of p and v absolutely continuous with
respect to the Lebesgue measure) and therefore our study of the optimal stopping problem
naturally involves fine properties of Brownian motion’s local time (via the occupation time
formula). This feature seems fairly new in the existing literature on finite time-horizon
optimal stopping problems and requires some new arguments for the study of . Our
analysis of the regularity of the value function V' of shows that its time derivative
V} is continuous on [0,7) x R (see Proposition although its space derivative V, may
not be. The proof of the continuity of V; is entirely probabilistic and to the best of our
knowledge it represents a novelty in this literature and it is a result is of independent
interest.
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Building on the results concerning problem we then show how the latter is linked
to Rost’s embedding (see proof of Theorem . We would like to stress that our line of
arguments is different to the one in [21] and it is only based on probability and stochastic
calculus. Moreover our results extend those of [21] relative to the Skorokhod embedding
by considering target measures p that may have atoms (McConnell instead only looked
at continuous measures).

It is remarkable that the connection between problem and Rost’s embedding
hinges on the probabilistic representation of the time derivative of the value function of
(1.1)) (see Proposition. It turns out that V; can be expressed in terms of the transition
density of (¢, B;) killed when leaving the continuation set Cy; then symmetry properties
of the heat kernel allow us to rewrite V; as the transition density of (¢, W}) killed when
hitting the Rost’s reversed barrier D__ (see Lemma . McConnell obtained the same
result via potential theoretic and PDE arguments). The latter result and It6’s formula
are then used to complete the connection in Theorem

One should notice that probabilistic connections between optimal stopping and Sko-
rokhod embedding are not new in the literature and there are examples relative for in-
stance to the Azéma-Yor’s embedding [1] (see [I8], [22], [24] and [25] among others) and
to the Vallois’ embedding [31] (see []). For recent developments of connections between
control theory, transport theory and Skorokhod embedding one may refer to [2] and [16]
among others. Our work instead is more closely related to the work of Cox and Wang
[9] (see also [8]) where they show that starting from the Rost’s solution of the Skorokhod
embedding one can provide the value function of an optimal stopping problem whose
optimal stopping time is the hitting time of the Rost’s barrier. Their result holds for
martingales under suitable assumptions and clearly the optimal stopping problem that
they find reduces to in the simpler case of Brownian motion. An important difference
between this work and [9] is that the latter starts from the Rost’s barrier and constructs
the optimal stopping problem, here instead we argue reverse. Methodologies are also very
different as [9] relies upon viscosity theory or weak solutions of variational inequalities.
Results in [8] and [9] have been recently expanded in [I7] where viscosity theory and re-
flected FBSDESs have been used to establish the equivalence between solutions of certain
obstacle problems and Root’s (as well as Rost’s) solutions of the Skorokhod embedding
problem.

Finally we would like to mention that here we address the question posed in [8|
Rem. 4.4] of finding a probabilistic explanation for the correspondence between hitting
times of Rost’s barrierﬂ and suitable optimal stopping times.

When this work was being completed we have learned of a work by Cox, Obldj and
Touzi [6] where optimal stopping and a time reversal technique are also used to construct
Root’s barriers for the Skorokhod embedding problem with multiple marginals. In the
latter paper the authors study directly an optimal stopping problem associated by [§] to
Root’s embedding. They prove that the corresponding stopping set is indeed the Root
barrier for a suitable target law p and, using an iterative scheme, they extend the result
to embeddings with multiple marginals. This is done via a sequence of optimal stopping
problems nested into one another. The approach in [6] is probabilistic but the methods
are different to the ones described here. Our results rely on C! regularity properties of the
value function for whereas, in [6], only continuity of the value function is obtained.

!To be precise the question in [8] was posed for Root’s barrier (see [27]), but Root’s and Rost’s
solutions are known to be closely related.
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The connection between optimal stopping and Root’s embedding found in [6] uses an
approximation scheme starting from finitely supported measures and it holds for target
measures p which are centered and with finite first moment. The latter assumptions are
not needed here and we deal directly with a general 1 without relying on approximations.
Root and Rost embedding are somehow the time-reversal of one another and therefore
our work and [6] nicely complement each other. Although it should be possible to extend
our results and methods to a multi-marginal case, this is not a trivial task and is left for
future research.

The present paper is organised as follows. In Section [2| we provide the setting and
give the main results. In Section |3| we completely analyse the optimal stopping problem
and its value function whereas Section [4]is finally devoted to the proof of the link to
Rost’s embedding. A technical appendix collects some results and concludes the paper.

2 Setting and main results

Let (Q,F,P) be a probability space, B := (B;);>0 a one dimensional standard Brown-
ian motion and denote (F;):>o the natural filtration of B augmented with P-null sets.
Throughout the paper we will equivalently use the notations Ef(B}) and E,f(B;), for
f : R — R Borel-measurable, to refer to expectations under the initial condition By = z.

Let 1 and v be probability measures on R, i.e. with no atoms at infinity. We denote
by F,(z) := p((—o0,z]) and F,(x) := v((—o0, z]) the (right-continuous) cumulative dis-
tributions functions of p and v. Throughout the paper we will use the following notation:

ay :=sup{zr € R : x € suppr} and a_:=—inf{z € R : z € suppr} (2.1)
py=sup{z € R : z €suppp} and p_:=—inf{z € R : z € supp u} (2.2)

and for the sake of simplicity but with no loss of generality we will assume a4+ > 0. We
also make the following assumptions which are standard in the context of Rost’s solutions
to the Skorokhod embedding problem (see for example [7], and in particular Remark 2 on
page 12 therein).

(D.1) There exist numbers by > ay and IALA > a_ such that (—ZA?,, l;+) is the largest interval
containing (—a—, ay) with pu((—b_,by)) = 0;

(D.2) If by = ay (vesp. b_ = a_) then u({by}) = 0 (resp. u({—b_}) = 0).

It should be noted in particular that in the canonical example of v(dz) = do(x)dx we have
a; = a_ = 0 and the above conditions hold for any p such that p({0}) = 0.

Assumption (D.2) is made in order to avoid solutions of the Skorokhod embedding
problem involving randomised stopping times. On the other hand Assumption (D.1)
guarantees that for any 7" > 0 the continuation set of problem is connected (see
also the rigorous formulation below). Although (D.1) is not necessary for our main
results to hold, the study of general non-connected continuation sets would require a case-
by-case analysis. The latter would not affect the key principles presented in this work but
it substantially increases the difficulty of exposition. In Remark below we provide an
example of v and p which do not meet condition (D.1) but for which our method works
in the same way.
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The target measure p could be entirely supported only on the positive or on the
negative real half-line, i.e. supp{u} NR_ = () or supp{u} "R, = @, respectively. In the
former case b_ = 400 and pu_ = —b,, whereas in the latter b, = +oo and p, = —b_.
For the sake of generality in most of our proofs we will develop explicit arguments for the
case of u supported on portions of both positive and negative real axis and will explain
how these carry over to the other simpler cases as needed.

For 0 < T < 400 and (t,z) € [0,7] x R we denote

G(z) ::2/ (F(2) — F(2))dz (2.3)
0
and introduce the following optimal stopping problem

V(t,z) == sup E.G(B,) (2.4)

0<r<T—t¢

where the supremum is taken over all (F;)-stopping times in [0,7 — ¢]. As usual the
continuation set Cr and the stopping set Dr of (2.4)) are given by

Cr:={(t,z) € [0,T] xR : V(t,z) > G(x)} (2.5)
Dy :={(t,z) € [0,T] xR : V(t,z) = G(x)}. (2.6)

Moreover for (t,z) € [0,7] x R the natural candidate to be an optimal stopping time is
m(t,x) =inf {s >0 : (t+s,2+ B,) € Dr}. (2.7)

Throughout the paper we will often use the following notation: for a set A C [0, 7] xR
we denote AN{t < T} :={(t,x) € A:t < T}. Moreover we use f(t+) and f(t—) to
denote the right and left limit, respectively, of f at .

The first result of the paper concerns the geometric characterisation of Cr and Dy and
confirms that is indeed optimal for problem ([2.4)).

Theorem 2.1. The minimal optimal stopping time for (2.4) is given by 7. in (2.7).
Moreover, there exist two right-continuous, non-increasing functions by, b_ - 0,7] —
R; U {+o0}, with by (T—) = by, such that

Cr={(t.x) €[0,T) xR :ze (—b_(1),bs(t)}, (2.8)
Dy = {[0,T] x R} \ Cr . (2.9)

Theorem will be proven in Section [3, where a deeper analysis of the boundaries’
regularity will be carried out. A number of fundamental regularity results for the value
function V' will also be provided (in particular continuity of V; in [0,7") x R) and these
constitute the key ingredients needed to show the connection to Rost’s barrier and Sko-
rokhod embedding. In order to present such connection we must introduce some notation.

By arbitrariness of 7' > 0, problem ([2.4) may be solved for any time horizon. Hence
for each T we obtain a characterisation of the corresponding value function, denoted now

VT and of the related optimal boundaries, denoted now bL. Tt is straightforward to
observe that for Ty > T} one has V2(t + Ty — Ty, ) = Vi (¢, z) for all (¢,z) € [0,T1] x R
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and therefore, thanks to Theorem , V2t + Ty — Ty) = bi(t) for t € [0,T}) since G is
independent of time. We can now consider a time reversed version of our continuation set
(2.8) and extend it to the time interval [0, 00). In order to do so we set Ty = 0, T,, = n,
n > 1, n € N and denote s7(t) := bi" (T}, —t) for t € (0,7;,]. Note that, as already
observed, for m > n and ¢ € (0,7,] it holds sT'(t) = s (t).

Definition 2.2. Let si : [0,00) — Ry U {400} be the left-continuous non-decreasing
functions defined by taking s+(0) := by and

s+ (t) = Zsi+2(t>1(Tj,Tj+1]<t>7 t € (0,00).
j=0

For any T' > 0 the curves s, and —s_ restricted to (0,7 constitute the upper and
lower boundaries, respectively, of the continuation set Cr after a time-reversal. The next
theorem establishes that indeed s, and —s_ provide the Rost’s reversed barrier which
embeds p. Its proof is given in Section [

Theorem 2.3. Let W := (W} );>0 be a standard Brownian motion with initial distribu-
tion v and define

o i=inf {t >0 : W/ & (—s_(t),5:(2)) }. (2.10)

Then it holds
EF(WY ) Loy = /R F)uldy),  for all f € Cy(R). (2.11)

Remark 2.4. It was shown in [1, Thm. 10] that there can only exist one couple of
left-continuous non-decreasing functions sy and s_ such that our Theorem holds.
Therefore our boundaries coincide with those obtained in [7] via a constructive method.
As a consequence s, and s_ fulfil the optimality properties described by Cox and Peskir in
Section 5 of their paper, i.e., o, has minimal truncated expectation amongst all stopping
times embedding .

Remark 2.5. Under the additional assumption that p is continuous we were able to prove
in [12] that sy uniquely solve a system of coupled integral equations of Volterra type and
can therefore be evaluated numerically.

3 Solution of the optimal stopping problem

In this section we provide a proof of Theorem and extend the characterisation of
the optimal boundaries b, and b_ in several directions. Here we also provide a thorough
analysis of the regularity of V in [0, 7] x R and especially across the two boundaries. Such
study is instrumental to the proofs of the next section but it contains numerous results
on optimal stopping which are of independent interest.

We begin by providing finiteness, continuity and time monotonicity of V. The proof
of these facts follows standard arguments and it is postponed to the Appendix.



Optimal stopping and Rost’s barriers 7

Proposition 3.1. For all (t,z) € [0,T] xR it holds |V (t,x)| < 400. The mapt — V (¢, x)
is non-increasing for allz € R and V € C([0,T] x R). Moreover x — V(t,x) is Lipschitz
continuous with constant Lg independent of t and T'.

The above result implies that Cr is open and Dy is closed (see and (2.6)) and
standard theory of optimal stopping guarantees that is the smallest optimal stopping
time for problem . Moreover from standard arguments, which we collect in Appendix
for completeness, V € C'? in Cr and it solves the following problem

(Vi + 3Vau) (£, 2) = 0, for (t,z) € Cr (3.1)
Vi(t,z) = G(x), for (t,z) € Dr (3.2)
V(t,z) > G(x), for (t,x) € [0,T] x R. (3.3)

According to standard theory V' is super-harmonic, hence for (¢,2) € Dy N {t < T} it
must be V; + %Vm = %G”(dx) < 0. Indeed we show in step 2 of the next theorem’s proof
that v(dx) = 0 for all (t,z) € DrN{t < T}.

We now characterise Cy and prove an extended version of Theorem 2.1} For that we
need to introduce the local time of B at a point € R and denote it by L* := (L}):>o.

Theorem 3.2. All the statements in Theorem [2.1] hold and moreover one has

i) if supp{u} C R, then b_ = oo and there exists ty € [0,T) such that by (t) < oo for
t e (to,T],

i) if supp{p} C R_ then by = oo and there ezists ty € [0,T) such that b_(t) < oo for
t € (to,T],

iii) if supp{p} NRy # 0 and supp{u} NR_ # () then there exists ty € [0,T) such that
bi(t) < oo fort e (to, 1],

i) if lj({aJr}) >0 (resp. v({—a-}) > 0) then by (t) > a4 fort € [0,T) (resp. b_(t) >

Finally, letting Aby(t) := by (t) — be(t—) <0, for any t € [0,T] such that by(t) < 400 it
also holds

Abp(t) <0 = p((bs(t),bi(t—))) =0
Ab_(t) <0 = p((—b_(t=),-b_(t))) =0.

Proof. The proof is provided in a number of steps.

Step 1. Here we prove that Dy N {t < T} # 0.

Arguing by contradiction assume that Dy N {t < T} = (). Fix x € supp {u} and
notice that with no loss of generality we may assume that dist(z,suppv) > 2¢ for some
e > 0. Indeed if no such = and ¢ exist then (D.1) and (D.2) imply pp = by = ay with
p({as}) = 0, hence a contradiction.
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We define 7. := inf{t > 0 : B, ¢ A*} with A? := (x — e,z + ¢) and also notice that
p(AZ) > 0. Then for arbitrary ¢ € [0,7) it holds

V(t,x) =G(x) + / ELLs (v — 1)(d2) (3.6)
~G(a)+ [ Bl Ler-grlds) = [ ELiuld)

<Gla)+ [ Eli dper-gplds) — [ Bl ()
R A

x
3

where we have used that Lj_ 1 ~r—y = 0, Py-a.s. for all z € supp {v}, since B, € A?,
for all t < 7., P,-a.s. We now analyse separately the two integral terms in (3.6)). For the
second one we note that

=t 7 1 2
E.L7 u(dz) = _%(’”_Z)d> d 3.7
[ ediman = [ ([ e ) uta 7)

T—t
1 1 2
> Am/ e 25 ds = u(AY)Eq L5
_,u(a)o \/% M(E)UTt

where we have used

z = 1 L (z—2)?
E.L; , = e 2s ds. (3.8)
0

For the first integral in the last line of (3.6)) we use strong Markov property and additivity
of local time to obtain

/Eerfp_tll{ngTt}u(dz) :/Ex [EQC(LZT_t‘FTE)]l{TEST,t}}V(dz)
R R

_ /R E. [(EBTE (Lier) + Li)ﬂ{%éT—t}] v(dz) = /

R

E. [EBTE (L%ftfn) ]I{TEST—t}] v(dz)

where we have also used L = 0, P,-a.s. for z € supp {v}. We denote A := {B,. =z +¢}
and A°:= {B,. = v — ¢}, then given that ¢ — Lj is increasing

/ E. [EBTE (L?—t—Tg)]l{TEST*t}}V(dZ) < / E. [EBTE (Lé“—t)]l{TsST*t}}V(dZ)

R R

. / (Evse L5 JEe[Mprsr 1] + Eoe [Li ] Ea [T ncr g 1ac] (d2).
R

Now we recall that dist(z, suppv) > 2¢ so that by (3.8) it follows

T—t
Ex+e [L%ft} S/0

and analogously

1 1
e 2s° ds =EqL%;_, forall z € supp {v}

V21 s

E.—e[L7 ] <EoL7_, forall z € supp {v}. (3.9)

Adding up (B.7)—(3.9) we find
V(t,z) < G(2) + Eo(Ly,) (Pa(re < T —t) — p(AD)) (3.10)
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and since limgoP,(7. < s) = 0 by continuity of Brownian paths, one can find ¢ close
enough to 7" so that P,(7. < T —t) < u(A?) and (3.10)) gives a contradiction. Hence

Step 2. Here we show that [0,7) X (—a_,ay) C Cr and in particular if a_ = ay = 0 then
[0,T) x {0} C Cr. Moreover if v({£a+}) > 0 then also [0,T) X {#as} C Cr, and finally,
if —b_ < by, then [0,T) x (- _,b+ C Cp. We analyse separately the cases in which
b. > as and those in Wthh by = a, and/or b =a_.
Assume first
—b_ < —a_ < ay < B+.

Fix t € [0,T) and z € (—b_,by), then under P, define
7= inf{s >0 : By & (—b_,bs)} A (T —1).

Applying Ito-Tanaka-Meyer’s formula we get
V(t,z) > E,G(B,,) =G(x) +/ E.LZ (v — p)(dz) (3.11)
R
at
=G(z) +/ E.L; v(dz) > G(x).

a—

by using that B hits any point of [—a_, a.| before 7, with positive probability under P,
whereas LZ = 0, P,-a.s. for all z € supp {1} The latter is true because B; € (—b_, b, ) for

all t < 7, Py-a.s., and ¢t — L7 is continuous. From (3.11)) it follows [0, T") x (—B,, 13+) C Cr.

Let us now consider by = a, = 0 and prove that [0,7) x {0} C Cr. From Assumption
(D.2) we have pu({0}) = 0 and v({0}) = 1. For an arbitrary ¢ > 0 and ¢t € [0,T) we
denote A, := (—¢,+¢) and

=inf{s >0 : Bs ¢ A} AN (T —1).
Then it follows

'wamza@ua>=em»34E@;w—uxw> (3.12)

From Ito-Tanaka’s formula we get

| EoLzv(dz) = v({O}E0 L, = v({0))Eol B | (3.13)
AE@%M@SM&EM%! (3.14)

From (12), (513 and

where in the last inequality we have used EqLZ < EO‘BTs )
we find

V(t,0) = G(0) = Eo|B~.|(v({0}) — u(A:)) (3.15)

and for ¢ > 0 sufficiently small the right-hand side of the last equation becomes strictly
positive since pu(A.) — p({0}) =0 as ¢ — 0.
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Notice that the arguments above hold even if #({0}) € (0, 1), so that the same rationale
may be used to show that v({+as+}) >0 = [0,T) x {+as} C Cr. Hence condition iv)
in the statement of the theorem holds as well.

All the remaining cases with I;+ = a, and/or b_ = a_ can be addressed by a combi-
nation of the methods above.

Step 3. Here we prove existence and monotonicity of the optimal boundaries. For each
t € [0,T) we denote the t-section of Cr by

CT(t) = {x eR: (Zf,l’) € CT} (316)

and we observe that the family (Cr(t)), cjo.r) 18 non-increasing in time since ¢ — V(t,x)—

G(z) is non-increasing (Proposition [3.1]). Next we show that for each ¢ € [0,7) it holds
Cr(t) = (—b_(t),by(t)) for some by(t) € [ax, 0.

Since Dy N{t < T} # 0, due to step 1 above, with no loss of generality we assume
x > ay and such that (¢,2) € Dy for some t € [0,7) (alternatively we could choose
x < —a_ with obvious changes to the arguments below). It follows that [¢t, 7] x {z} € Dp
since ¢t — Cp(t) is non-increasing.

It is sufficient to prove that (¢,y) € Dr for y > x. We argue by contradiction and
assume that there exists y > x such that (¢,y) € Cr. Recall 7, in (2.7) and notice that
for all z € supp {v} we have LZ =0, P,-a.s. because 7, < 7, with 7, the first entry time
to [—a_,a,]. Hence we obtain the contradiction:

Vit.y) = E,G(B..) = Gly) + / E, L7 (v — p)(dz) < Gly).

Finally, the maps t — b4 (t) are non-increasing by monotonicity of ¢ — Cp(t).

Step 4. We now prove conditions ), i) and i) on finiteness of the boundaries. In
particular we only address i) as the other items follow by similar arguments.

In step 1 and 3 above we obtained that for any = € supp {u}, with > ay, there is
t € [0,T) such that [t,T] x [x,4+00) C Dr. Hence the second part of ¢) follows. To prove
that b_ = 400, we recall that [0,T) x supp{r} C Cr from step 2. If —a_ < a,, then for
any x < 0 and t < T a strategy consisting of stopping at the first entry time to [0, a],
denoted by 7y, gives

V(t,2) > EuG(Bapirs) = Glr) + / E,LE o gr(dz) > G(z)  (3.17)
R

because supp {u} C R,. If instead a; = a— = 0 then there exists ¢ > 0 and § > 0 such
that [0,7 — 0) X (—¢,&) C Cr because Cr is open and (0,7") x {0} C Cr. Therefore for
r < —e and t < T — § we can repeat the argument used in (3.17) by replacing 7y with

T.o=mnf{s>0: x4+ B; >} AN(T—t—9).

By arbitrariness of ¢ and ¢ it follows that [0,7) x R_ C Cr.

Step 5. In this final step we show continuity properties of the boundaries. Right continuity
of the boundaries follows by a standard argument which we repeat (only for b, ) for the
sake of completeness. Fix ty € [0,7T) and let (¢,)nen be a decreasing sequence such that
tn 4 to as n — oo, then (¢,,b4(t,)) — (to,by(to+)) as n — oo, where the limit exists
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since b is monotone. Since (t,,b4(t,)) € Dy for all n and Dy is closed, then it must
be (to, by (to+)) € Dr and hence by (to+) > by (to) by definition of b,. Since by is non-
increasing then also by (to+) < b4 (tp) and b, is right-continuous.

Next we prove , which is equivalent to say that jumps of by may only occur if p
is flat across the jump. For the proof we borrow arguments from [10]. Let us assume that
for a given and fixed t we have by (t—) > by (¢) and then take by (t) < 1 < xy < by(t—)
and 0 < t' < t. Notice that the limit b, (t—) exists because b, is non-increasing. We
denote R the rectangular domain with vertices (¥, x1), (t,x1), (t,22), (¥, 23) and denote
OpR its parabolic boundary. Then implies that V' € C?(R) and it is the unique
solution of

U + Uz, =0 on R with u=V on 9pR. (3.18)

Note that in particular V(t,z) = G(z) for x € [x1,25]. We pick ¢ € C(xy,z3) such
that ¢ > 0 and fff Y(y)dy = 1, and multiplying (3.18]) by ¢» and integrating by parts we
obtain

x2 1 z2

| Vit =5 [ Ve by forse @, (319)
1 Tl

We recall that V; < 0 in 'R by Proposition |3.1] and by taking limits as s 1 ¢, dominated
convergence implies

o< [Viawa= [ owwma=-2 [ “unw 620

1 1

where we have used that v = 0 on (xy, ) since by (-) > a on [0,T) by step 2 above. Since
(1, x9) and 1) are arbitrary we conclude that is only possible if y¢( (b4 (t), by (t—))) =
0.

Finally we prove that by (T—) = by. As usual we only deal with b, but the same
arguments can be used for b_. Recall from step 2 above that b, (T—) > l;+ and arguing
by contradiction we assume that b, (7—) > l;+. Then the same steps as in (3-19)-(3-20)
may be applied to the interval (b, ,b, (7T—)), and since p((bs, b, (7T—))) > 0 by definition
of 13+ and the fact that F}, is right-continuous, then we reach again a contradiction. [

The behaviour of by as t approaches T is very important for our purposes and knowing
that by (T—) = by may not be sufficient in some instances. Therefore we provide here a
refined result concerning these limits.

Lemma 3.3. If ({b.}) >0 (resp. n({=b_}) > 0) then there existsty € [0,T) (resp. t_ €
[0,77)) such that by (t) = by for allt € [ty,T] (resp. b_(t) =b_ for allt € [t_,T]).

Proof. We give a proof only for u({b;}) > 0 as the other case is completely analogous.
Here it is convenient to adopt the notation E;.[-] = E[-|B; = z] and with no loss of
generality to think of €2 as the canonical space of continuous trajectories so that the
shifting operator 6. : Q — € is well defined and 6;{w(s), s > 0} = {w(t+s), s > 0}.
Recalling that p({b,}) >0 = b, > ay due to Assumption (D.2) we now argue by
contradiction and assume that [0,7) x {b,} € Cr. By Ito-Tanaka-Meyer formula

0 < V(tb,)—G(by) =E,j. / L (v —p)(dz)  forallt € [0,T), (3.21)
R
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where 7, is optimal under P, ; b - We aim now at finding an upper bound for the right-hand
side of - Notice that

;. / L2 (v — w)(d2) < —u({by )Es IF 4, / Lvd)  (322)

R
and let us consider the two terms above separately.
For the first term we set 7p := inf{s > ¢ : |B;—b;| > R} under P,; for some R >0

and use that |Brar, — b.[P < RP for any p > 0 to obtain

E Lb+ >E; Lb+ = Et,B_,_ ’BT*/\TR o B+’

tb+ T« \TR
1 A c 14p
2B | Broms = 04|77 = 0B, (e A=) %] (3.23)
where in the last inequality we have used Burkholder-Davis-Gundy inequality and ¢, > 0
is a fixed constant. A
Now for the second term in the right-hand side of (3.22]) we pick a € (ay,by), set
7, = inf{s >t : By < a} and use strong Markov property along with the fact that for
z € supp{v} it holds L%, =0, P,;,-a.s. These give

SN\Tq
/Etb+L7z' (dZ) /EB []l{.,-*>.,-a}LiJ l/(dz)

]]‘{7'*>Ta} (L + E [Lf'* © 67—(1

)| wid2) (3.24)

+

tb
tb+ ]]'{T*>Ta}ETa Br, |:L7Z'*i|j| l/(dZ)

-
/

IN

by (T > 7'(1)/]R sup Ey, [L2 ] v(dz).

t<s<T

Since we are interested in ¢t — 7' and by (T—) = b, by Theorem , with no loss of
generality we assume that b, (s) < R for s € [t,T] and for R > 0 sufficiently large.
Then [a,b,(s)] C [by — R, by + R] for s € [t,T] for suitable R. The latter implies that
{72 <7} = {7a < 7v, T < Tr}. Therefore, denoting & := |b; — a| we can estimate

P b, (Ta < T) < Pis, (Ta < T« NTR)

<P, ( sup  |By —by| > 5) (3.25)

t<s<T«A\TR

1 .
< EEEIAM [ sup |Bs — b+|q}

t<s<T«ATR

< 5(1 E.i. [\BT e — byl ] < 5 Et by (7 /\TR—t)q/2]

where ¢ > 1 is arbitrary but fixed, and we have used Doob’s inequality and Burkholder-
Davis-Gundy inequality with c,, ¢ suitable positive constants.

To simplify notation we set o := u({b,}) > 0, C, := ¢,/ R, C, = c,/d? and

g(t) ::/]R sup Ey, [LZ ] v(dz),

t<s<T
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and observe that g(t) | 0 as ¢ — T since (L?)i<s<r is continuous and Er,L% = 0 for all

z € R. Plugging estimates — into and choosing ¢ = 1 + p we obtain
0 <V(tby)—G(by)
< — oGy, [(7'* AT — t)l%p} + g(t) ;E“;+ [(T* A TR — t)Q/Q]
< (9(t)Cy = 1oCy) Eyy, [(e ATR— 1)7].

Since ¢g(t) | 0 as t — 0, then for ¢ < T but sufficiently close to T" we find a contradiction.
Therefore there must exist ¢, € [0,7) such that [t,,T] x {by} € Dy and since b, (-) >
b, (T—) = b, by Theorem ﬂ then it follows that b, () = b, for all t € [t,,T] as
claimed. O

To link our optimal stopping problem to the study of the Skorokhod embedding it is
important to analyse also the case when 7" = +o0 in ([2.4)) and to characterise the related
optimal stopping boundaries. We define

v(z) :==supE, [G(B;)l{rcso0y], T ER, (3.26)

7>0
and the associated continuation region is
Co ={z€R :v(z) > G(x)}. (3.27)

It is known that v is the minimal concave majorant of G (see [13]). However in [13]
(see p. 114-116) it is required for G to be bounded, which is not true in our case. For
completeness we provide a proof of our next result in Appendix. Recalling the notation
for py (see (2.2)) and studying properties of GG, we obtain v and Cs, explicitly.

Proposition 3.4. The value function of 1s given by
v(z) = max{G(+00), G(—00)}, forxeR
(it could be v = +00). Moreover, letting Cx as in , the following holds:
i) If max{G(400), G(—00)} = +00 then Co, = R;
i) If G(—00) < G(+00) < 400 then Cop = (—00, it );
i) If G(+00) < G(—00) < 400 then Cop = (—p—,00);
i) If G(+00) = G(—00) < 400 then Co = (—f1—, piy).

It is useful to remark that if C., = R then there is no optimal stopping time in
(3-26). Now we give a corollary which will be needed in the rest of the paper and follows
immediately from the above proposition

Corollary 3.5. Let b > 0 (possibly infinite) be such that —b> and b are the lower
and upper boundary, respectively, of Cs. Then supp{u} C [=b>,0] and in particular
b = 400 (resp. b>° = 400) if supp{u} "Ry =0 (resp. supp{u} NR_=10).
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Recall our notation V7 for the value function of problem (2.4) with time-horizon T' > 0
and bL for the corresponding optimal boundaries. We now characterise the limits of b%
as T' — oo and we show that these coincide with b3 of the above corollary, as expected.

Proposition 3.6. Let b3 be as in Corollary[3.9, then

lim b1 (0) = b.

T—o0

Proof. Note that (VT)T 0 is a family of functions non-decreasing in 7" and such that
VT(0,2) <wv(z) (cf. (3.26). Set

Ve(x):= lim VI (0,z), rzcR (3.28)

T—o00

and note that V> < v on R. To prove the reverse inequality we introduce the stopping
times

=inf{t >0: B, >n}, 7 :=inf{t>0:B8, < —-m} (3.29)

for n,m € N. With no loss of generality we consider the case v(x) = G(+00) (possibly
infinite) as the remaining cases can be dealt with in the same way. For any 7' > 0 and
for x € (—m,n) we have

VT(0,2) > Ey [G(Broar_pnr)]

and since G is bounded on [—m,n] we can take limits as 7" — oo and use dominated
convergence to obtain

V®(2) 2E, [G(Brar_,)] = G(n)Pu(Tn < 7o) + G(—m)Pu(7, > T—)

Iy + P G em). (3.30)

_n—i—m n—+m

The plan now is to take m — oo while keeping n fixed. The first term in the last
expression above clearly converges to G(n) as m — oo. For the second term we observe
that, since F,(z) | 0 as 2 — —oo and it is monotonic, then there exists ¢, > 0 such that
0< F,(z) <n?for z € (—o0, —c,]. Hence, taking m > ¢, we can estimate

9 0
/ (F,—F,)(2)dz > —— F,(2)dz
m

—m

m

=-Z (/m F,(z )dz—l—/o Fl,(z)dz) > —% (n?(m—c,) +¢,). (3.31)

—Cn

Taking limits as m — oo in (3.30)) and using (3.31]) we obtain
V®(z) > G(n) —2(n — x)n 2

and, finally taking n — oo we conclude V*>°(x) > G(+o00) = v(z). Since x € R was
arbitrary we have

Ve(z) =v(x), xeR. (3.32)
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We are now ready to prove convergence of the related optimal boundaries. Note that
if (0,7) € Cr for some T, then v(z) > V9(0,z) > VT(0,7) > G(x) for any S > T,
thus implying that the families (b1 (0))7r>¢ are non-decreasing in 7' and (—b”(0), 1 (0)) C
(=b2°,0%°) for all T' > 0. It follows that

by := lim bL(0) < bT.

T—o0

To prove the reverse inequality we take an arbitrary = € Co and assume x ¢ (—b_,b.).
Then v(x) > G(z) + § for some § > 0 and there must exist T5 > 0 such that V7 (0,z) >
G(z) 4+ /2 for all T > Tj by and (3.28). Hence z € (—bZ(0),b%(0)) for all
T sufficiently large and since (—b2(0),b7(0)) C (=b_,by) we find a contradiction and
conclude that be = b O

3.1 Further regularity of the value function

In this section 0 < T' < 400 is fixed and we use the simpler notation V = V7 unless
otherwise specified (as in Corollary . We analyse the behaviour of V,(t, ) at points
+b.(t) of the optimal boundaries. We notice in particular that under the generality of
our assumptions the map = — V,.(t, ) may fail to be continuous across +b4 () due to the
fact that GG is not everywhere differentiable.

More importantly we prove by purely probabilistic methods that V; is instead con-
tinuous on [0,7) x R. This is a result of independent interest which, to the best of our
knowledge, is new in the probabilistic literature concerning optimal stopping and free-
boundaries. For recent PDE results of this kind one may refer instead to [3]. Some of the
proofs are given in Appendix since they follow technical arguments which are not needed
to understand the main results of the section. We start by providing useful continuity
properties of the optimal stopping times.

Thanks to Theorem we have that the interior of Dr is not empty and we denote
it by D7.. We also introduce the entry time to D7, denoted by

Tu(t,x) :=inf {s >0 : (t+s,2+4 B,) € D3} A (T —1). (3.33)
We recall 7, as in (2.7) and notice that
Te(t,z) = T(t, ), P-a.s. for all (¢,z) € [0,T) x R (3.34)

due to monotonicity of by and the law of iterated logarithm (this fact is well known and
the interested reader may find a proof for example in [I4, Lemma 6.2] or [I1, Lemma
5.1]).

The next lemma, whose proof is given in Appendix for completeness, is an immediate
consequence of . The second lemma below follows from the law of iterated logarithm
and its proof is also postponed to the Appendix.

Lemma 3.7. Let (t,x) € OCr, then for any sequence (t,,Ty)n € Cr such that (t,,x,) —
(t,z) as n — oo one has

lim 7.(t,,z,) =0, P —a.s. (3.35)

n—oo



Optimal stopping and Rost’s barriers 16

Lemma 3.8. Let (t,x) € Cr and assume that (t,),>0 is such that t, Tt asn — co. Then

lim 7.(t,,z) = 7(t,z), P —a.s. (3.36)

n—oo

and the convergence is monotonic from above.

A simple observation follows from Proposition [3.1], that is

sup |Va(t,2)| < Le, (3.37)
[0,T]xR

with Lg independent of T. Next we establish refined bounds for V, at the optimal
boundaries. The proof of the next proposition is in Appendix.

Proposition 3.9. For any t € [0,T) and for x := by (t) < 400 one has

G'(z) < Valt,o—) < G'(z—). (3.38)
For any t € [0,T) and for x := —b_(t) > —oo one has

G'(x) < Vu(t,z4) < G'(z—). (3.39)

Notice that the above inequalities make sense because G is concave on R\ [—a_, ay].
There are two straightforward corollaries to the above result which will be useful later in
the paper. The first corollary uses that G’ is continuous at = € R\ [—a_, ay] if u({z}) = 0.

Corollary 3.10. If u({£bs(t)}) = 0 then V,(t, -) is continuous at by (t) so that
Vit £b1(t)) = G' (b (1))
The next corollary follows by observing that, since u({£oo}) = v({£oc}) =0, then
lim G'(z) = lim G'(z—)=0.

r—+o0 r—+oo

Here we use the notation V7 and b% for the value function (2.4) and the corresponding
optimal boundaries.

Corollary 3.11. Let by := b2(0), then if by < +oo for all T > 0, it holds

lim by = o0 — Tlim |V;;T(t7bT_) — G'(br—)| = 0.
—00

T—o0

On the other hand letting cy := —b"(0), then if cp > —oo for all T > 0, it holds

lim ¢ = —co = lim |V (¢, cr+) — G'(er)| = 0.
T—o0 T—o0

In the lemma below we characterise the behaviour of (3.38) and (3.39) as t — T for a
fixed T > 0 (with V = VT and by = bL). The proof is given in Appendix.

Lemma 3.12. For fired T > 0 one has
(i) If p({b;}) > 0 and/or p({—b_}) > 0, then
lim Vi (t, by (1)) = G'(by—) and/or lim V; (1, ~b-(t)+) = G'(=b_),  (3.40)
— —
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(it) If p({bs}) = 0 and/or u({—b_}) = 0, then
lim V; (£, by (1)) = G'(by) and/or lim Vo (, —b—(t)+) = G'(—=b_—). (3.41)

To conclude our series of technical results concerning fine properties of V., we present
a last lemma whose proof is also provided in Appendix. Such result will be needed in the
proof of Lemma below when dealing with target measures p entirely supported on
the positive (resp. negative) half line.

Lemma 3.13. If supp{u} "R, =0 (resp. supp{u} "NR_ =0) then

lim su V. (t, =0 (resp. lim su V. (t, =0).
Jm - sup - [Va(t, ) (resp. lim - sup [Vi(t,y)] =0)

We are now going to prove that V; is continuous on [0,7") x R. Let us first introduce
the generalised inverse of the optimal boundaries, namely let

sup{t € [0,T] : —=b_(t) <z}, x € (=b_(0),0)
T.(z) ;=< sup{t € [0,T] : by(t) >z}, x€][0,b,(0)) (3.42)

0, elsewhere

Note that x € (—=b_(t),bs(t)) if and only if ¢ < T.(z). Note also that T is positive, non-
decreasing and left-continuous on [—b_(0), —b_(T")], non-increasing and right-continuous
on [b(T),b4(0)] (hence lower semi-continuous) with 7% (£b4(0)) = 0 if b.(0) < +00.

X T

E=bi () T
‘ x = T,(x)

t— —b_(t)

|

» 1

' ]

i |

| 1

3 1

// |
X

Figure 1: A drawing of possible optimal stopping boundaries £b1 (on the left) and of the
corresponding generalised inverse function 7 (on the right).

Lemma 3.14. For h € (0,T) define the measure on R

on(dy) = LT2Y) = ‘h/(T —my) g, (3.43)
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Then the family (on)neor) s a family of negative measures such that
on(dy) — —v(dy) weakly as h — 0 (3.44)
and |op(R)| < Lg for all h € (0,T).

Proof. We start by considering p4. > 0 so that we are in the setting of (i77) in Theorem
In particular fix h < T so that b, and b_ are bounded on [T" — h, T|. Hence

supp{on} = (—=b_(T — h),b.(T — h)) for all h € (0,h)

because V(T — h,y) = G(y ) V(T,y) for all y & (=b_(T —h),b.(T —h)).
Take an arbitrary f € CZ(R), recall (3.42) and notice that

)
V(T.4) V (T~ h).y) = V(T — h,y) = Gly) fory & (~b_(T — h).bo(T — h)),
V(T.(6) V (T~ h).y) = V(T.(y).5) = G(y) for y € (~b_(T —h), b, (T — h).

Then we have

/ sy UL =V =)y

:/f(y) Ty —V(T*;yW(T—h),y)dy
/f V(T — h;l y) — V(T—h,y)dy

=/Zi§ilf<y>”T*<”’” —

Thanks to continuity of V' all the integrals above are understood as integrals on open
intervals, i.e.

by (s)
/ ...dy:/ cody. (3.45)
~b-(s) (-b-(9)0+(9)

We now recall that V; is continuous in Cr and V, =
theorem, integration by parts and (3.2]) to obtain

b+(T'=h) V T* ) - V(T - h7
/ ) (Ti(y), ) " ( y)dy
—b_(T—h)

| b= To(y)
- / I / Vils. y)ds dy

by (s
/ / Ve (8, y)dy ds
T—h

T

—%V;m in Cr. Then we use Fubini’s

(3.46)
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Notice that due to (3.45)) we have

FCWals, 500 = 04 ()Vals,bi(5)=) = F(=b_(s))Vals, —b_(s)4).  (347)

Since we are interested in the limit of the above expressions as h — 0 it is useful to
recall Lemma For simplicity we only illustrate in full details the case pu({b;}) > 0,
a_ = b_ and v({—a_}) > 0 but all the remaining cases can be addressed with the same
method.

Because of u({b,}) > 0 then a; < b, (Assumption D.2) and we use (i) of Lemma
; on the other hand for a_ = b_ and v({—a_}) > 0 we use (ii) of the same lemma.

From ([3.47) we have

lim f()Vals, )| = F0)G (b =) = f(=b )G (—a_—). (3.48)

s—T

We take limits in (3.46)) as h — 0, use (3.48) and undo the integration by parts to obtain

lim / F(y)on(dy)

(&) (bsm) — (FC) (—a_) — (FG)bs) + (FC)(—a) + [ F"W)Clw)dy

—a—

1
2

:—% /R L on(9)f(9) G (dy) = / fly (3.49)

Notice that in the penultimate equality we have used that G'(—a_) — G'(—a_—) =
2v({—a_}) and

1[—a7,B+)G//<dy> = 2]1[_a77a+}1/(dy)

(recall that u((—b_,b,)) = 0 and p({—a_}) = 0). It is important to remark that it is
thanks to the fine study performed in Lemma that we obtain exactly the indicator
of [—a_,ay] in (3.49).

To show that oy, is finite on R it is enough to take f =1 in (3.46)) and notice that

I -
on(R) = — TR (Va(s,b4(s)) — Vi(s, —b_(s)))ds for all h € (0,h).
T—
From the last expression and it immediately follows that |o,(R)| < L¢.

In (3.49) we have not proven weak convergence of o;, to —v yet but this can now be
done easily. In fact any g € Cy(R) can be approximated by a sequence (fx)r C CZ(R)
uniformly converging to g on any compact. In particular, for a compact A O supp{oy},
and for any € > 0 we can always find K. > 0 such that sup, |fx — g| < e for all £ > K..
Since supp{v} C supp{o,} C A for all h € (0, k), the previous results give

]13{)% ‘/ ah +v dy)‘ < hms(‘ah | + V(]R)) —l—’lgr%) ‘ Afk(y)(ah +l/)(dy)‘
<(1+ Lg)e

for all £ > K.. Since € > 0 is arbitrary (3.44]) holds.
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We now consider the case supp{u} "Ry =0, i.e. py = —b_, and b, (-) = +oo. Using
Lemma we can repeat step by step the calculations above to obtain (3.49) with
b, = +oo for any f € C2(R) such that f(z) — 0 and f'(2)G(x) — 0 as  — oo. So
it only remains to prove that the density argument holds. For that we observe that by
Lemma [3.13] one has

1 [T
on([z,4+00)) = / / (S, y)dy ds = — V (s,x)ds, x>ay, (3.50)

and moreover for any ¢ > 0 there exists . > 0 such that ‘ah([a:, +oo))} < ¢/2 for
all x > x.. With no loss of generality we may assume that also v([z.,+o0)) < &/2
because v puts no mass at infinity. Setting A. = [~b_(T — h), z.], we can find a sequence
(fi)r € CZ(R) with fx(x) — 0 and fi(z)G(x) — 0 as x — oo, and a number K. > 0 such
that sup,_|fy —g| < € for all £ > K.. With no loss of generality we may also assume
| fxlloo < ¢ for all k and a given ¢ > 0. This gives

’/ (on + v)(dy) <’/9 fi) W) (on +v) dy /fk Uh+V)(dy>‘
<e(1+ lon(®)]) + llg — fillue| (01 + 1) (2, +00))|
dy)|.
+| [ 8o+ i)
In the limit as h — 0 we find
tim | [ 9o+ ) ()| < (1 + fon®) + gl + 9

and the claim follows by arbitrariness of €. The case supp{u} NR_ = ) can be addressed
by similar arguments and we omit the proof for brevity. O]

Let us denote

1 _(@=y)?
p(t,z,s,y) = —————e 260 , fort<s, z,yeR (3.51)
2r(s — 1)

the Brownian motion transition density. We can now give the main result of this section.
Proposition 3.15. [t holds V; € C([0,T) x R).

Proof. Continuity of V; holds separately inside Cy and in Dr, thus it remains to verify it
across the boundary of Cr.

First we fix t € (0,7) and z € R such that (¢t,z) € 9Cr, and take a sequence
(tn, Zn)nen C Cr such that (¢,,z,) — (t,x) as n — oo. For technical reasons that
will be clear in what follows we assume t < T — 2§ for some arbitrarily small 6 > 0 and
with no loss of generality we also consider ¢,, < T — ¢ for all n. Now we aim at providing
upper and lower bounds for Vi(t,, z,) for each n € N. A simple upper bound follows by
observing that ¢t — V/(¢, x) is non-increasing and clearly

Vi(tn,x,) <0 forall n € N. (3.52)
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For the lower bound we fix n and take h > 0 such that ¢, — h > 0 and hence
(t, — h,z,) € Cp. For simplicity we denote 7, = 7.(t,,x,) and 7,5 = Tu(t, — h, )
as in (2.7) so that 7, is optimal for the problem with value V (¢, — h,z,). We use the
superharmonic characterisation of V' to obtain

Vit ) = V(b — h,2,) (3.53)
>Ee,, [Vt + T A (T = 1), B nir—t) = V(tw = b+ T, Br, )]
=E,,, [((V(tn + Tops Br, ) = V{tn — b+ Ton, B, ) Lir <t}

+E,, [(V(T, Br1,) = V(tn — h+ Tup, Br, ) L por—t01] -

Observe that on the set {7,, < T — t,} it holds V(t, — h + T4, B-,,) = G(B;,,) and
V(tn + Tun, Br,,) > G(Br,,). On the other hand

Eo. [V(tn — h+ Tup, BTn’h)\]-"T_tn} =V(T —h,Br_,) on{ru,>T—1t,}

by the martingale property of the value function inside the continuation region. Dividing
(3.53) by h and taking iterated expectations it then follows

1
=Vt w0) = Vit = b)) (3.54)
1
ZﬁExn [(V(T, Br—t,) = V(T = h, Br—,)) Lir, ,>7—1,}]
g [V(T.Bri) = V(T —h Br.,)
o h
V(T,Br_y,) — V(T — h, Br_s,)
— B | Lpr, h<r—t0) . -

Since for all n we have § < T —t, then {7, <T —t, — 0} C {mn < T —t,} and
since V(T, By—,) — V(T — h, Br_,) < 0 we obtain

V(T,Br_y,) = V(T — h, BTtn)] (3.55)

—E,, {]l{fn,hdtn} N

V(T, Br_.) — V(T — h, By,
Z - Eﬂ?n [I{Tn,h<T—tn_5} ( A tn) h( T ):|

(V(T, Br—t,—r,) — V(T = h, Bmmn,h))]

= - EI" |:]1{Tn,h§Tt”5} EBTn,h h

where the last expression follows by the strong Markov property. Recalling now (3.43)
and (3.51)), and using (3.54)) and (3.55)) we obtain

V{tn, Tn) — Z(tn — @) > /an,h(y)ah(dy)v (3.56)

where

fn,h(y) = p(oa L,y T — tna y) - Exn [1{Tn)h§T,tn,5}p(0, B'rn,ha T — tn — Tn,hy y)] . (357)



Optimal stopping and Rost’s barriers 22

Notice that |f,n(y)] < C for some constant independent of n and h (this is easily
verified since T' — t,, — 7,5, > ¢ in the second term of (3.57))). Recalling Lemma [3.8] it is
not hard to verify that for any (yn)n~0 C R such that y;, — y € R as h — 0 it holds

}lzg% fn,h(yh) > fn(y> = p(07 L, T — 12 y) - Exn |:]1{T7L<T—tn—(5}p(07 B’Tn7T —ty — Ta, y)} )

where we have used that limy,_,o 17, ,<7—,—51 < 47, <74, -5} since 7, | 7,. Moreover,

Lemma [3.14]implies that (Jh(dy) / ah(R)) he(oF) forms a weakly converging family of prob-

ability measures. Therefore we can use a continuous mapping theorem as in [20, Ch. 4,
Thm. 4.27] to take limits in as h — 0 and get

Vi(tn, Tn) >hm/fnh on(dy) = /fn

Finally we take limits as n — oo in the last expression and we use dominated conver-
gence, the fact that 7,, — 0 as n — oo (see Lemma [3.7) and the upper bound (3.52), to
obtain

lim V;(t,,z,) = 0.

n—oo

Since the sequence (t,, x,) was arbitrary the above limit implies continuity of V; at (¢,z) €
8CT N {t < T} O

It is a remarkable fact that in this context continuity of the time derivative V; holds at
all points of the boundary regardless of whether or not the xz-derivative V. is continuous
there. As a consequence of the above theorem and of (3.1)) we also obtain

Corollary 3.16. For any ¢ > 0 it holds that V, and V,, are continuous on the closure of
Crn{t < T —e}. In particular for any (t,z) € OCr and any sequence (t,,xn)nen C Cr
such that (t,,x,) — (t,z) as n — oo, it holds

lim V. (t,,z,) = 0.

n—o0
We conclude the section with a technical lemma that will be useful in the rest of the
paper.
Lemma 3.17. For any f € Cy(R) one has

%@/f Wit z) /f (3.58)

i.e. it holds Vi(t,x)dx — —v(dz) weakly as a measure, in the limit ast 1 T.

Proof. The proof is very similar to that of Lemma |3.14] It suffices to prove the claim for
pse > 0 and f € CE(R) since arguments as in the final part of the proof of Lemma m
allow us to extend the result to f € Cp(R) and any .

We take h > 0 as in the proof of Proposition and we let A C R be an open bounded
interval such that [—b_(T — h),by (T — h)] C A. Then for any f € C3(R), t € (T — h,T)
we use Proposition m along with and to obtain

b (?)
/f Wilt, y)d / F)Vaa (t, y)dy

-(®)
Taking limits as ¢ — 1" and arguing as in (3.49) we obtain (3.58)). O]

N =

~ =ttt - rosO!, + [ Faves).
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4 The Skorokhod embedding

In this section we will show that the optimal boundaries by found in Theorem are the
boundaries of the time reversed Rost’s barrier associated to p.
Here we recall the notation introduced in Section [2] and let s_ and s, be the reversed
boundaries from Definition 2.2l We denote
Co={(t,z) €0,+00) xR : z € (—s_(t),s:(1)) },
D :={(t,z) €0,+00) xR : z € (=00, —s_(t)] U [s4(t), +00) },
again with the convention (—oo, —oo] = [+00, +00) = 0.
Arguing as in (3.42)) we introduce the (generalised) inverse of sy defined by
inf{t >0: —s_(t) <z}, z<—-s_(0)
o(z) =4 0, v € (=s5_(0),5:(0)) (4.1)
inf{t >0 : s.(t) >z}, x>s.(0)

Notice that © € (—s_(t),s.(t)) if and only if p(z) < ¢t and note also that for each T > 0
it holds (see (3.42))

T (z) =T — p(x), forx € [—s_(T), s+ (T)].

It is not hard to see that ¢ is positive, non-increasing left-continuous on R_ and non-
decreasing right-continuous on R, (hence upper semi-continuous).

x t

— /

t—se(t)
x =@ (x) J
t
t——s_(t) ‘
\ J )

Figure 2: A drawing of possible reversed boundaries s, and —s_ (on the left) and of the
corresponding generalised inverse function ¢ (on the right).

Our first step is to use stochastic calculus to find a probabilistic representation of V;.
Let us start by introducing some notation. Along with the Brownian motion B we consider
another Brownian motion W := (W,);>o independent of B and we denote (F}V)i>o the
filtration generated by W and augmented with P-null sets. Recalling 7., 7. and ,
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we now introduce similar concepts relative to the sets C_ and D__. For (t,z) € Ry x R
we now set

T_(t,x) =inf{u>0: x4+ W, ¢ (—s_(t+u),s;(t+u)} (4.2)
F(t,o):=inf{u>0:z+W, ¢ [ —s_(t+u),si(t+u)]} (4.3)

It is clear that 7_ and 7_ are (F}")-stopping times. Moreover in [7] (see eq. (2.9) therein)
one can find an elegant proof of the fact thatﬂ

Pio(t-=7_)=1 forall (¢,2) € [0,400) x R. (4.4)

The latter plays a similar role to in the case of the sets C and D . In what
follows, and in particular for Lemma we will find sometimes convenient to use 7_
instead of 7_ to carry out our arguments of proof.

The stopping times 7 and 7_ are introduced in order to link V; to the transition
density of the process (t, W;) killed upon leaving the set C__. This is done in Proposition
The latter is then used to prove that D is indeed the Rost’s barrier (see the proof
of Theorem [2.3| provided below).

From now on we denote p°(t,z,s,y), s > t, the transition density associated with
the law P, ,(B;s € dy, s < 7.) of the Brownian motion killed at 7,. Similarly we denote
p° (t,z,8,9), s > t, the transition density associated with the law Py (W, € dy, s < 1_)
of W killed at 7_. It is well known that

pC (ta z,s, ?J) = p(t7 z,s, y) - Et,m]]-{s>7'*}p(7-*7 BT,m S, y) (45)
for (t,z), (s,y) € Cr and
Pt x,s,y) = pt, 2, 8,y) — Eralenryp(m, We_, 5, 9) (4.6)

for (t,x), (s,y) € Cy, (see e.g. [20, Ch. 24])).

The next lemma provides a result which can be seen as an extension of Hunt’s theorem
as given in [20, Ch. 24, Thm. 24.7] to time-space Brownian motion. Although such result
seems fairly standard we could not find a precise reference for its proof in the time-space
setting and for the sake of completeness we provide it in the Appendix.

Lemma 4.1. For all0 <t <s<T andz € (—=b_(t),b. (1)), y € (—=b_(s),b.(s)), it holds
(. s,y) = p° (T — s,y, T —t,x).

For future frequent use we also define

Ur(t,z) :=VT(t,x) — G(x), (t,z) € [0,T] x R (4.7)

then U € C([0,T] x R) and (3.1)-(3.2) imply
(UF + iUt 2) = —(v — p)(da), ze (—bo(t),bi(t), t€[0,T) (4.8)
UT(t,z) =0, z € (—o0, —b_(t)]U[by(t),00), t €[0,T)  (4.9)
UN(T,x) =0, r€R (4.10)

where the first equation holds in the sense of distributions, and in the second one we shall
always understand (—oo, —oo] = [+o00, 400) = (.
We can now use Lemma to find a convenient expression for Ul in terms of p¢.

2To avoid confusion note that in [7] our functions s, and —s_ are denoted respectively b and c.
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Proposition 4.2. Fiz T > 0 and denote U = UT for simplicity (see ([£.7)). Then
U, € C([0,T) x R) and it solves

(V)¢ + 3(Up)aa) (t,2) = 0, (t,z) € Cr (4.11)
Ui(t,x) =0, (t,x) e ICrN{t < T} (4.12)
ltlTI:p/ f(2)U(t, ) /f for all f € Cy(R). (4.13)

Moreover the function U; has the following representation

—U(t,z) = /Rpc(t,x,T, y)v(dy) = /Rpg(o,y,T —t,x)v(dy), (t,z)€[0,T)xR.
(4.14)

Proof. The proof is divided in a number of steps.

Step 1. We have already shown in Proposition that V; is continuous on [0,7) x R
and equals zero along the boundary of Cr for ¢ < T. Moreover Lemma implies the
terminal condition (4.13). In the interior of Cr one has V; € C'? by standard results on
Cauchy-Dirichlet problems (see for instance [I5, Ch. 3, Thm. 10]). It then follows that U,

solves (4.11]) by differentiating (4.8]) with respect to time.

Step 2. We now aim at showing (£.14)). For (¢, z) in the interior of Dy the result is trivial
since U; = 0 therein. Hence we prove it for (f,xz) € Cr and the extension to dCr will
follow since Uy is continuous on [0,7") x R.

In what follows we fix (¢, z) € Cr and set 7, = 7,.(¢,x). For € > 0 we use Itd’s formula,
(#.11)—(4.13)), strong Markov property and the definition of p¢ to obtain

_Ut(ta 33) = EIUt(t + T A (T —t— 8)7 BT*/\(T—t—s))
- - E:cUt(T — g, BT—t—a)]l{‘r*sztfs}

- / Ut<T — g, y)pc(t7 xZ, T — g, y)dy
R

Now we want to pass to the limit as ¢ — 0 and use Lemma [3.17]and a continuous mapping
theorem to obtain (4.14]). This is accomplished in the next two steps.

Step 3. First we assume that by > a.. Note that from one can easily verify that
(s,9) = pC(t,z,s,y) is continuous at all points in the interior of Cr by simple estimates
on the Gaussian transition density. Therefore for any y € [—a_, a4 ], any sequence (&;);en
with e; — 0 as j — oo, and any sequence (y.,);en converging to y as j — oo there is
no restriction in assuming (7' — ¢;,y.,) € Cr so that p°(¢,x,T — ¢;,y.,) — p°(t,x,T,y)
as j — oo. Hence taking limits as ¢ — 0 and using and a continuous mapping
theorem as in [20, Ch. 4, Thm. 4.27] we obtain

Uyt z) = / Pt 2, T, y)w(dy) = / (0,9, — 1, 2)w(dy)

where the last equality follows from Lemma |4.1]
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Step 4. Here we consider the opposite situation to step 3 above, i.e. the case Ei = Q4.
For arbitrary ¢ > 0 we introduce the approximation

F,(x) z € (=00, —b_ — 4]
Fi(z) =< F,(-b_—9), z e (=b_—0,by+0)
Fu(x) = [Fu((bs +8)=) = Fu(=b- = 8)], @ € [by +6,00)

which is easily verified to fulfil
limsup‘Flf(x) — F(z)| =0 (4.15)

since F), is continuous at +b. by Assumption D.2. Moreover for p(dz) = F®(dx) we
have

5 p(dz), x € (—oo,—b_ — 8] U [by + 6, +00)
p°(de) = - -
0,  xe(—b_—bbs+0)

Associated to each F° we consider an approximating optimal stopping problem with
value function V°. The latter is defined as in with G replaced by G?, and G defined
as in but with F 5 in place of F),. It is clear that the analysis carried out in Theorem
and Proposition for V and G can be repeated with minor changes when considering
V9 and G°. Indeed the only conceptual difference between the two problems is that F;f
does not describe a probability measure on R being in fact p°(R) < 1.

In particular the continuation set for the approximating problem, i.e. the set where
V% > (3, is denoted by C2 and there exists two right-continuous, non-increasing, positive
functions of time % with b} (T—) = by + & such that

Ch={(t,x) €[0,T) xR : z € (=t (1),0 (1)}
It is clear from the definition of F that for any Borel set A € R it holds p’(A) < u® (A)
if o' < 6. Hence for ¢’ < 6, (t,x) € [0,T) x R we obtain the following key inequality

Vi(t,2) - Go(z) = sup E, / L (v — p)(dz)

0<r<T -t

> s E [ L))

0<7<T—t R
=V (t,x) — G%(v)

by It6-Tanaka-Meyer formula. The above also holds if we replace V¥ — G by V — G and

it implies that the family of sets (C3),_  decreases as § | 0 with C3 2 Cy for all § > 0.

0>0
We claim that
limCS =Cpr and lim b’ (t) = bi(t) forallt € [0,7). (4.16)
6—0 0—0

The proof of the above limits follows from standard arguments and is given in Appendix
where it is also shown that

lim  sup |V6(t, z) = V(t,z)| =0, K C R compact. (4.17)
0=0 (£ )€[0,T)x K
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Now for each § > 0 we can repeat the arguments that we have used above in this
section and in Section [2| to construct a set C%~ which is the analogue of the set C.
All we need to do for such construction is to replace the functions s, and s_ by their
counterparts si and s® which are obtained by pasting together the reversed boundaries
s (t) == 0 (T, — t), t € (0,T,] (see Definition [2.2 and the discussion preceding it).

As in and we define by 7° the first time the process (t, Bt)i>0 leaves Cfsp
and by 7 the first time (¢, B;);>o leaves the closure of C$. Similarly to and
we also denote by 70 and 7° the first strictly positive times the process (W,)io leaves
(=s°(t), 5.(t)) and [—s° (¢), s°(¢)], t > 0, respectively. It holds again, as in (4.4), that

Pio(m® =7°) =1 for all (t,z) € [0, 4+00) x R. (4.18)

It is clear that 70 decreases as § — 0 (since § + C2 is non-increasing) and 7° > 7_,
P-a.s. for all 6 > 0. We show in Appendix that in fact

limr° =7_, P-as. (4.19)

6—0

The same arguments used to prove Proposition m (up to a refinement of Lemmas
and which we discuss in the penultimate section of the Appendix) can now be
applied to show that V,? is continuous on [0,7) x R and V;? = 0 outside of C3. N {t < T}.
Therefore, for fixed 4 > 0, we can use the arguments of step 1, step 2 and step 3 above
since by + 0 > ax and obtain

~Uita) = [ O Tedn) = [ 00T tatdy) (@20
R R
where obviously the transition densities p©° and pc_"S have the same meaning of p¢ and
p° but with the sets Cr and C replaced by C2 and C%, respectively. Note that U} < 0,
then for fixed t € [0,T) the expression above implies (see (4.5) and (4.6))

sup ‘Uf(t,x)‘ < sup/p(O,y,T —t,x)v(dy) < 400 forall § >0
R

z€R zeR

and therefore there exists g € L°(R) such that U (¢, -) converges along a subsequence to
g as 0 — 0 in the weak* topology relative to L>(R). Moreover since holds and the
limit is unique, it must also be g(-) = U(t, -).

Now, for an arbitrary Borel set B C [—s_(T' —t), s (T —t)], gives

_/ U£<t7$)dm = / P(Wr_ e B, T—t< Tf)y(dy).
B R

We take limits in the above equation as § — 0 (up to selecting a subsequence), we use
dominated convergence and (4.19) for the right-hand side, and weak* convergence of U}
for the left-hand side, and obtain

—/ U(t, z)dzx = / P,(Wr_, € B, T —t <71_)v(dy).
B R

Finally, since B is arbitrary we can conclude that (4.14)) holds in general.

After step 3 and 4 the remaining intermediate cases are: (i) by =ay and b_ > a_,
and (ii) b = a_ and by > a,. These may be addressed by a simple combination of the
methods developed in steps 3 and 4 and we omit further details. O
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Now we are ready to prove the main result of this section, i.e. Theorem [2.3] whose
statement we recall for convenience.

Theorem 2.3 Let W := (W} )0 be a standard Brownian motion with initial distribution
v and define

o i=inf {t >0 : WY & (—s_(t),s:(2)) }. (4.21)

Then it holds

EFW) L) = / F)n(dy), for all f € Cy(R). (4.22)

Proof. We start by recalling that since s1(7') = b%(0), then Proposition [3.6{and Corollary
imply that

lim sy (7) =0 > pg (4.23)

T—o00

where we also recall that py are the endpoints of supp u (see ) Notice that by
monotonicity of the boundaries if s (ty) = +oo, then s, (t) = +oo for t > ¢, and the
same is true for s_.

Fix an arbitrary time horizon T" and denote U” = U as in . Throughout the proof
all Stieltjes integrals with respect to measures v and p on R are taken on open intervals,

1.e. .
/:/ for a < b.
a (a,b)

Let f € CZ(R) and consider the sequence (f,),>0 C CZ(R) with f,(z) = f(z) for
|z| <n and f,(z) =0 for || > n+ 1. Notice that

EF (WY xp) = lim Ef,(W2,7) (4.24)

by dominated convergence and the fact that f, — f pointwise at all x € R.
Now, for arbitrary n a straightforward application of It6’s formula gives

oxNT
Ef (WY ) / Faydy) + SE / SO ) du (4.25)
T
= [ Bl + 5 [l £V

Notice that o, = 7. = 7_ (see (4.2))—(4.4)) up to replacing the initial condition in the
definitions of 7_ and 7_ by an independent random variable with distribution v. Recall
the probabilistic representation (4.14) of U;. Then we observe that for u > 0

El o F10V) = [ 520 [ 210,00 () )y

s+ (u)
_ / L UAT =)y
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by (4.12). An application of Fubini’s theorem and the fact that y € (—s_(u), sy (u)) <
u > @(y) (see (4.1)) gives

T T
/0 El{ucon fu(Wy)d _—/ </1{ye( s s Ud(T —u,y) fr(y )dy)d (4.26)

=~ [0 [ bt - wvyi)a
z/RfZ{(y) U(O,y)—U(T—so(y),y))dy

=4ﬂ@U0

where in the last line we have also used that (T — ¢(y),y) = (Ti(y),y) € ICr and
Ulsc, = 0 (see (4.9)). Hence from (4.25) and (4.26]), and using that U(0,y) = 0 for
y ¢ (—s_(T),s+(T)), we conclude

s+(T)
Ef (W2 ) / fuly / oy MU0y (4.27)

Notice that the last term above makes sense even if s1(7') = +o0, because f,, is supported
on a compact.
The left hand side of (4.27)) has an alternative representation and in fact one has

Efn(W, Ar) E]l{T<o'*}fn (W1 + E]l{a*<T}fn( )
/ (/ S (0,2, T, y)o (d‘”)) dy + El g1y fa(W2).

By using (4.14) once more we obtain
s+(T) s+(T)
[ ([ rontoaraman)a=- [T pevony @)

—s_(T) —s_(T)

s4(7)
= /s_m Fay) (v = )(dy>+%/ Fn(y)Uza (0, y)dy

—s_(T)

where the last expression follows from (4.8]).
To simplify the notation we set

AL :=U,(0,—s_(T)+) and Af :=U,0,s.(T)-)

and notice that A% may be non zero due to the lack of smooth-fit a the boundaries. Now
integrating by parts the last term on the right-hand side of (4.28)), using (4.9)), and the
fact that f,(z) = f/(x) = f/(x) =0 for |x| > n+ 1, we get

s+(T)
Ef (W2 ) Eﬂ@xnﬁAWZ)—/i(ﬂﬁJWuww
s+(T)
/ fuly / £ )0, y)dy (4.29)
—s_(T)

2 [fn(er(T))A Lis, (my<nt1y — fn(_sf(T))A;]l{s,(T)gn—H}}-
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Direct comparison of (4.29) and (4.27)) then gives for all n > 1

s+(T)

El{o.<my [u(W,)) = / fa(y)u(dy)

—s_(T)
1 _
= 5 (s (M)A s y<niny = fal=5-(T) AT L my<niny] -
Taking limits as n — oo and using dominated convergence and pointwise convergence we
have

s+(T)
EL 1y (W) = / F(w)u(dy)

1
= 5 e TMNAT s ) <toy = F(=s (D) AT L (1)<toe)] - (4:30)

It remains to take limits as " — oo. If there exists ¢y > 0 such that s, (ty) = s_(to) =
+00, then the proof is complete because s, (t) = s_(t) = +oo for all ¢ > t5 and we only
need to take T' > t; in the last expression above. As it will be clarified in Corollary
this situation never occurs in practice.

Let us now analyse the case in which there exists ¢y > 0 such that s (ty) = +oo
whereas s_(t) < oo for all ¢ > 0. The remaining cases, with s (t) < +oo for all £ > 0
and s_(t) < 400, may be addressed by the same methods.

Case 1. [u— = +00].
In this case (4.23) implies s_ (1) — oo as T" — oo with |s_(T)] < +oo for all T > 0,
and Corollary implies A7 — 0. Hence taking limits as 7" — oo, using dominated

convergence and (4.30)) we get

El{o.<oo} f(W5.) = /Rf(y)u(dy). (4.31)

Case 2. [pu— < +oo0 and p({—p-}) =0].
In this case G’ is continuous at —pu_, therefore (3.39) implies A, — 0 as T — oo since
s_(T) — p_. Hence arguing as in case 1 above we get (4.31]).

Case 3. [p— < +oo0 and p({—p_}) > 0].
This case requires more work. We approximate the measure p via a sequence of measures
(1 )x whose cumulative distributions are constructed as follows: for each k > 1

0, T < —p_ — %
Fule) =3 k- (et + DE(~u), v l-pu —1—p) (4.32)
F, (), 7 € [, +00).

Since F),, (z) — F, as k — oo for all points « where F), is continuous, then py — p
(see [29], Thm. 1, Ch. 3.1). It is important to notice that F),, is continuous at the lower
endpoint of its support, i.e. at —,u(,k) = —u_ — 1/k.

Letting Gy, be defined as in but with F, replaced by F),, we can now consider the
corresponding problem with value function denoted by Vj. Repeating the charac-
terisation of the optimal stopping region for this problem we obtain the relative optimal
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boundaries bgf ), which then produce two time-reversed boundaries sﬁf U particular it is

not hard to verify that (£.23) in this case implies that limg_,o s (T) = p— + 1/k and

limp_, s(f)(T) = +oo (for all £ sufficiently large).
(k)

k .
Y’ we argue as in case 2 above to get

Since F),, is continuous at —u

EL ooy S W) = / f(y)p(dy). (4.33)
* R
We claim here and prove in Appendix that

lim o™ =0, P-as. (4.34)

k—4o00 *

so that taking limits in (4.33)), again we obtain (4.31)).

Since ([4.31]) holds for any f € CZ(R) we can extend to arbitrary continuous functions
by a simple density argument. For any f € Cy(R) we consider an approximating sequence
(fi)ken C CZ(R) such that f, — f pointwise as k& — oo. For each f; the equation

4.31) holds, then taking limits as & — oo and using dominated convergence we obtain
4.22]). m

As corollaries of the above result we obtain interesting and non trivial regularity
properties for the free-boundaries of problem . These are fine properties which are
difficult to obtain in general via a direct probabilistic study of the optimal stopping
problem. Namely we obtain: (i) flat portions of either of the two boundaries may occur
if and only if g has an atom at the corresponding point (i.e. Gy + %Gm has an atom.
See Corollary (4.3)); (¢7) jumps of the boundaries may occur if and only if F), is flat on an
interval (see ((3.4)), and Corollary . Note that the latter condition corresponds to
saying that G+ %Gm = 0 on an interval is a necessary and sufficient condition for a jump
of the boundary (precisely of the size of the interval) and therefore it improves results in
[10] where only necessity was proven. It should also be noticed that Cox and Peskir [7]
proved (i) and (ii) constructively but did not discuss its implications for optimal stopping
problems.

Corollary 4.3. Let o € R be such that u({xo}) > 0 then
i) if ko > 0 there exist 0 < t1(xg) < ta(xo) < 400 such that s (t) = xq fort € (t1, 1],
i) if vo < 0 there exist 0 < t1(xg) < ta(xo) < +00 such that s_(t) = xg fort € (t1,1s].

On the other hand, let either s, or s_ be constant and equal to zy € R on an interval
(t1,to], then u({xo}) > 0.

Proof. We prove i) arguing by contradiction. First notice that if zo > 0 and p({zo}) > 0,
then the upper boundary must reach xy for some ¢, > 0 due to Theorem [2.3] Let us
assume that sy (tg) = xo for some t; > 0 and let us assume that s, is strictly increasing
on (to —€,to +¢) for some £ > 0. Then pu({xo}) = P(WY = x0) = P(W} = 5.(ty)) = 0,
hence a contradiction.

To prove the final claim let us assume with no loss of generality s, (t) = xo for ¢t €
(t1,t2], then p({zo}) = P(WY = x¢) = P(W} =z for some t € (t1,t5], 0 > t1) > 0. O
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Corollary 4.4. Let (a,b) C R be an open interval such that u((a,b)) = 0 and for any
e >0 it holds p((a,b+¢)) >0, p((a —e,b)) >0, i.e. a and b are endpoints of a flat part
of F,,. Then

i) If s4(t) = a for some t > 0 then s (t+) = b;
i) If —s_(t) = b for some t > 0 then —s_(t+) = a.

Proof. 1t is sufficient to prove i) since the argument is the same for 7). Let us assume
sy (t+) < b, then there exists ¢ > t such that s, (u) < b for v € (¢,t'). With no loss of
generality we also assume s, strictly monotone on (¢,¢’) otherwise x should have an atom
on (si(t),s4(t')) (see Corollary [£.3) hence contradicting that 4((a, b)) = 0. Then we have

ul(@.5)) > p((s4(t4). 52(1))) =P(W2 € (s4(t+),5(t)))

>P( sup W! > s (1), 0. >t) >0,
t<s<t’

which contradicts the assumptions. [

Notice that for f = 1 (4.22)) gives P(o. < +00) = p(R) = 1. As anticipated in
the proof of Theorem [2.3 this implies that there cannot exist a time t, > 0 such that
s1(t) = s_(t) = +oo for all t > .

Corollary 4.5. For allt > 0, either s, (t) < +00 or s_(t) < 400 or both.
We conclude the paper with a discussion on the role of Assumption (D.1).

Remark 4.6. As anticipated in Section[d, although Assumption (D.1) is not necessary
to implement the methods illustrated in this paper, it is a convenient one for the clarity
of exposition. Here we illustrate how our methods may be used to deal with a pair v and
w which does not meet (D.1).

Take

v(dr) =

(0_1(x) 4+ 61(x))dzx, p(dx) = ]l[ ](x)dx (4.35)

1
= 11
2 202
Then G is non positive, it equals —3/4 on (—oo,—1) U (1,+00), it is non-decreasing
on (—1,0) and non-increasing on (0, 1), with mazimum value G(0) = 0. Arguing as in
Proposition for T = 400 we obtain v(x) =0 and C, = R\ {0}.

For T < +oo, using the same arguments as in Section [ one finds a non-connected
continuation set of the form

Cr={(t,x) €[0,T) xR : € (—o0, —bL(t)) U (b (t), +00)} (4.36)

where the functions bl are continuous on [0, T), non-decreasing and positive, with bL.(T—) =
1. Since G’ is continuous on [—3, 3] we also have V € C*([0,T) x R) by the same argu-
ments as those used in Section [3.1l.

In the same spirit of Definition we define s4, continuous and non-increasing, as
the time reversal of bL for T > 0. Notice that s (t) > 0 for allt > 0 and s+(+o00) = 0.

Following Section [4) we have

C.={(t,x) €[0,400) xR : z € (—00,—s_(t)) U (s4(t), +00)}. (4.37)
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Due to the fact that Cr is not connected and b%. > 0, then for (t,z) € Cr the time-space
Brownian motion (t + s,x + Bs)s>0 can only enter the stopping set Dr, by crossing bJTr if
x > 0, and by crossing —b" if x < 0.

Proposition [{.4 holds in the same form and its proof can be repeated up to minor
changes. In particular reads

where indeed we notice that p°(0,—1,T —t,x) = 0 for x > 0 and p° (0,1,T —t,x) = 0
for x < 0, because C3 1is not connected. Using the latter representation one can repeat
step by step the arguments of proof of Theorem with obvious changes, to obtain that

holds with
o i=1nf{t >0 : W/ € [-s_(t),s+(t)]}.

A Appendix

Proof of Proposition|3.1. Finiteness is a simple consequence of sublinear growth of G at
infinity and of 7' < 4-00. Since G is independent of time then ¢ — V/(¢, x) is non-increasing
on [0, 7] for each z € R by simple comparison. To show that V' € C([0,T] x R) we take
0<t; <ty <T and z € R, then

0 <V(ty,x) = V(ty,z) < sup E, [(G(BT) — G(BT,tQ))]l{TZT_tQ}}
0<T<T—t,
SLgEx[ sup }BS — BT,tQH —0 asty—t; =0
T—t2<s<T—t;
where we have used that x — G(z) is Lipschitz on R with constant L € (0, 4] and the
limit follows by dominated convergence. Now we take z,y € R and ¢ € [0, 7], then
\V(t,z) = V(t,y)| <LGE[ sup |Bf—BY|| = Lealz—yl.
0<s<T—t
Since V(-,z) is continuous on [0,7] for each x € R and V(¢, -) is continuous on R
uniformly with respect to ¢ € [0, T] continuity of (¢, x) — V (¢, x) follows. O

Proof of eq. (3.1)—(3.3)). Condition (3.2]) and (3.3) are obvious whereas to prove ({3.1]) we

use a well known argument (see for instance [26, Sec. 7.1]). Since Cr is an open set and it
is not empty (see step 2 in the proof of Theorem we can consider an open, bounded
rectangular domain U C Cr with parabolic boundary dpld. Then the following boundary
value problem

U + %um =0 onU with u=1V on 0pU (A-1)

admits a unique classical solution u € CY2(U)NC(U) (cf. for instance [I5, Thm. 9, Sec. 4,
Ch. 3]). Fix (t,z) € U and denote by 7, the first exit time of (¢t + s,z + By)s>o from U.
Then Dynkin’s formula gives

u(t,z) = E[u(t + 1y, v+ By,)| =E[V(t+ 1w,z + By,)| = V(t, x)

where the last equality follows from the fact that V(¢ + s A 7,2 + Bsar,), s > 0 is a
martingale according to standard optimal stopping theory and 7, < 7, P-a.s.
Since U is arbitrary in Cr the equation (3.1]) follows. O
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Proof of Proposition[3.4. We proceed in two simple steps.
Step 1. Here we collect some geometric properties of G. Since G'(z) = 2(F, — F,)(z),
then the limits

G(+o0) := lim G(z) and G(—o0):= lim G(x)
T—r 00 T——00
exist because G’ changes its sign at most once due to (D.1). Notice however that G(400)
might be equal to +0o0. Moreover

supp{pu} CR. = G' <0on R and supp{u} CRy = G’ >0on R, (A-2)

On the other hand, if u is supported on both sides of [—a_,ay] (hence ay < oo) then
there exists a unique ag € [—a_,a| for which F, > F, on (—o00,q) and F, < F, on
(ap, +00). Hence G has a unique global minimum at ay.

Since G(0) = 0, using the above discussion we conclude that

G = sup G(r) = max{G(+00), G(—o0)}. (A-3)

z€R

Notice that atoms of p and v correspond to discontinuities of G’ and, if p and v are
purely atomic, then G is continuous and piecewise linear. Finally we have G concave on
(=00, —a_) U (ay,+00) and convex on [—a_,ay] because G”(dx) = 2(v — p)(dx).

Step 2. Now we study the value function v and the continuation set C.. From the
analysis in step 1 we deduce that G is the smallest concave majorant of G, hence we
expect v(r) = G.

Due to (A-3) we immediately have v(z) < G from (3.26]), so we need to prove the re-
verse inequality. With no loss of generality we may consider G(400) = max{G(+o0), G(—0)}
and regardless of whether or not G(+o0) is finite we can argue as follows: we pick
T, = inf{t > 0: B, > n} so that v(z) > E,G(B,,) = G(n) because P,(1, < +00) = 1.
Taking the limit as n — oo we get v(x) > G(+00) as needed.

If v = 400 then Co = R since G(z) is finite for all x € R. The geometry of Cy in
the remaining cases can be worked out easily. Let us consider for example the setting of
it). Since G(+00) > G(—00) then it must be supp{u} "R} # 0, due to (A-2). It follows
that 0 < a; < p4, because py = ay is ruled out by (D.2). Then G’ > 0 on [ay, u),
which implies that G(z) < G(u4) for < py and G(z) = G(py) for all > .. Hence
G(+00) = G(uy), and since v(z) = G(+00) then Co = (—00, u4). We notice that the
argument holds also if u, = +o0.

The geometry of Cy, in cases #ii) and iv) may be obtained by analogous considerations.

]

Proof of Lemma |5.7. Because of we have T.(t,x) = 0, P-a.s. In particular this
means that for any fixed w € Q \ AV, with N a null set, and for any 6 > 0 there is s =
s(w) € (0,0) such that (t+s, x+Bs(w)) € D5. Since (t,+$, 2n+Bs(w)) — (t+5, 2+ Bs(w))
as n — oo, and D% is open, then there exists N,, € N such that (¢, + s, z, + Bs(w)) € D5
for all n > N,,. Thus 7. (t,, z,)(w) < ¢ for all n > N, and

lim sup 7 (¢, ) (w) < 9.

n—o0
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Recalling (3.34)) and that § was arbitrary we obtain

nh_)rglo T (b, Tn) (W) = nh_)rglo Ti(tn, xn)(w) = 0.

Since w was also arbitrary we conclude the proof. O]

Proof of Lemmal3.8 For simplicity set 7. = 7. (¢, z) and 7,, = 7 (¢, ). By monotonicity
of the optimal boundaries it is not hard to see that (7,,),>0 forms a family which is non-
increasing in n with 7,, > 7, for all n, P-a.s. We denote 7, := lim,,_,, 7,, P-a.s., so that
Teo = T and arguing by contradiction we assume that there exists €2y C €2 such that
P(Q0) > 0 and 7o, — 7% > 0 on Q. Notice that 7, < T — ¢ on g, otherwise 7., > 7, leads
immediately to a contradiction.

Let us pick w € €y and with no loss of generality let us assume that

2+ By (w) = by(t + 7. (w)) (A-4)

(similar arguments hold for b_). Since we are on €, then there exists ¢, > 0 such that
Too(w) — Tu(w) > 6, and for all n > 0 it must be

T+ B, 1s(w) < by(t, + 7u(w) + 5), s € (0,6,/2]. (A-5)

For any ¢ € (0,9,/2) we find n. sufficiently large to get ¢t — ¢, < € for n > n. and
consequently ¢, +s >t for s € (e,4,,/2]. Monotonicity of b, implies that for n > n. we
have

by(tn + me(w) +5) <bi(t+7(w))  s€(gd,/2

and hence, by (A-5)), also
T+ B s(w) < bi(t+ 7(w)), s € (g,0,/2] (A-6)

Letting now ¢ — 0 in (A-6)), the latter and (A-4)) would imply B, 4s(w) — B, (w) < 0 for
s € (0,6,,/2], which contradicts the law of iterated logarithm. O

Proof of Proposition[3.9. We only provide a full proof for (3.38]) as the argument for ([3.39)
is completely analogous up to trivial changes. Let ¢ € [0,7) and x := b, (t) < +o00 then
it is easy to see that

lim sup ! (V(t,z) = V(t,x —¢)) < limsup ! (G(z) — Gz —¢)) = G'(z—). (A-7)

e—0 5 e=0 €&

Moreover (3.1 implies V,, = —2V; > 0 in Cy so that V,(¢, -) is non-decreasing for all
x € (=b_(t),by(t)) and its limit at x = b, (¢) is well defined. Hence (A-7)) implies

Vo(t,z—) < G'(z—). (A-8)
For the other inequality in (3.38]) we denote

T.:=inf{s >0 : (t+s,B°) € Dy},
T, =inf{s >0 : By * < —a_},
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set p. := 7. A 7,_, and recall that
Ye=V(t+sApe, Bg,,) isamartingale,
whereas Y := V(¢ + s, BY) is a supermartingale for s € [0,7 — t]. We notice that
P(r.. >0) =1. (A-9)

If —a_ < ay the result in (A-9)) is trivial. If a_ = a; = 0, then v({0}) =1 and b (t) >0
for t € [0,T) by (iv) in Theorem Hence by (t) —e > 0 for ¢ sufficiently small and
(A-9) holds.

Using the (super)martingale property of Y and Y© we have
V(t,z) = V(t,x —e) >E[V(t+p-, BS) = V(t+ p., By )] (A-10)

=E |:]1{7—E<Ta7 YN {pe<6} (G(st) — G(Bf:s))}
+E |:]1{Ta>7a, N{p=<6} (V(t + Ta_, Bfa_) — V(t + To, B;ﬁ;_s))]

+E[Lgpssy (V(E+pe By) = V(E+pe, B )]
Recalling the Lipschitz continuity of V(t,-) (Proposition and since By — B)™° = ¢
P-a.s. for any stopping time p, we obtain the lower bounds

E []1{75>Ta_}m{p€§5} (V(t +Ta  BE )=Vt 4T, Bfaf))] > e LoP(1. > 7o, p. < 0),

E[Tgpssy (V(t+pe, By) = V(E+pe, By 9))] > —¢ LaP(pe > 9).

We notice that since b, is non-increasing, then on the event {p. < 6} N{7. < 7,_} one has
r—e+ B, > b (t+J) > a.. Moreover G is concave and non-decreasing on [a,, +00) and
therefore also on the interval (B27¢, BY ) when considering the event {p. < §}N{7. < 7,_}.
Using these facts we obtain

E []l{rs«a_}m{pegé} (G(B?) - G(Bfg_a))}
> cE [n{reqh}m{pag}a'(x v B, )] > e @by (t) + )P(r < Tu_, pe < 6)

where for the last inequality we have used again concavity of G' and that z—e+ B, < b, (t)
because the boundary b, is monotonic non-increasing.

Plugging in the lower bounds obtained for the terms on the right-hand side,
and dividing by ¢ we find

é(V(t, D) -Vt —2) > G bs(t) + )P (r. <7, p < )

— Le (P(7: > 7a_, pe < 8) + P(p: > 9)) . (A-11)

Notice that due to (A-9)) for any n > 0 there is ' > 0 such that P(7,_ >7n') > 1 —n and
therefore P(7. > 7,_) < n+ P(7. > /). The latter implies that letting ¢ — 0 in (A-11)),
and using that 7. — 0 P-a.s. (Lemma and G’ is right-continuous, gives

Va(t,2=) = G'(b (1) +n = G'(z) + 1.
Since 7 is arbitrary, (A-8)) and the above inequality imply (3.38]). O
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Proof of Lemma[3.14. We will only give details for the limits involving b, as those in-
volving b_ can be obtained in the same way.

Step 1 (Proof of (ii)). If u({bs}) = v({b+}) = 0 then G’ is continuous at b,. Moreover
since b, (t) — by as t — T we can take limits as ¢ — 7 in (3.38)) and obtain (3-40). 1f
instead V({i)+}) > u({bs}) = 0, ie. ay = by and v has an atom at that point, then (iv)
of Theorem implies that b, (¢) converges to a,, as t — T, strictly from above. Hence,
by right-continuity of G’ and concavity of G on (b, +oc) we get

Gl(6+) = lim G'(by(t)) < lim G'(b.(1)—) < G/(l;Jr)
t—=T t—=T
and (ii) holds due to (3.38)).

Step 2 (Proof of (i)). The more interesting case is when u({b.}) > 0 and therefore
l;+ > ay due to Assumption (D.2). For this part of the proof it is convenient to use the
notation E;,[-] = E[-|B; = z| and to think of {2 as the space of continuous functions,
with 6. : Q — Q denoting the shifting operator.

In particular we take t € [t,,T) so that by(t) = by and V(t,b,(t)) = G(by(t)) (see
Lemma . We also pick a € (a,b,) and denote 7, := inf{s > 0 : X, < a}. For e >0
such that by — e > a we have

~

Vi) = Vitbe =€) = Glby) = Glb —e) = [ By L[12) = wids)  (A12)

with 7, as in (2.7). To find a lower bound for the last term in (A-12)) we notice that
L2 1. <ryv(dz) = 0 and L v(dz) = 0, P,; __-a.s. and use the strong Markov property
as follows.

B o= < [ B[t 22 o)

— [ B[ (B + B[22 00| 7]) Jo(a)

= /R Et,i)+*€ |:]]'{T*>TG}ETa7a [L:'*] ] I/(dZ)

<Py —e(ra < 7) / sup B [L2]v(d2).

t<s<T

Setting g(t) := [, sup,< <1 Es[LZ |v(d2) and substituting the above bound in (A-12)) we
get

~

V(t,by) = V(t,by —e) > Gby) — Glby —e) — g(t)P,; (1. <T). (A-13)

t,i)+—€
Notice that since by (t) = by for all ¢ € [ty,T] then {r, < 7.} C {1, < 7, AT = 1)},
Pt75+_5—a.s. where T, = inf{s >0: X, > B+} Therefore

€

Pt,i)+—€(Ta < T*) S Pt,i)+—€(Ta < TZ)+ /\ (T - t)) S Pt,6+—6(Ta < TZL,,) = 6 a

.-
where the last equality follows by well known properties of the scale function of Brownian
motion. Plugging the above in (A-13)), dividing by ¢ and taking limits as ¢ — 0 gives

Vilt by =) = G'(bs—) = g(t)(bs —a) ™. (A-14)
Now letting ¢ — 7" and noticing that g(t) — 0 we obtain (3.40) upon recalling (3.38). O
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Proof of Lemma[3.13. We only prove the statement for supp{u} "R, = () as the argu-
ments for the the other case are the same. Let ¢t € [0,7] and = > 0, so that (¢,z) € Cr
and (t,x +¢) € Cp for all € > 0, since the stopping set is all contained in [0,7] x R_
(recall (ii) of Theorem [3.2)).

For 7, = 7.(t,z) we have

—_

é(v(t,Hg)_v(t,x))z E[G(a:+5+B) G(a:+BT*)},

)

and

% (V(t,z) = V(t,z —¢)) < éE[G(m Y B)—Glr—e+ BT*)]

Since V € C'? inside Cr and G is right-continuous then taking limits as ¢ — 0 gives
E.G'(B,.) < V,(t,z) <E,G'(B,,—). (A-15)

Notice that G'(x) — 0 as x — oo (recall that v({+o0}) = 0), hence for any £ > 0 there
exists x. > 0 such that |G'(z)| < ¢ for © € [z.,+00). We fix ¢ > 0 and with no loss of
generality consider x > x.. Then we have

EQE‘G/(BT*)} :E:v |:|G/(BT*) ]1{7'*<T—t} + |G/(BTft)‘]l{T*:T—t}}
<LPu (7 < T —t) + B, [|G'(Br—o)| L —r—pnipr_o<an}] +€

<L (PI(T* < T —1t)+Py(Br_, < x5)> +e

An analogous inequality clearly holds for EI‘G’ (BT*—)|.
Since z > ., then both P, (7. < T'—t) and P,(By_; < z.) are bounded from above by
P(supg<,<r |Bs| > |z — z|). Therefore from (A-I5) and the estimates above we obtain

sup |Va(t, z)| < 2LgP( sup. |B,| > \xs—x]) +e.
0<t<T 0<s<

Letting x — oo and recalling that £ > 0 was arbitrary the proof is completed. O

Proof of Lemma[{.1. The proof is a generalisation of the proof of [20, Thm. 24.7] and it
will be sufficient to give it in the case with t = 0 and s = T'. In particular it is enough
to show that for any A, B € B(R) with A C [-b_(0),b4(0)] and B C [-s_(0), s4(0)] one
has

/ P.(Bre€ B, T < 7.)dx = / P.(Wre A, T <r1_)dx. (A-16)
A B
Recalling ((3.34) and ( -, we find it convenient (with no loss of generality) to prove
(A-16]) Wlth T and 7_ instead of 7, and 7_.

For the sake of this proof and with no loss of generality we can consider the canonical
space 0 = C([0,00)) with the Borel o-algebra F = B(C([0,00))). Given that
only involves the laws of B and W we can simplify the notation and consider a single
Brownian motion X = (X;);>0 defined as the coordinate process X;(w) = w(t) with its
filtration (F;¥)i>o augmented with the P-null sets. With a slight abuse of notation, here
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we denote by P the Wiener measure on (€2, F). In this setting 7, coincides with the first
exit time of (X¢)¢>o from [—b_(t), b (¢)], t € [0, 7] and 7_ coincides with the first (strictly
positive) exit time of (X});>o from [—s_(t), s (t)], t > 0.

Due to (3.34) and (4.18)) it is not difficult to see that
{T<#}= () {Xel-b-(a),0:(0)]}. (A-17)

q€[0,71NQ

and

{T<i}y= (1 {X;€l-s-(0)s:(a)}. (A-18)

qE[O,T}ﬂQ

For simplicity and without loss of generality we assume 7' € Q. Now, we can consider
a sequence (m,)nen of dyadic partitions of [0,7] defined by =, = {t§,t},...t} where
tn= 2T k=0,1,2,...2" and then

qEmn
{T<7}=lm [ {X,€[-s(0) 5]} (A-20)
g€y
We set h, =t} —tf = T/2" and denote pj(z,y) = \/erihexp —i(m — 1)?. By using

monotone convergence and Chapman-Kolmogorov equation we obtain
/ P.(Xre A, T <7 )dx (A-21)
B

= lim [ P,(X, € [-s-(¢),s+(¢)] for all¢ € m,, Xy € A)dz

n—0o0 B

= Jggo Ph(xo, 21)py (w1, T2) - . . Py (Tan 1, Ton )dzg dy ... dTon

where the last integral is taken with respect to g € B, on € A and z, € [—5_(t}), s+ (t})]
for k =1,2,...2" — 1. We interchange order of integration, relabel variables xon_p = ys
for k =0,1,2,...2" and use symmetry of the heat kernel along with the fact that s (q) =
b+ (T — q) to conclude

/ P.(Xp € A, T <7 )du
B

= lim [ py(vo,y1)P; (Y1, 92) - - - Pp(Y2n—1, Y20 )dyo dyn - .. dyon

n—oo

= lim [ P.(X, €[-b_(q),bs(q)] for allq € m,, X1 € B)dx

n—oo A

_ / P.(Xr € B, T < #)dx.
A

Hence (A-16) follows and the generalisation to arbitrary ¢ < s can be obtained with the
same arguments. O
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Proof of (4.1€]). It is sufficient to show that b’ () J by (¢) for all ¢ € [0, T) since the proof
for b_ is analogous and the convergence of the related sets easily follows from the same
arguments. Note that for each ¢ the limit b5 (¢) := lims_,o b3 () exists and 0% (£) > by (¢)
since § — b%(t) decreases as § — 0 and 0% (t) > by (t) for all § > 0. Let us assume
that there exists ¢ € [0,T) such that b (¢) > by (). Pick z € (b;(%),0° (%)), then by
definition of b} it should follow that infs~o V°(Z,Z) — G°(Z) > n > 0 for some 1 = (¢, T)
independent of §. However this is clearly impossible since V°(t, %) — G°(Z) converges to

V(t,z) — G(z) =0as o — 0 by (4.17). O
Proof of (4.17)). We denote || - || the L*(R) norm. By direct comparison we obtain

(VP =V)(t,z) < sup E,2 / v (F. = F))(2)dz (A-22)

0<r<T—¢

o5, - Fill sw BB
0<T<T—t
and the same bound can be found for (V — V?)(t,2). Then by an application of Jensen
inequality and using that E,(B,)? = 2? + E¢B? = 2% + Eo7 we get

1
VeVt a) < 2B~ Fll, sw (B B|)? < 2ol + VDB - Fl,.. (A-23)

0<r<T—t

The latter goes to zero as 6 — 0 by (4.15)), uniformly for ¢ € [0,7] and x in a compact. [

Proof of (#.19). Thanks to (4.4) and (4.18)) it is sufficient to prove that 7 | 7_ as § — 0.
We denote 7y := lims_,o7°, P-a.s. (the limit exists since the sequence is monotone by

(4.16])). Note that 7o > 7_ and let us now prove that the reverse inequality also holds.
Fix @ € Q, then if 7 (®) = 400 we immediately obtain 79(0) = 7_(©). On the
other hand let n; > 0 be such that 7_(w) < nz. Then there exists ¢ € (7_(w),n,) (also
depending on w) such that W}(0) ¢ [—s_(t),s.(t)], i.e. with no loss of generality we
may assume that there exists g;, > 0 such that W/(©) > sy (t) + ere. By it then
follows that W} (&) > s.(¢) for all § sufficiently small and hence 7(&) < 7. Since 7,
was arbitrary we conclude that 7o(w) < 7(@). Repeating the argument for all w € Q the
claim is proved. [

Proof of a refined version of Lemmas[3.15 and [3.14. Here we discuss a technicality needed
to make the proof of V2 € C([0,T) x R) rigorous. In fact we need a refined version of
Lemma in order to be able to prove Lemma in the cases supp{u} "R, =0
or supp{u} NR_ = (). We only give full details for the former case as the latter can be
addressed by similar methods.

Let supp{u} "R, = 0 (hence b, = +0o0), then for any § > 0 one has °(R) < 1 and
lim, o (G?)'(z) = g5 > 0 for some constant gs. Therefore Lemma holds in a different
form and in particular we claim that

lim sup ’Vf(s, y) — gs| = 0. (A-24)

Y=o 0<s<T

If the above limit holds then one can replace (3.50)) in the final part of the proof of Lemma
by
1 [T

o /9
i |, (s = VEs.))ds.

on([z, +00)) =
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and notice that |0y, ([z,+00))| < £/2 for z sufficiently large. Once this is accomplished
the rest of the proof of Lemma follows in the same way and one can then repeat the

same steps to prove all the remaining properties of V.
It remains to prove (A-24)). As in (A-15]) we obtain

E. [(G°)(Br) = gs] < V7 (t,2) — g5 < Eo [(G°)(Br.—) — gs] -

Moreover for any € > 0 there is 2. > 0 such that |(G°)(z) — g5| < ¢ for x € [z., +00) and
therefore

E. [[(G°)(B..) — g5|]] < c(Pa(r < T —1t) + Po(Br_s < z.)) +e.

Taking limits as x — oo the right-hand side of the expression above goes to €. Since the

latter is arbitrary (A-24]) follows. O
Proof of (4.34]). For k > 1 we denote uﬂ“) = u_ + 1/k. Notice that py(dx) = pgsq1(dx)
for € [—pu_,+o00) whereas pyy1(dz) > pp(de) for x € [—u@+1),—u,) since ), | =

(k+1)F,(—p-) > kF,(—p_) = F,, on that interval. On the other hand if we denote by
Tr+1 the optimal stopping time for the problem with value function Vi, we also observe
that LZ =~ =0, Py,-as. for all 2z < — " since b (1) < pY for all ¢ € [0,T). Tt
then follows for any (t, z)

Etvgc/RLTkHNk'H(dZ) =Eiq /[/J«gﬁLl)H*OO) LTk+1:uk+1<dz)

2B [y Bian(@) =B [ L utd).
L

Therefore we obtain

Vir (b, 7) — G (z) = Ev / L2 (v — ) (d)
R

< [ I, (0= m)(d) < Vit o)~ Gula)

for all (t,z) € [0,7] x R. For Uy := Vi — G, the sequence (Uy)r>o is non-increasing.
Hence, denoting Cy := {(t,z) : Ug(t,x) > 0}, k > 1 the corresponding continuation sets,
one has Cy D Cjyq for all £ > 1. On the other hand it is easy to verify that by construction
lim sup |Gr(xz) — G(z)| =0

zeR

k—oo
and therefore also

lim  sup |Vi(t,z) — V(t,x)] = 0.
k=00 (¢ 2)e0,T]xR

Now arguing exactly as in the proof of (4.16) and (4.19) we can demonstrate that Cy | Cr

and aﬁk) o, P-a.s. as required. O
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