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ABSTRACT	
Studies	of	ocean	ridge	magmatism	have	been	hampered	by	the	difficulty	in	constructing	time-series	data	over	

more	than	a	few	thousand	years.	Sediment	rapidly	covers	newly	formed	ocean	crust,	and	older	rocks,	even	when	

recovered	from	fault	scarps,	cannot	be	dated	accurately.	Ridge	eruptions,	however,	disperse	pyroclastic	glass	

over	distances	as	far	as	5	km,	and	these	glasses	have	been	shown	to	persist	for	thousands	of	years	in	on-ridge	

sediment	push	cores	(Clague	et	al.,	2009).	Here	we	present	data	on	such	glasses	from	a	piston	core	that	impacted	

basement	 in	 much	 older	 (600	 ka)	 sediment.	 The	 age	 of	 deposition	 was	 determined	 using	 established	

stratigraphic	methods	to	date	the	host	sediment,	yielding	an	average	sample	resolution	of	a	few	thousand	years	

and	a	continuous	65	k.y.	time	series.	The	new	time-series	data	show	systematic	temporal	variations	in	magma	

compositions	related	to	a	change	to	the	dynamics	of	crustal	storage,	which	led	to	greater	extents	of	pre-eruptive	

differentiation.	 Shortly	 thereafter	 was	 a	 small	 but	 discernable	 shift	 toward	 more	 enriched	 primary	 melt	

compositions.	These	events	coincide	with	the	onset	of	enhanced	crustal	production,	previously	identified	using	

seismic	data	and	interpreted	to	reflect	the	capture	of	a	hotspot	by	the	ridge.	These	results	show	the	long-term	

preservation	of	pyroclastic	glasses	and	suggest	 that	 the	construction	of	high-resolution	volcanic	 stratigraphy	

over	a	million	years	or	more	may	be	possible	at	ocean	ridges,	using	multiple	piston	cores	that	impact	basement.	

Sediment-hosted	glasses	have	the	potential	to	transform	ocean	ridges	from	the	volcanic	setting	with	the	worst	

time-series	data	to	that	with	the	best.	

	

INTRODUCTION	

A	 long-standing	 limitation	 to	 our	 understanding	 of	 mid-ocean	 ridges	 (MORs)	has	been	 the	

difficulty	 in	 obtaining	 quantitative	 time	 series	 for	 volcanic	 compositions.	 Sediments	

accumulating	at	~1	cm/k.y.	rapidly	cover	older	lavas	on	the	ridge	flanks,	making	them	mostly	

inaccessible	 to	 traditional	 sampling	 methods.	 Even	 if	 obtained,	 these	 rocks	 cannot	 be	

accurately	dated	because	absolute	radiometric	dating	methods	have	not	been	successfully	

applied	 to	 mid-oceanic	 ridge	 basalts	 (MORBs),	 making	 time-series	 interpretations	

problematic.	Previous	successes	in	obtaining	samples	from	off-axis	fault	scarps	via	dredging	

(Batiza	et	al.,	1996;	Regelous	et	al.,	1999)	or	submersible	(Cordier	et	al.,	2010)	have	suggested	

changes	 in	 magma	 compositions	 over	 periods	 of	 tens	to	 hundreds	 of	 thousands	 of	 years,	

however	the	sampling	resolution	of	these	studies	is	very	coarse	(a	handful	of	samples	per	100	

k.y.)	and	ages	are	 inferred	from	spreading	rates.	While	drill	cores	may	offer	more	detailed	

records	 for	 older	 lavas	 (i.e.,	 >6	 Ma;	 Brandl	et	 al.,	 2016),	 internal	 age	 estimates	 are	 simply	

stratigraphic	rather	than	quantitative.	Discriminating	between	models	of	MOR	evolution	(e.g.,	

Carbotte	et	al.,	2006;	Kappel	and	Ryan,	1986;	Smith	et	al.,	1994;	Perfit	and	Chadwick,	1998;	

Crowley	 et	 al.,	 2015)	 would	 benefit	 from	 high-resolution,	 quantitative	 time-series	

observations	of	the	magmatic	behavior	of	ridges	through	time	(e.g.,	Clague	et	al.,	2013).		



	

A	promising	new	approach	to	develop	such	time	series	is	via	sampling	and	analysis	of	small	

pyroclastic	 glass	 fragments	 deposited	 in	 seafloor	 sediments	 (Clague	et	 al.,	 2009).	 While	

pyroclasts	 were	 previously	 known	 from	 several	 submarine	 settings	 (e.g.,	 Loihi	 Seamount	

[Clague	et	al.	2000],	Seamount	6	near	the	East	Pacific	Rise	[Maicher	and	White,	2001],	and	

the	 Gakkel	 Ridge	 [Sohn	 et	 al.,	 2008]),	 Clague	 et	 al.	(2009)	 documented	 their	 widespread	

occurrence	even	at	normal	ocean	ridges	low	in	volatile	content.	A	few	high-resolution	time	

series	from	such	deposits,	spanning	periods	of		~<10	k.y.,	exist	for	short	on-axis	push	cores	

(i.e.,	 Dreyer	 et	 al.,	 2013;	 Portner	 et	 al.,	 2015).	The	 extent	 to	 which	 such	 glasses	 might	 be	

preserved	in	older	sediments	and	over	longer	time	periods,	however,	has	not	previously	been	

demonstrated.	Here	we	show	using	a	piston	core	that	reached	600	ka	basement	that	ancient	

glasses	are	indeed	preserved	and	permit	high-resolution	observations	over	tens	of	thousands	

of	years.		

	

TIME	SERIES	FROM	SEDIMENT-HOSTED	VOLCANIC	GLASS		

Although	the	detailed	formation	mechanisms	remain	poorly	understood,	pyroclastic	material	

is	generated	during	seafloor	volcanism	(Clague	et	al.,	2000,	2003,	2009;	Schipper	and	White,	

2010),	with	likely	dispersal	via	incorporation	into	buoyant			thermal	plumes	(e.g.,	Barreyre	et	

al.,	2011;	Clague	et	al.,	2003,	2009).	In	an	exhaustive	study	using	a	grid	of	139	push	cores,	

Clague	et	al.	(2009)	documented	widespread	(~5	km)	dispersal	from	a	single	modest	eruption	

on	the	Gorda	Ridge	(northeast	Pacific).	Although	further	work	is	required	to	understand	the	

volcanological	 and	sedimentological	 aspects	 of	 submarine	 glass	 generation	 and	 dispersal,	

available	 information	 strongly	 suggests	 that	 the	 production	 of	 small	 glass	 fragments	 is	

common	during	submarine	volcanism	at	all	depths	(see	Clague	et	al.,	2009,	and	references	

therein).	 Sampling	 submarine	 volcanic	 glass	 from	 successive	 (stratigraphically	 intact)	

sediment	layers	provides	an	immediate	relative	chronology	that	can	be	quantified	through	

correlating	established	isotope	stratigraphies	or	using	radiometric	techniques	to	date	the	host	

sediments	(such	as	
14

C	dating:	Clague,	2009;	Dreyer	et	al.,	2013;	Portner	et	al.,	2015).	This	

approach	 also	 allows	 material	 to	 be	 collected	 that	 originates	 from	 flows	 that	have	 been	

resurfaced	by	subsequent	eruptions	but	whose	dispersed	glass	deposits	are	preserved	in	the	

sedimentary	 record.	 Sediment-hosted	 glasses	 are	 therefore	 likely	 to	 provide	 a	 more	

comprehensive	view	of	erupted	magma	compositions	because	sampling	by	rock	core,	dredge,	

or	 submersible	 is	 only	 able	 to	 sample	 the	 uppermost	 flows.	 Indeed,	 glasses	from	 surficial	

sediments	have	been	shown	to	span	a	wider	range	of	compositions	than	those	of	underlying	

or	adjacent	lava	flows	(Davis	and	Clague,	2003),	consistent	with	the	fragments	being	derived	

from	multiple	flows	distributed	over	space	and	time.		

	

On	a	recent	cruise	to	the	Cleft	segment	of	the	Juan	de	Fuca	Ridge	(northeast	Pacific),	a	piston	

core	taken	~20	km	west	of	the	axis	penetrated	the	entire	sedimentary	pile	and	impacted	the	

volcanic	basement	(Fig.	1A).	Numerous	small	(£1	mm)	particles	of	volcanic	glass	(Fig.	1B)	are	

present	 in	 the	 lowermost	 meter	 of	 the	5.5-m-long	 	 	 sediment	 core,	 deposited	 when	 this	

portion	of	the	seafloor	was	near	the	ridge	axis.	The	chronostratigraphy	of	the	host	sediments	

was	established	by	Costa	et	al.	(2016)	using	an	age	model	based	on	benthic	oxygen	isotopes	

(shown	in	Fig.	1C)	mapped	into	a	standard	marine	isotope	stratigraphy	(Lisiecki	and	Raymo,	

2005)	(mean	sedimentation	rate	of	~1	±	0.6	cm/k.y.;	see	methods	and	Fig.	DR2	in	GSA	Data	

Repository
1
;	Costa	et	al.,	2016).	The	base	of	the	core	is	constrained	to	be	ca.	610	ka	by	the	

	 	



Figure	1.	A:	Location	of	sediment	core	AT2619-12PC	collected	at	Juan	de	Fuca	(JdF)	Ridge	(northeast	

Pacific;	R/V	Atlantis	cruise	AT2619).	Cleft	segment	(C)	lies	north	of	Blanco	fracture	zone	(BFZ)	and	south	of	Axial	

Seamount	(AS).	The	coring	site	is	located	on	the	edge	of	an	axial-centered	bathymetric	plateau,	which	indicates	

a	 region	 of	 thicker	 crust	 (Carbotte	 et	 al.,	 2008).	 B:	 Photomicrograph	 mosaic	 showing	 typical	 sizes	 and	

morphologies	of	sediment-hosted	volcanic	glasses.	C:	Benthic	oxygen	isotope	data	for	core	AT2619-12PC	(Costa	

et	al.,	2016).	These	data	provide	stratigraphy	and	age	model	for	host	sediments.	Accumulation	rates	over	this	

period	are	shown	in	Figure	DR2	(see	footnote	1).	MIS—Marine	Isotope	Stage.		

	

	

isotope	stratigraphy,	the	same	age	as	that	expected	for	the	underlying	lava	flow,	assuming	

emplacement	near	the	edge	of	the	axial	rift	and	a	half-spreading	rate	of	2.8	cm/yr.	Because		

	

the	ages	of	the	sediments	are	known,	the	age	of	glass	deposition	within	the	sediments	is	also	

known,	 thus	 providing	 a	 continuous	 high-resolution	 record	 of	 mid-Pleistocene	 magma	

compositions	over	several	tens	of	thousands	of	years.	Sampling	the	core	every	1	cm	provides	

a	nominal	temporal	resolution	of	~2.7	±	0.6	k.y.	per	sample	(see	the	Data	Repository).	Glasses	

from	each	individual	sediment	sample	therefore	give	an	integrated	view	of	volcanic	material	

generated	over	this	time	period	and	along	a	“capture	region”	of	several	kilometers	of	ridge	

length	(see	the	Data	Repository	for	discussion	of	temporal	versus	spatial	variability).	The	glass-

bearing	sediments	range	in	age	from	545	to	610	ka,	providing	data	on	eruptions	over	65	k.y.	

and	potentially	along	many	kilometers	of	ridge	length.		

	

GLASS	GEOCHEMISTRY		

Figure	2	illustrates	the	compositional	range	of	the	glasses	(see	the	Data	Repository	and	Tables	

DR1–DR2	 therein	 for	 data	 and	 methods).	 Although	 most	 of	 the	 observed	 variations	 in	

parameters	 such	 as	 MgO	 and	 FeO	 can	 be	 explained	 by	 variable	 amounts	 of	 crystal	

fractionation	(Fig.	2A),	changes	observed	in	some	element	ratios,	such	as	K2O/TiO2		(Fig.	2B),	

require	distinct	parental	melts.	These	changes	occur	systematically	with	depth	in	the	core,	

and	therefore	with	time,	and	are	characterized	by	two	notable	transitions	(Figs.	3A–3C;	Figs.	

DR3A–DR3C).	The	first	of	these		
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Figure	2.	FeO	(A)	and	K2O/TiO2	(B)	versus	MgO	for	Cleft	segment	glasses,	Juan	de	Fuca	Ridge	(northeast	Pacific).	

Variations	 in	MgO	and	FeO	can	be	mostly	explained	by	variable	extents	of	fractional	crystallization	(dark	 line	

shows	fractional	crystallization	path	from	high	to	low	MgO	using	model	of	Weaver	and	Langmuir	[1990]).	Other	

compositional	variations	such	as	K2O/TiO2	ratios	cannot	be	explained	by	fractionation	alone	and	require	distinct	

parental	melts.	Note	distinction	between	glass	compositions	in	upper	and	lower	part	of	sampled	core	section	

(mbsf—meters	below	sea	floor).	

	

	

is	a	decrease	in	the	average	MgO	content	from	~7.5	to	~6	wt%,	occurring	between	ca.	600	

and	590	ka.	Because	MgO	correlates	with	temperature	in	basaltic	magmas,	this	change	shows		

a	decrease	in	magma	temperature,	coupled	with	greater	extents	of	crystal	fractionation	and	

associated	 increases	 in	 other	 elements	 (Figs.	 3A–3C;	 Figs.	 DR3A–DR3C).	 The	 second	

compositional	shift	is	another	stepwise	change	between	ca.	580	and	570	ka,	when	the	average	

K2O/TiO2	ratio	increases.	This	relative	enrichment	in	K	versus	Ti	cannot	be	explained	by	crystal	

fractionation	alone	 (Fig.	 2B)	 and	 therefore	 most	 likely	 indicates	 a	 change	 in	 the	 average	

composition	 of	the	 primary	 melt	 from	 the	 sub-ridge	 mantle.	 These	 shifts	 occur	 relatively	

rapidly,	essentially	at	the	resolution	of	our	data	(see	the	Data	Repository),	and	are	preceded	

and	followed	by	relatively	long	periods	of	low	variability	in	average	magma	compositions.	The	

change	to	more	differentiated	magmas	is	also	accompanied	by	an	increase	in	the	diversity	of	

erupted	MgO	contents	(Fig.	3D).		

	

TEMPORAL	TRENDS	IN	MAGMATISM		

These	new	data	provide	a	unique	record	of	MOR	magma	compositions	over	tens	of	thousands	

of	years.	The	observed	geochemical	transitions	(Figs.	3A–3C)	demonstrate	that	some	ridge	

segments	can	erupt	magmas	from	a	single	parental	composition	over	an	extended	period	of	

time,	and	then	experience	rapid	changes	in	magma	compositions,	reflecting	changes	in	both	

the	dynamics	of	pre-eruptive	melt	storage	and	fractionation,	and	primary	melt	generation.	

The	transition	to	more	differentiated	melts	implies	a	change	in	the	sub-rift	thermal	regime	

and/or	time	scales	of	melt	storage.	A	potential	driver	for			such	a	change	is	a	variation	in	the	

melt	flux	to	the	ridge.	A	waning	melt	flux	could	lead	to	increased	residence	time	and/or	faster	

cooling	 rates	 in	 the	 sub-axial	 reservoir,	 allowing	 for	 greater	 extents	 of	 pre-eruptive	

fractionation.	Alternatively,	ridges	with	higher	melt	flux	are	observed	to	erupt	magmas	with	

lower	 average	 MgO	 contents,	 most	 likely	 due	to	 shallower	 and	 therefore	 cooler	 magma	

chambers	(Rubin	and	Sinton,	2007).	This	is	also	observed	when	melt	flux	varies	independently	

of	spreading	rate	(Colman	et	al.,	2012).	In	either	scenario,	provided	the	change	in	melt	flux	

was	sufficiently	 large	and	sustained,	one	may	expect	these	transitions	in	melt	chemistry	to	

correlate	with	a	change	in	crustal	thickness.	Seismic	data	from	the	Cleft	segment	shows	that	

a	significant	increase	in	crustal	production	occurred	at	ca.	590	ka	(~1	km	increase	in	crustal	
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	Figure	3.	A–C:	Time	series	for	MgO	(A),	FeO	(B),	and	K2O/TiO2	(C)	contents	for	sediment-hosted	volcanic	glasses,	

Cleft	segment,	Juan	de	Fuca	Ridge	(northeast	Pacific).		D:	Range	of	MgO	for	sediment-hosted	volcanic	glasses.	

Age-composition	plots	A–C	show	all	data	(gray	circles)	and	average	compositions	per	centimeter	of	core	(colored	

circles).	 Temporal	 trends	 in	 MgO	 and	 FeO	 contents	 reveal	 rapid	 change	 in	 both	average	 and	 total	 range	 of	

erupted	compositions	(range	of	MgO	shown	in	D)	consistent	with	change	 in	extent	of	pre-eruptive	fractional	

crystallization,	 and	 therefore	 cooling,	 of	 magma.	 Average	 K2O/TiO2	 ratios	 remain	 largely	 constant	 during	

transition	to	more	fractionated	magmas	indicating	that	average	composition	of	primary	melts	feeding	the	ridge	

did	 not	 significantly	 change.	 Subsequent	 increase	 in	 average	K2O/TiO2	 values	 indicates	 more	 chemically	

enriched	melts	erupting	from	the	magma	system.	Glasses	from	lowermost	layer	of	sediment	match	composition	

of	uppermost	lava	flow	of	underlying	basaltic	crust	(marked	BC	in	A–C),	which	was	sampled	by	core	cutter	at	

base	of	pipe.		Similar	time-series	plots	for	TiO2,	P2O5,	and	K2O	are	shown	in	Figures	DR3A–DR3C	(see	footnote	

1).	

	

	

thickness;	Carbotte	et	al.,	2008).	This	is	visible	in	the	seafloor	morphology	due	to	the	presence	

of	a	broad	(isostatically	compensated)	axial-centered	bathymetric	plateau	(Fig.	1A).	Carbotte			

et	al.	(2008)	attributed	the	rise	in	magma	volumes	to	melting	anomalies	associated	with	the	

capture	of	the	Cobb	hotspot	by	the	Juan	de	Fuca	Ridge	(e.g.,	Desonie	and	Duncan,	1990).	The	

close	 temporal	 correlation	 between	 the	 change	 in	 average	 MgO	 contents	 of	the	 magmas	

sampled	in	our	core	and	the	onset	of	enhanced	crustal	production	is	highly	suggestive	of	a	

causal	 relationship	 between	 these	 events,	 i.e.,	 a	 change	 in	 the	 dynamics	 of	 magma	

differentiation	as	a	response	to	greater	melt	flux.		

	

Approximately	20	k.y.	after	the	transition	to	lower	MgO	contents,	a	small	but	discernable	rise	

occurs	in	the	average	K2O/TiO2	ratio	(Fig.	3C).	This	could	have	resulted	from	either	a	decrease	
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in	melt	fraction	from	a	heterogeneous	mantle	or	the	introduction	of	enriched	material	into	

the	melting	region.	Decrease	in	melt	fraction	seems	less	likely	because	it	would	not	account	

for	the	change	in	crustal	thickness.	Instead,	tapping	hotter			and	more	enriched	mantle,	akin	

to	what	is	observed	at	hotspots,	seems	more	plausible.	If	the	change	in	the	average	K2O/TiO2	

values	is	linked	to	the	decrease	in	MgO,	then	the	time	lag	between	these	changes	may	reflect	

the	 dynamics	 of	 melt	 ascent	 beneath	the	 ridge.	 Because	 more	 fertile	 mantle	 will	 melt	 at	

greater	depths,	total	melt	flux	might	increase	prior	to	an	enriched	geochemical	signal,	as	the	

higher	K2O/TiO2	melts	would	take	time	to	propagate	through	the	mantle	to	the	ridge.	If	the	

observed	changes	 in	melt	composition	are	related	to	the	aforementioned	 increase	 in	melt	

flux	linked	to	the	Cobb	hotspot	(e.g.,	Carbotte	et	al.,	2008),	then	the	temporal	offset	between	

the	increase	in	magma	flux	(affecting	MgO)	versus	the	effects	on	primary	melt	chemistry	could	

provide	constraints	on	the	dynamics	of	hotspot/plume	migration	along	MORs	(e.g.,	Ito	et	al.,	

2003).	The	hotspot	is	currently	centered	beneath	Axial	Seamount	~150	km	north	of	the	Cleft	

segment	(Fig.	1A)	and,	although	not	isotopically	distinct,	coincides	with	an	along-axis	peak	in	

the	abundances	of	alkali	and	incompatible	trace	elements	(Chadwick	et	al.,	2005;	Dreyer	et	

al.,	2013).	This	provides	a	feasible	enriched	end-member	source	component	for	the	higher-

K2O/TiO2	melts	and	is	consistent	with	existing	work	on	the	origin	of	Cleft	lavas	(Smith	et	al.,	

1994).	The	observed	change	in	K2O/TiO2	would	likely	require	~10%	addition	of	Cobb	hotspot	

material	into	the	MORB	source	(Chadwick	et	al.,	2005),	of	similar	magnitude	to	the	associated	

increase	in	crustal	thickness	(Carbotte	et	al.,	2008).		

	

The	long	intervals	of	relatively	low	compositional	variability	that	appear	in	this	core	may	seem	

to	run	counter	to	observations	of	“zero	age”	sampling	of	rocks	exposed	in	the	neovolcanic	

zone	 at	 the	 Cleft	 segment,	 which	 show	 more	 diversity	 (Fig.	 2;	 Stakes	et	 al.,	 2006).	 In	 the	

absence	of	real	age	constraints,	however,	such	sampling	may	reflect			changes	occurring	over	

a	relatively	long	time	period.	Sediment-hosted	glasses	from	cores	near	ridge	segments	with	

diverse	compositions	will	help	to	reveal	 to	what	extent	erupted	magmas	change	smoothly	

with	time,	or	have	multiple	compositions	at	a	single	time	(e.g.,	Gill	et	al.,	2016).	Furthermore,	

oscillations	 between	 periods	 of	 more	 homogeneous	 compositions	 and	 more	 short-term	

diversity	 could	 also	 reveal	 important	information	 about	 ridge	 processes	 and	 the	 extent	 of	

homogenization	 in	 sub-axial	 magma	 reservoirs.	 More	 detailed	 investigations	 of	 the	

implications	of	these	observations	for	ridge	magmatism,	as	well	as	studies	of	the	relationship	

between	the	physical	and	chemical	characteristics	of	the	glasses,	are	fertile	ground	for	future	

work.		

	

SUMMARY	AND	FUTURE	WORK		

The	discovery	that	sediments	above	the	seafloor	contain	abundant	fragments	of	volcanic	glass	

has	opened	a	new	approach	for	 investigating	magmatism	and	volcanic	processes	at	ocean	

ridges.	 The	 results	 presented	 in	 this	 study	 demonstrate	 that	 these	 deposits,	 previously	

documented	at	the	ridge	axis,	are	preserved	in	the	sedimentary	record	for	>600	k.y.	and	can	

be	used	to	construct	compositional	time	series	that	have	both	high	temporal	resolution	and	

high	 sample	 density.	 Combining	 geochemical	 analyses	 of	 sediment-hosted	 glasses	 with	

chronostratigraphy	of	the	host	sediments	thus	offers	the	possibility	of	constraining	temporal	

trends	in	magmatism	and	the	compositional	evolution	of	ocean	ridge	segments	over	periods	

of	 tens	 of	 thousands	 of	 years	 in	 a	 single	 core.	An	 important	 test	 for	 the	 potential	 of	 this	

reconstruction	 method	 will	 be	 to	 determine	whether	 geochemical	 stratigraphies	 obtained	

from	nearby	sediment	cores	are	similar	to	those	obtained	here.	Ultimately	it	may	be	possible	



to	generate	long,	continuous	time	series	of	geochemical	stratigraphies	of	a	million	years	or	

more	 from	 sediment-hosted	 volcanic	 glasses	 by	 analyzing	 multiple	 overlapping	 cores	 at	

different	distances	from	the	ridge	axis.	Because	the	cores	also	receive	glass	from	flows	several	

kilometers	away	from	the	site	of	deposition,	sediment-hosted	glasses	also	offer	the	possibility	

of	much	more	statistically	 representative	sampling	 than	 is	possible	 from	dredges	and	rock	

cores	 that	 only	 sample	the	 latest	 flow	 in	 one	 spot.	 This	 technique	 may	 therefore	 permit	

generating	both	better	statistical	representation	of	variability	along	ocean	ridges	and	detailed	

chronostratigraphies	 for	 ridge	 magmas	 that	 stretch	 back	 into	 the	 Pleistocene,	 providing	a	

hitherto	unavailable	perspective	on	ridge	magmatic	processes.		
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