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GPU Implementation of BSORE Algorithm for
Parameters Identification of Surface PMSM
Considering VSI Nonlinearity

Zhao-Hua Liu, Hua-Liang Wei, Qing-Chang Zhong, Fellow, IEEE, and Kan Liu

Abstract: In this study, an accurate parameter estimation model of surface permanent magnet synchronous
machines (SPM SM) is established by taking into account voltage-source-inverter (VSl) nonlinearity. A fast
dynamic particle swarm optimization (DPSO) algorithm combined with a receptor editing (RE) strategy is
proposed to explore the optimal values of parameter estimations. This combination provides an accelerated
implementation on graphics processing unit (GPU), and the proposed method is therefore referred to as
G-DPSO-RE. In G-DPSO-RE, a dynamic labor division strategy isincor porated into the swarms according to
the designed evolutionary factor during the evolution process. Two novel modifications of the movement
equation are designed to update the velocity of particles. Moreover, a chactic-logistic based immune receptor
editing operator is developed to facilitate the global best individual (gBest particle) to explore a potentially
better region. Furthermore, a GPU paralld acceleration technique is utilized to speed up parameter
estimation procedure. It has been demonstrated that the proposed method is effective for simultaneous
estimation of the PMSM parameters and the disturbance voltage (Vgeq) due to VSl nonlinearity from
experimental data for currents and rotor speed measured with inexpensive equipment. The influence of the

VSl nonlinearity on the accuracy of parameter estimation isanalyzed.

Index Terms. particle swarm optimization (PSO), artificial immune system (AlS), Graphics Processing Unit (GPU),
parallel computing, parameter estimation, permanent magnet synchronous machines (PM SMs), voltage-sour ce-inverter

(VSI), nonlinearity.

I.INTRODUCTION?

RECENTLY, permanent magnet synchronous machines (PMSMs) areywisiedl in high-performance applications such as
industrial robots, servo drive, wind power generation, and madboise due to their overall good performandg-[R]. The

design of the control system of such a machines crucially involves tieeatf many key machine parameters such as winding
resistance, dg-axis inductances, and rotor PM flux linkage [3][4} éhange of these parameters could affect the system

behavior and therefore the change in these parameters can be usadate élie health conditions of PMSMorlexample, the
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inter-turn short circuit can result in an abrupt change in winding resistanéedartiance [§ the demagnetization can result in
a sudden decrease in the amplitude of fundamental back electromotive(HEME® [6]. A controller with inappropriately
designed parameters cannot work well, and can lead to a dysfunctiom wiathhine especially for high power machines and
large scale equipment or systems. [A] PMSM is time-varying system, whose parameters are sensitive to theechfng
environmental conditions such as temperature, noise, load torque, anththefage motor, etc. [7].

Recently, many parameter estimation approaches have been introduced inatiuedg&ome measurement instruments such
as thermal couplers, search coils and load test berfjohdi® applied to observe the machine parameters. However, they are
usually not preferred in practice for the potential increase of cost, fon# it may need some extra investment in hardware
such as external sensors, function generator, and spectrum analypeactical engineering, parameter optimization using
numerical methods is an ideal technology for directly estimating the npadamtieters based on regular measurable data instead
of using additional measurement instrumeffls Existing research mainly foceld on online estimation algorithms including
self-commissioning technique [2] ,extended Kalman filter (EKF) i@jdel reference adaptive system (MRAS) [10], recursive
least-squares (RLS) [3] [11], adaptive observer [12], aridficéal neural networks (ANN) [10] 11]. However, with the
increasing complexity of operation conditions, these methods mayamays work well. For example, in [2] a
self-commissioning technique was proposed to estimate PMSM parameterssiamdistill .However, it cannot estimate the
permanent magnet when the machine is at standstill state. In [9], an EKiEhalgeas proposed to estimate the rotor speed and
position of PMSM, but it may be difficult for real applications as the &lgoris sensitive to noise. The MRAS estimators
proposed in [10] cannot simultaneously estimate winding resistanttestance and rotor flux linkage accurately. In this method,
in order to estimate a group of parameters, some are fixed to their ngalired for the estimation of other parameters given in
the motor manual. For example, the winding resistance parametertodaelset to its nominal value in order to estimate the
rotor flux linkage afterward, the accuracy of estimation results dependeoactiuracy of the nominal values of machine
However, the nominal value is usually not consistent with the actuahtomewvalue, thus these estimators cannot ensure
converge to the actual parameter value. In comparison with other alggrilRb® possesses a good property of rapid
convergence rate, but the algorithm may suffer from high compuhtirden and poor tracking ability in non-stationary
environments [3].An adaptive observer was introduced in [1Bptain the estimated values of PMSM systems. It can estimate
the PMSM parameters accurately, but has poor robustness when eétiditige uncertainties in machine parameters estimation
Usually, the existing parameter estimation models are based on the convettiarel equation, thedg-axis equations will be
rank deficient for estimating three or four parameters when the mot@eiating at a steady state, thus the estimation results
may converge to suboptimal. To solve the rank deficient problem;dlkésaurrent injection method can be used to increase the
number of state equations due to the variation of d-axis currentHib¥ever, in this current injection method the voltage
measurement error is ignored. PMSM is usually fed by a voltageesawverter (VSI), and the reference voltages for the
parameter estimator are measured from the Pl regulator in a PMSM vectot sgstiem. This may introduce an error between
the reference voltage of the controller and the actual output voltage of theCo@monly, the researcher use the relevant

parameters of the switching devices to calculated the VSI disturbance voltdgheato compensathe reference voltage of
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the controller 13].However, some device parameters (e.g. the dead-time period, switchésgatnh voltage drops of switching
device) vary with the operating conditions and they difficult to be medday instrumentsThus, the parameter estimates could
be biased due to the effect of nonlinearity of VSI such as switithge drop, switching delay and dead zone response [14]. To
achieve accurate estimation, the influence of VSI nonlinearity has tonsaleped; in other words, it is necessary to take into
consideration of both the VSI and machine. Additionally, the parameters oMB®MRBystem are inherently dependent on each
other, and this is a big challenge for most conventional parameter estimatioods

More recently, a particle swarm optimization (PSO) algorithm was introducethdéoestimation of parameter electrical
machines including induction machine and PMSM machine [2d]-[The PSO algorithm is a nature-inspired algorithm with
several advantages such iés easy implementation, self-tuning decoupling and fast convergeresd Sp dealing with
multivariate coupling system parameter optimization problemg [H5[15], a novel application of the improved PSO was
reported for parameter estimation of an induction machine by moglithi@ movement equation of the standard PSO wsing
number of linear time-varying parametefs.PSO combing least mean squares (LMS) method was proposed tdyidesti
parameters of an induction motor ih6]. In [18], a co-evolution based parameter estimator was developed to estimate the
multi-parameters of PMSM by combining multiple PSO and artificial immune sy#Esh Howeverthe computational load of
this method is heavy. A parallel implementation of co-evolutionary imnmR@®® on GPU is proposed to accelerate the
computation of parameter estimation and temperature monitoring in PNIgMfdgr which the estimation accuracy and time
consuming of the parameter estimates were greatly improved by comi&@g with a parallel computing technology.
Nevertheless, the existing PSO-based parameter estimators of PMSM are baseasindieakis equation ando not consider
the VSI nonlinearity. A dynamic PSO embed with variable exploration vetdr Gaussian-distribution based dynamic
opposition-based learning operator is proposed for the estimation of magehiameters and voltage-source-inverter (VSI)
nonlinearities in PMSM 40]. The development of a high performance PSO for the estimation of PM&Ikitparameters,
together with the VSI nonlinearity is still highly demanded.

In order to achieve better estimates for PMSM parametwts important issues need to be solved when applying PSO
algorithms. Firstly, the dynamic performance of the PSO need tofreved as the swarms are easily clustering together and
losing their diversity in the later stage of evolution. Secondly, PSQdvibeutime demanding if a large population size involves
in the evolution and therefore some massively parallel devices maybieed to accelerate the calculating speed. To overcome
these problems, the labor division and cooperation mechanism ubsgiyitodsting in the biological world, together with the
immune receptor editing mechanismAilg, can be used to improve the dynamic performance of PSO during tbh peacess.
The time consuming problem can be solgdusing Graphic processing units (GPUSs), due to its massively paralleltogp
ability with hundreds of threads and low hardware cost [21

This study aims to achieve better performance in PMSM parameters estinstigran accurate parameter estimation model
where the effect of VSI nonlinearity is considered. A fast dynamitigles swarm optimization algorithm using immune
receptor editinggombined GPU acceleration technology for PMSM parameter optimization (called G-RBS©®-proposed.

The swarm is divided into two stages inspired by labor divisioralony society, namely, the exploitation state and the
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exploration state, according to the designed evolution factor during the enguticessNovel movement update equations are
proposed to update particles in the two sate. Moreover, an immune resdifitay operator is introduced to facilitate the global
individual to explore a potentially better regidturthermore, the proposed parameter estimation method is parallel accelerated
by using a graphic processing unit. As will be shown, the m@ggarameters estimation method is effective for the
identification of the PMSM parameters along with VSI disturbance voltage;)itrequires experimental data for currents, and
rotor speed measured with inexpensive equipment.

The main contributions and main advantages can be summarized as follows:
1) An accurate parameter estimation model of surface permanent magnebsgashmachines (SPMSM) is established by
taking into account voltage-source-inverter (VSI) nonlinearity. A lativision based dynamic particle swarm optimization
(DPSO) algorithm combined with a receptor editing (RE) strategy is designerplore the optimal values of parameter
estimator.
2) High-performance computing ability of GPU is fully utilized tesg up parameter estimation procedure. It can promote the
practical application and real-time response of PSO as it takes full advantageirdfettemt parallelism of population-based
intelligent computing techniques.

The remainder of this paper is organized as follows. In sedlipan accurate parameter estimation model is established. In
sectionlll, the G-DPSO-RE algorithm for PMSM parameter estimation is proposette e principle, mathematical model
and implementation procedure of the algorithm are addressed in details. Expalriegults and analysis are given in section IV.

Finally, conclusions are summarized in section V.

II.PMSM MODEL AND DESIGN OF PARAMETER ESTIMATION MODEL
A. PMSM Model

The mathematical model of the PMSMdg-axisvoltage equatiors givenas

_ di _

di 1)
. q .

wherew is the electrical angular velocityg,wy, iq and j, aredq axis stator voltage and current. The elements of the parameter
set{R Ly, Lq, y} are the motor winding resistance, magnet flux, d-axis aadig|inductances, respectively, which are usually
unknown to the users. Note that the estimated resistance R , as a lumped edistaihee, includes two parts, namely, the
ON-state slope resistances of the active switch and freewheeling diodesiiteirand terminal wire resistance .At steady state
the equation (1¢anbe discretized as follow.
Uy (K) = Rigy (k) — an)(k)i q(k)

Uy (K) = Rig(K) + Lyo(K)i 4(K) + yo (k) @)

In a PMSM vector control system, the voltages used for the PMSM paras8ieation are usually measured from the output
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voltage of the current controllers, and the terminal voltages of PMSMVelk pulses from VSI which are difficult to measure

s

directly [22]-[24]. The two output voltages, denoted h%*, u, ,are shown in Fig-1Note that there exists an error between

the reference voltage of the controller and the actual output voltage of thai% 8 the nonlinearity of VSkoit is essential to

0% i F - [ SVPWM
R G C U ™
‘ 0] #, _‘ E, \—\machine
i

estimate VSI nonlinearity.

p| |
id ia,ib,i c

Clarke(abc/dq

Fig.1.The schematic of vector controlled PMSM drive eyst

Taking into account the influence of VSI nonlinearity, the modelMER! and VSI as a whole, for surface-mounted PMSM,
d-axis inductance is regarded as equal to g-axis inductance, tgakjslL(2) can be rewritten as
Uy (K) + Dd(K)Wead= Riy(K) — Lax(K)i 4 (k) (3a)
uq* (K) + Dq( k) Wead= Riq(k) + Lao(K)i y(K) + v o(K) (3b)
where [y and O are the function of rotor position[13] ,in)(B, R, w,,and \4eaqare the parameters to be estimated. The variable

V4eadiS the distorted voltage due to VSI nonlinearity, and can be represented as

Vdead= Tdead+:r|-80ﬁ—T Off.(\/ de—V sattV J+ %c 4)

whereTdeadis the dead-time period of the switching devit@,andTor areturn-on and turn-off times of the switching device,
Vdc is measured real-time dc bus voltagés: and Vd are the saturation voltage drop of the active switch and the forward
voltage drop of the freewheeling diodejsTthe switching periodit can be seen that if variableeMis ignored, the estimation
results may also be influenced by the nonzero VSI nonlinearity t&th¥%deadand Dq.\Mead, and this may introduce an error
into the estimation of the PMSM parameters.

B. The Design of Estimation Model based on Parameter Optimization

Data

’ Data ‘ Data measurement

id(A)

id=0 id=0

a)’udo ' uqO' qulido =0 Time[s] @a), ud y uq y iq ,idl =0

Uy (K)+ DA(K)\eead= Rig (K) — Lea(K)i oK)
Uy (K)+ Do K \bead= R, (K) + Lea(K)i oK) + 7 olK)

parameters estimatio
model optimized by thé
proposed G-DPSO-RE

K———] System Outpu

System Outp
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Fig .2.Schematic diagrams of estimation and mattieaianodel.

Apparently, the rank of equation (3) <3, while the number of unkneavameters is four, thus the equation (3) is rank deficient,
the four parameters in (3) are not be identifiable and an estimate to cmwesgboptimal. To solve this problem, a full rank
reference model should be constructed if all these parameters need tonagedssimultaneously at steady state. Generally,
d-axis current injection method is employed to obtain more state equatiers the variation of d-axis current .The parameters
of machine can be assumed to be constant as the duration of injecteclpaseis very short due to mechanical inertia and fast
response of current loop PI controller. In this case, the influence diimgjecshort pulse ofiion output torque and speed can be
negligible .Thus, the two sets of steady state data (Data0 and Datddd aaed together for the estimation machine parameters
and VSI nonlinearity simultaneously modeling. An illustration is giveRig.2, whered, =0(A) during normal operation for the
decoupling the flux and torque control of SPMSM, and a vent sinee of ;0 (A) is injected to obtain anothdgraxisvoltage
equation modelTwo groups of equations gtigand = iy, are obtained as

Ugo (K) = —Lax(K)i o (K) — Dd o(K)Vdead

Uyo (K) = Rijo(K) + 7 @0(K) — Dgo(K) Vtead

Ugs (K) = Rigy (K) = Lex(K)i g3 (k) — D 1(K)Vaeas )

Uy (K) = Riy (K) + Lax(k)i 4, (K) + v (k) — Du(k)Vaead
The parameter identification can be addressed as an optimization problem whestetineragponse to a known input is used to
find the unknown parameter values of a model. The idea is to compasgstiem response with the parameterized model based
on a cost function, which is defined to measure the similarityderithe system response and the model response. The needed
parameters can be estimated from regularly measured data, througbsidpeed objective functioBased on (5), the cost

function for the estimating parameter setl(Rym, Vyead IS as

A 1 n * A * ~ * " * ~
f(p)=ﬁk§1{wlludo(k>—udo(@|+w2|uqo<a—uq& Bl wlui k-ul K+ wul k-u R 6
where w, w,, W, W, are weight coefficients, satisfying @< 1 (i =1,2,3,4), and w;+w,+ws+w,=1. Note that in this study,
Wi = ni in which f is the i-th fitness functiom is the number of samples(,, and U, indicate the estimated voltages in

> fi

i=1
dgraxis computed by the measured currents and the estimated parait@teast function is non-linear and has many local
optima as the PMSM is a dynamic system where a sudden change in thevoltgge may occur even there is only some
slower variations in operating motor such as current ,VSI nonlinearitynactine parameter.

III. GPU-ACCELERATED PARALLEL DYNAMIC PSO wWiITH RECEPTOR EDITING

A. Principle of Basic PSO Algorithm

PSO [15] is a swarm-based intelligent optimization algorithm inspirethéyideas of simulating behaviors of bird flocking
foraging. Assuming that each particle i in a d-dimensional solupanesis composed of two vectors, which are the velocity
Vecton, ={v,,V,,  Vy} and the position vectox, ={X;,, X; ,...,X,4 } » the search procedure can be formulated as
Vgt +1) = vy +c, *rand,()( Pbest( )t— X( )0
+c,* rand,()( gBesf( )t— X( )
Xgt+D)=X4¢t)+Vy € +1) (8)

(7)
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where ¢ and ¢ are the acceleration coefficientg,is the inertia weight factor decreasing linearly, rgard rand are random
numbers in the interval [0,1], respectively. PReasipresents the best position with the best fithess found by i-th partitte up
now and gBegis the best position found among the entire population.

B. The proposed G-DPSO-RE Algorithm for PMSM parameter estimation

As mentioned in Section Il, the objective function is multimodal and thereémuires that the optimization method should
have a good global search capability. The existing static optimization metlagdsasily get trappeid some local minimaro
effectively solve the multimodal optimization problem (6), a fast dynamianpeater tracking approach is indeed developed to
explore the optimal search ability for parameters estimator of the PMSM. Ballagspired PSO, combined with parallel
computing technology, can meet such a requirement, since PSO has tlsicimatpility to automatically track the dynamic

objective and the GPHcceleration technology can reduce the computation time with significantlyoletw
The proposed G-DPSRE method involves three key strategies.

1) Firstly, three novel schemes are developed to enhance the dynamic paderofid@ SO based on a division of labor concept
in colony society. One of the designs is to divide the group into twe ggnamically according to evolution factor during the
evolution process and two novel velocity updating equations are investigatea fdifferent state particles respectively.

2) Secondly a novel strategy is to utilizRE using chaotic logistic to overcome the blindness in action of gBest particle
stochastic evolution and make it drift from the local minima.

3) Thirdly, GPU parallel computing technique is used to speed up tted gracess and then an optimized parallel accelerated
G-DPSO-RE algorithm using CUDA (Compute Unified Device Architectisra, GPU programming hardware and software

architecture developed by NVIDIA Corporatjon

The general steps G&-DPSORE for PMSM parameter estimati@me stated as follows.
Algorithm: G-DPSORE algorithm for parameter estimatio

Sepl: Initialize population, parameters and GPU device
environment, signal sampling and recording as in Fig 1.

Step2: Load data fiug,iqiq, @) are used to drive the estimator
model.

Sep3: launch parallel functions kernels in CUDA, transfer d

from CPU to GPU.

/I subprocesses in “for” are done in parallel
Sep4:for i=1 to N //1<i<N, N is the number of particles
Calculating an “evolutionary factor” E(i)

IF E(i) >#»:The particle goto State { )-exploitation{
update particlevelocity (M) utilizing equation (10)
update particlgposition (X) utilizing equation(11) }

IF E(i) <n:The particle goto State{i)- exploration{

update particlevelocity utilizing equation (12)
update particleposition utilizing equation(13) }
Computing the parameter estimator rabd

Evaluate the fithess valu€if(Xi))of particle using
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equation(6);
IF  Fit(X) < Fit(Pbes) then Update Pbef®best«— Xi)
IF  Fit(Pbes) < Fit(gBbest) Then Update gBest (gBestPbes)
end for
Sep5: Immune receptor editing operator for gBest particle
by utilizing the equations (16)8) and the Fig. 4.
Sep6: If a termination condition is met, or elgm to step3.
Sep7: Transfer result back to CPU and output.
Sep8:Record the optimal machine paramsf®, L ,i/m, Vead

C. Dynamic PSO model

In PSO, each particle of swarm moves in a random diredtidras a potential trend of clustering together and may lose its
diversity in the later stage of evolution. In a colony society, in otdeget rich food, swarms perform different tasks
simultaneously via collaborating with each other among their individuatlbrees (particles); some particles play a role for
predation, and for food exploration. This is called a labor division. Baseithe idea of the division of labor in nature life
systems [25] [26], the group is divided into two different sabps including exploitation group and exploration group during
the evolution process according to the evolutionary state. A number of ‘good’ particles should be able to refine their search
performance step by step, converge to the best-known locations rapitithen carry out a better search in the next step. Other
particles should get larger momentum, and be able to jump out from loctd aopd explore better search regions. Following the
idea of natural evolution, the entire population is decomposed into two sagbsves in Fig. 3. In this model, particlesear

divided into two categories: Exploitation state and 2) exploration state.

Population

(t Generation) E()<n

E@) =7

exploitation exploration

New Population
((t +1)Generation

Fig.3. Dynamic evolution model for PSO

In order to achieve the automatic control of population dynamic divisi@alaime evolutionary state estimation procedure is
performed to identify the two evolutionary states sé@puting an “evolutionary factor” of each individual. Therefore, in this
mechanism the population evolutionary information in every generation hasabea into account, and details are givenwelo

1) Denote the best fitness of the i-th particle at the t-th geneliayiérht'bes1, compute an “evolutionary factor” E(i).
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Ei) Fit best(t +l) ~ Fit bes(t)
i) = . -
Fit' pest(t) — Fit' pesft—1)+a

t
wheret is current generatiof is the total generatiorr is a smooth coefficient. Lety = e A_ be a function measuring the

)

convergence rate of the evolutionary fadi@i. If E(i) >#n , thenthe particle i should converge to the exploitation state and
carry out a fine search. Otherwidg, E(i) <7, then the particle i should shift to the exploration state and make a broade
exploration of the solution space. Therefore, the designed dynamidiemahodel makes particles more flexible in exploration
and exploitation and is suitable to solve dynamic problems. Thus, the siaetofsubpopulation can be dynamically adjusted

based on individual’s evolutionary status.
2) State (1i)-exploitation: In this exploitation state, we use the following velocity updating equation:

Vg (t +1) = vy +c, *rand,()( Pbes;}[d]( = %(»n
+c,*rand,()( gBedt;()t— X( )0

(10)

Xgt+1) =X, ¢t)+V, € +1) (11)
wheregBesLis the best position discovered in the entire particles under exploitation statgmntha @ is the randomly selected
the exploitation population anrd= Lrand* KJ, k is total exploitation population siz&he velocity updating equation of
exploitation state indicates that all of explobatparticles’ historical best information is used to update a particle’s velocity. So,
the elite particles in exploitation state can focus on the best-known solutimm regd search the optimal goal via the

cooperative behavior of the entire sub-swarms.
3) State (ii) - exploration: In this exploitation state, we use the following velocity updating equation:

V4t +1) =c; *rand ()( Pbest ()t= X ()

+¢, * randy()( gBes2y(t— X, ()0 (12)
(X ax = X min) Gauss
Xigt+1) =X, t)+V,t +1) (13)

where gBes® isthe best position discovered in the entire particles under explorationstétis. velocity updating equation,
the old velocity ¢Vi; component is omitted, that means the potential local information is forgofted also, the
term(X max- X min)Gaussis adced to provide a broader exploration of the solution space for the gitiicie. The symbol

Gauss is the density function with a zero mean u and a standard ae{(@&ip, which can be expressed as:

Gaus$ X= 1 exp(—(x_—g)z) (14)
o2r 20
t

whereoax andomin are the upper and lower boundss@h this paper fixeana=1, 6min=0.01). From the above discussion, it can
be expected that the dynamic PSO scheme can make equilibrium between exteasiting and accurate searching.

Furthermore, it can maintain the cycle of evolutionary computing will noekahe population diversity is enhanced.
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D. Chaotic Logistic-Based Receptor Editing for gBest

The gBest particles usually used as the exemplars to lead the flying directitreoparticles among the swarms. Unlike the
other particles, the global leader has no exemplars to follow and may easily lemadltoptima. It neesla reinforcement
learning mechanism to improve the gBest search performance. ltisgasated that B-lymphocytes in natural immune system
with low quality will undergo a molecular selection and develop comple®ly anes by gene recombination or shifhich
called immune receptor editing theory]Zthe receptor editing mechaniszan provide wider exploration of the solution space
and help gBest push itself out to a potentially better region in unknovitoement . If there another better region is found, then
the rest of the swarm will follow the leader to jump out and converge to the begten. Nonlinear chaotic logistic series
possesses the characteristics of randomness, ergodicity and so om, cahisimulate the operations of gene drift or

recombination in immune receptor editing. The receptor editing opésatefined as:

gBesf! = gBes(?+[( red B J*( ?gax— >§nin?* X(t+1)

} ; (16)
~[(rd<R) J*( Xpax = X i * X(t+1)
1...if xd>
[rd > Ryl = {0 ..... else m a7

Whererd is a randomly generated number, andi®set to be 0.5, the search randbo ] is the upper bound and lower
bound respective. The term x(t+i$)chaotic logistic sequence function:

X(t +1) = ux(t)(1— x(t)) (18
where control parameterslN. The sequencel8) can exhibit chaotic behaviors when its initial value§Gri] except 0, 0.25,
0.50, 0.75, and 1.0 [28]. Thus, chaotic-logistic-based receptingedan be viewed as a refinement mechanism, which can

provides a broader exploration of the solution space for the gBest partictkamahead it to the global optimum, as show in Fig.

‘G:gBest(gBeatgBesz);d:random(l,D)r,d:randonQ),Pm:O.S‘
es @ no
A,

A4
dogfy(xd _xd )*x(t+1)| |Gd=Gd—(Xr?1ax—Xd )*x(t+1)|

4.

max__ " min min:
\ |

|

Make sureG is within ~d
the range G <Xnin X mad

v

‘ Compute VHit(G) ‘

G is used to replace the particle with low fitn%ss

End
Fig.4. Flowchart of receptor editing for gBest usatgotic logistic sequence
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E. Parallelization | mplementation on GPU
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Graphic processing unit (GPU) possesses an obvious advantage ovem GBtohs of numerical processing ability,
multithread instruction unit, and memory bandwidth, whereas it has edswvand small power consumptiawhich can greatly
reduce the required computing timds order to speed up parameter estimation procedure, the pro@eB¥tSO-RE
algorithm is implemented in the GPU devices through the CUDA prodsath. CPU and GPU are conducting heterogeneous
collaborative computation where the GPU is carry out numeric parallel processingORhllés in charge of serial computing
such as logic and transaction processing.

Note that in the work the entire swarm is run at one block of GPU strumtdresach particle is run at one thread, as
illustrated in Fig.5.The populations and related parameters are generated on Cilidcaeld to a grid with one dimension of
blocks at GPU. So, the proposed parameters estimation method can leel sgesignificantly by GPU.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Hardware Control System and Software Platform
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To perform our experiment, the schematic of the parameter estimattemdgslepicted in Fig.6, whose design parameters are
shown in Tablel , where a permanent magnet synchronous motor prototype and DSP vettolr leardware platform are used

as the experimental facility. The design parameters and specification of sudaogeed PMSM are as follows:

TABLE [
DESIGN PARAMETERS AND SPECIFICATION OF PMSM
Rated speed 400rpm
Rated current 4A
DC link voltage 36v
Nominal terminal wire resistance 0.043
Nominal self inductance 2.91mh
Nominal mutual inductance -0.330mh
Nominal d-axis inductance 3.24mh
Nominal g-axis inductance 3.24mh

Nominal amplitude of flux induced by 77.6 mWb
magnets

Number of pole pairs 5
Nominal phase resistance (T=25) 0.330a
Inertia 0.8e-5kgnt

The waveforms of measureliraxis currents/voltages and electrical angular speeds of PMSM such as norpexbtane
condition are shown in Fig.®)-(c). The current signals are obtained from the Hall transducers andahgted by the DSP.
The DC link is connected with the DC power source whose outpweid fo 36V. The sampling period is set to 833 The
signals from the DSP is transmitted to a PC via serial protocol communicetievork and recorded in memory, which used as
parameters estimator data modeling. After this, the parameter estimator is coitepatieely in host computer by the proposed
G-DPSO-RE using visual studio 2012 softwdrer a large-scale engineering application, there is a need to pradasge
amount of operating condition data and control signals, so it needsclamgeuting and mass storage, for such a case the
processing of parameter estimation can still be done in a PC, equipgedrafthic processing units (GPUs), which has
massively parallel computing ability with hundreds of threads andhédware costThe work can be done by collaborative PC

with inverter controller: the high computational task and massive storagkecdone by PC and the results can be sent to

inverter controller for controller design.
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A number of hybrid PSOs are used for a comparison purpose withrdiposed G-DPS@E, including HGAPSO (hybrid
PSO with genetic algorithm) [29], HPSOWM (hybrid PSO with Wavelet Mutafi®@]) CLPSO (comprehensive learning PSO)
[31], A-CLPSO (An improved comprehensive learning PS8 pnd APSO (adaptive Particle Swarm Optimization) [33]. To
assess the performance of parameter estimation, a statistical amalgsisormed in terms of the mean results, standard
deviation and the t-test value. The basic settings of these PSOs are as follonaxithem iteration i$300 and the number of
runs is15. All hybrid PSOs are operated on the same platform with the same objaatistion and PMSM hardware. All
experiments are carried out on the same computer with AMD Athloh(t%) 555, four-core processors, RAM 4.0GB and GPU
of NVIDIA GeForce GTX560TI equipped with 512 cores.

B. Parameter Estimation under Normal Temperature Condition

Table II presents the set of the parameters which are applied in the HGAPSO, HPSOWM, CLEERPS®@, APSO,
G-DPSO-RE algorithms for PMSM parameter estimation using data measomedhdrmal temperature environment, and the
convergence of different PSOs are shown in Fig.7 from which ddar that the proposed G-DPSO-RE shows the best
performance in terms of mean, standard deviations and t-values anosegs#iven methods. Furthermore, all the t-values are
higher than 9, which imply that the G-DPSO-RE has significangger solution performance than other hybrid PSOs (the
confidence level is 98%). As can be seen from Fig.8, DPSO-RE converghe optimum after about 60 generations of
evolution whereas other hybrid PSOs shows poor convergence panf@rmMioreover, as shown in Tablé , the execution
time of G-DPSO-RE is shorter than the other seven methods.

As demonstrated in Tablél and Fig.6 (a)-(d), the estimated winding resistance (@352 G-DPSO-RE is quite close to
its measured value (0.373Q (0.33Q+0.043Q) under normal temperature condition. In addition, the estimated flux linkage wp,
(78.36MmWb) by G-DPSO-RE is quite close to its nominal value (77.6miwb estimatedg-axis inductance (3.474mH) is also
consistent well with the nominal value on manual (3.24mH). As shovaig. 8(d), the value of VSI disturbance voltagg.y
can be estimated along with other machine parameters based on theegreptimator modeRlthough the accurate value of
VgeagCa@nnot be acquired, it can be seen from Table Il and Il that tmeagistn results of the machine parameters (i.e. resistance
(R), rotor flux linkage ) are of the highest estimation accuracy, and thus it can be expected #wstintaded value of Maq
should be close to true value.

In this study, we conduetl the parameter estimation on the basis of the steadydstabds equations of the motor as in (5), so
the inverter nonlinearity dynamic ripples will not influence the estimadednpetersmeanwhile, dc components of;.Mg.,qand
Dq-VeeagCan be minimized to some negligible values if the VSI nonlinearity ipeosated properly.

In all, the proposed G-DPSO-RE is of high accuracy in parameter estimaten normal temperature condition though there
is a slight difference between the estimated and nominal valuesigfy$R) due to nonlinearity on load condition. It can also be
observed from Tablé and Fig.8 &)-(c) that the proposed G-DPSO-RE produced more precise parametetestior motor
resistancedg-axis inductances and the rotor flux, and the estimates converge to theid dedires rapidly. The proposed
estimator has a global convergence performance by combining the lalgordigooperation mechanism inspired by the

biological world and immune receptor editing mechanisil$ The results confirm that the cost function previously defined is
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related to the reality problems with local minima, and the poor perfaenaf the identification method will progress from
convergence to localization.

Moreover, as is shown in Fidl, in terms of time-consuming, it requires 23.85s, 36.24s, 18147s, and 12.47s for
HGAPSO, HPSOWM, CLPSO, A-CLPSO and APSO, respectively .However, the comptitagasf G-DPSO-RE is only 6.97
s, which is smaller than all the comparative PSO methods. All this rigrates that the potential of the high-performance
computing ability of GPU is well exploited to speed up the parameter estimaticedure. It can promote the real-time
response of the proposed G-DPSO-RE as it takes the advantage ofigtentirparallelism of populatidmesed intelligent
computing techniques.

As mentioned above, the proposed G-DPSO-RE for the estimation of PMSMebars converge to the global optimal solution
when solving dynamically nonlinear PMSM parameters estimation probléarieAsummary for this is given below.

Firstly, a labor division based dynamic particle swarm optimization (DPSO) algoeithmhined with a receptor editing (RE)
strategy makes a good contribution to explore the optimal values of parametetasti

Secondly, a number of improved PSOs are used for a comparisms@uwrith the proposed G-DPSO-RE, including HGAPSO,
HPSOWM, CLPSO, A-CLPSO and APSO. All the PSOs are used for PMSM paramatetiestiusing the same objective
function. The numerical results show the proposed G-DPSO-RE hasghpdiformance in terms of mean, standard deviations
and t-values among those seven methods.

Thirdly, from Table II and Fig.6 (a)-(d), the parameter estimation experiments under nematrature condition shows that
the proposed G-DPSO-RE based parameter estimation method can convergetizathmachine parameters

~3-EGAPSO

HPSOWM
~e=CLPSO
== A-CLESO
7 APSO

8- GDPSO-RE
_____ iy

Menn fitness
»

Fig. 7. The fitness convergence curveigfRSG on PMSM parameter identification under normal tempezatondition.

TABLEII.
RESULT COMPARISONS AMONG SIX PSOS ON PMSM PARAMETER IDHERICATION WITH NORMAL TEMPERATURE

Estimated Parameter HGAPSO HPSOWM CLPSO A-CLPSO APSO G-DPSORE

RQ) 0.359 0.367 0333 0321  0.369 0371
Wm(MWh) 78.23 7769 7862 7851  79.62 78.36

L (mH) 3.528 3589 3278 3133  3.755 3.474

VieadV) -0.286 0211  -0.116  -0.139  -0.109  -0.078
Mean 1.23 1.09 2.072 1.74 2.12 0.85

Finess  Stddev  0.259 0123 0553 0608 0588 00045
Time(s)  23.85 36.24 1830 1817  12.47 6.97

t-value 10.04 12.11 15.51 10.29 15.17 0
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C. Parameter Estimation under Temperature Variation Condition

Temperature is the main indicator for the reliable operation of PMB&variation of temperature can change the machine
physical parametersn order to evaluate the dynamic performance of the proposed nfetttoacking the change of parameters
under temperature variation conditions, experiments\argng temperature conditicare carried out. A heater is used to heat
the prototype PMSM. Firstly, continuously heating the PMSM for 20 minanelsthen recording experimental data for the
estimation of the machine parameters (t=20 minutes).

The comparisons of the performance for different PSOs are simoviable III, Fig.9. and Fig.10. The convergence curves of
different PSOs are shown in Fig.9. From TablE it is obvious that G-DPSO-RE produces the best performance in tdrm
mean, standard deviations and t-values. Fig.9 further shows tHa{DRSO-RE has a fast convergence speed compared to other
hybrid PSOs. Additionally, the stability of the G-DPSO-RE is better tilaer diybrid PSOs. Meanwhile, as can be seen from
Table Il and Fig.10, the estimated winding resistance R, dg-axis inductanakrbtan flux linkagey vary with the changing
temperatures. For example, the estimated winding resistance value varies3réfmPto 0.446 () after 20 minutes heating
due to the effects of the thermal metal, the estimated rotor flux linkageased from 786 (mWb) to 7681 (mWh) after 20
minutes heating ,the abrupt drop in the estimated rotor flux linkage28ftetinute heating can be explained by the fact that the

residual flux density of the PM reduces when the temperature of NdFgBetaancreases, since the flux density has changed
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during the data measurement after20-minitue heating. Furthermore, Tiabhe II and Tablelll, it can be seen that the
estimated VSI disturbance voltageg.){ varies from -0.88 (V) to -0.101V) after 20 minute heating. This phenomenon can be
explained by the fact that the VSI nonlinearity is also influenced bigthperature variation.

The experimental results indicate that G-DPSO-RE has a good dynamic trpekiognance. Hence, the G-DPSO-RE is
significantly better and statistically more robust than other listeddiASOs in terms of global search capacity and local search
precision in our experiments.

TABLE III.
RESULT COMPARISONS AMONG SIX PSOS ON PMSM PARAMETER IDENICATION UNDER TEMPERATURE VARIATION CONDITION

Estimated Parameter HGAPSO HPSOWM CLPSO A-CLPSO APSO G-DPSORE

R(Q) 0.478 0.457 0.479 0.419 0.473 0.446
Wir(MmWh) 75.84 76.08 74.98 77.00 75.14 76.81
L (mH) 3.572 3.277 2.539 3.453 3.335 3.466
VgeadV) -0.258 -0.207 -0.602  -0.161  -0.044 -0.107
Mean 1.131 0.973 2.121 2.15 1.446 0.855
Finess  Std-dev 0.293 0.121 0.412 0.357 0.474 0.084
Time(s) 23.86 36.23 18.31 18.18 12.46 6.98
t-value 4.73 2.66 17.77 19.91 7.52 0
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D. Speedup Achieved by GPU Parallel | mplementation
TABLE IV
COMPUTING TIME FOR PMSM PARAMETER IDENTIFICATION BASED ON-BPSO-RE WITH MULTI-CORE ARCHITECTURE

CPU-with one corel] CPU- with two cores| CPU- with three core§ CPU- with four cores| GPU-GTX560TI
Time(s) SUR | Time(s) SUR Time(s) SUR Time(s) SUR Time(s) | SUR
64.01 1 52.34 1.22 38.93 1.64 24.19 2.65 6.97 9.18
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Fig.12.The comparison for time cost of G-DPSO-RE in RMS Fig.13. The comparison for SUR of GEIRRE in PMSM parameter
estimation parameter using different multi-core architec using different multi-eaarchitecture

The speed-up ratio is defined as SURSTP, whereTs and Tp are the execution runs of the serial and parallel algorithms
respectively. In this work speedup ratio is used to evaluate the efficiddnmyr proposed method implemented on different

multi-core architecture. A GTX560TI GPU and multi-core CPU systems (rrogeone core to four cores) are compared in
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terms of computation speedup when applied to the estimation of PMSM pamariéenresults are shown in Tahle Fig.12
and Fig.13, where the symbol CPU-1, CPU-2, CPU-3, and CRig-heans CPU with one core, two cores, three cores, and four
cores respectively.

The results show that the execution time of the G-DPSO-RE reduces greatlyitwuns on increasing ftiicore CPU. For
example, it requires 64.01s, 52.34s ,38.93s and 24.19srfoing with one core, two cores , three cores and four cores CPU
under the normal temperature condition ,respectively. Whereas, thegaviémae required for GPU is only 6.97s. The
computation of optimal solution is accelerated by 9.18xin comparisarsefjuential execution on CPU through exploiting the
massively parallel architecture of GPUs. This fact shows that the speedfiah@f of the proposed parameter estimation
method has been remarkably improved by GPU parallel execution. Thetevanmain reasons behind this. Firstly, the
computing speed of GPU with hundreds of threads is much fastethidiaof CPUs. Secondly, the proposed estimator involves

mass intensive computing including data and program because oMRSGRE with intrinsic parallel character.

E Comparison Between With and Without Considering the VSI Nonlinearity

In this sectionanexperimentals conducted to provide a comparison between the resiitisand withouincluding the effect of
VSI nonlinearity. Fig.14(a)-(c) show the estimated machine parametemdiifgiresistance, rotor flux linkage awuldraxis
inductance) with and without considering the ViSnlinearity under normal temperature condition using the proposed
G-DPSORE. The estimated machine parameters without considering tha@drihearity are as follows:: the estimated winding
resistance(R) is 0.45Q], the estimated rotor flux linkageyg) is 75.9(mWb) and the estimateldraxis inductance (L)s
3.433(mH), while the estimaswith considering the VShonlinearity are0.371Q), 78.36(mWb) and 324(mH), respectively.

It is obvious that the estimated values with considering theng&linearity are different from that without considering the VSI
nonlinearity, especially for the estimated winding resistance value and the estfluatbokage. For example, the estimated
winding resistance value (0.48Bwithout considering VShonlinearity is much larger than that (0.8Y)1with considering VSI
nonlinearity (with an error of 0.453-0.371)/0.32R%. the estimated rotor flux linkage value (75.95mWhthout considering
VSI nonlinearity, is obviously smaller than 78.36 mWb which was estimaiidconsidering VSinonlinearity with an
error of 78.36-75.95)/78.38%.

The differences between the parameter estimates are are mainly accountectffectgf the VSI nonlinear disturbance
voltage (i.e, WeadDd and MeaaDq in (38 and@h)) which results in an increase in the estimated winding resistance. tkreom
experiment, the distort voltagesy is about 0.1V, the two terms Dgeyy ( about 0.4V) and Ddgq4 ( about 0.2V) could
introduce an error into the estimation of the PMSM parameters. Thizecamalyzed by using the typical electrical parameters in
Table | and equation (3b). Note thRif; is about 1.3Vwyr, is about 12V, and DggVad/ Rig=30%, Dg.\ead wym = 3%, so, after
Clarke and Park transforms, tbg-axis voltage will change becaBq.VyeaqCan significantly affect the winding resistance and
flux linkage estimation significantly.

The results show that the proposed parameter estimation model with consileraféect of VSI nonlinearity can improve

the accuracy for machine parameter estimation.
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Figl4.The comparison dhe identified parameters between with considering VSI nonltyeamnd without considering VSI nonlinearity under normal temperature

condition using the propos&-DPSORE (a) winding resistance. (b) rotor flux linkage (c) dg-amiictance

V.CONCLUSION

In this study, an accurate estimation model of combining the SPMSM e@i@msnwith VSI nonlinearity is establisheA.
labor-division based dynamic PS@mbinedimmune receptor editing strategy is designed for dynamic optimization and
parallel implementation on GPU to accelerate the convergence process for pagatitatgion.The computational efficiency of
the parameter estimation procedure is greatly improved by the GPU parafilelitony technique. The proposed parameter
optimization method can be used to collectively estimate several parametersijthediesistance, inductance, rotor flux along
with VSI disturbance voltage with no expensive equipment. The irduedf the VSI nonlinearity on the accuracy of the
parameter estimatiois also analyzed. In comparison with other PSO algorithms, the proposedt&stialgorithm is relatively
more complicated and the implementation of GPU techniques needs some speeiatiga and programming skills, and this
may be a major challenge for most of control or electrical engineersvitButhe development of computer technology, it can be
expected that this estimation algorithm can become easier for commercial PM®%l Thie proposed parameter estimation
modd  focuses on steady state operation of machines and may not be doitatilleer complex cases, for example for
machine operating under time-varying operating conditidhs is a limitation of the proposed method. In our future ek

will investigate a new dynamic parameter estimation model for machiaenpter estimation under dynamic operating state
including the consideration of variation in the load disturbance and speededt the increasing interest and demands from
industrial especially for real-time applicatioins our future work we will carry out on Field-Programmable Gatea(FPGA),

to improve the performance of real-time performance controM$MA. For all these potential applications, the present study

providesa feasible solution to parameter estimation and control of PMSM systems.
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