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GPU Implementation of DPSO-RE Algorithm for 
Parameters Identification of Surface PMSM 

Considering VSI Nonlinearity 
Zhao-Hua Liu, Hua-Liang Wei, Qing-Chang Zhong, Fellow, IEEE, and Kan Liu 

Abstract: In this study, an accurate parameter estimation model of surface permanent magnet synchronous 

machines (SPMSM) is established by taking into account voltage-source-inverter (VSI) nonlinearity. A fast 

dynamic particle swarm optimization (DPSO) algorithm combined with a receptor editing (RE) strategy is 

proposed to explore the optimal values of parameter estimations. This combination provides an accelerated 

implementation on graphics processing unit (GPU), and the proposed method is therefore referred to as 

G-DPSO-RE. In G-DPSO-RE, a dynamic labor division strategy is incorporated into the swarms according to 

the designed evolutionary factor during the evolution process. Two novel modifications of the movement 

equation are designed to update the velocity of particles. Moreover, a chaotic-logistic based immune receptor 

editing operator is developed to facilitate the global best individual (gBest particle) to explore a potentially 

better region. Furthermore, a GPU parallel acceleration technique is utilized to speed up parameter 

estimation procedure. It has been demonstrated that the proposed method is effective for simultaneous 

estimation of the PMSM parameters and the disturbance voltage (Vdead) due to VSI nonlinearity from 

experimental data for currents and rotor speed measured with inexpensive equipment. The influence of the 

VSI nonlinearity on the accuracy of parameter estimation is analyzed.  
 

Index Terms: particle swarm optimization (PSO), artificial immune system (AIS), Graphics Processing Unit (GPU), 

parallel computing, parameter estimation, permanent magnet synchronous machines (PMSMs), voltage-source-inverter 

(VSI), nonlinearity. 

ĉ. INTRODUCTION1 

RECENTLY, permanent magnet synchronous machines (PMSMs) are widely used in high-performance applications such as 

industrial robots, servo drive, wind power generation, and machine tools due to their overall good performance [1]-[2]. The 

design of the control system of such a machines crucially involves the choice of many key machine parameters such as winding 

resistance, dq-axis inductances, and rotor PM flux linkage [3][4]. Any change of these parameters could affect the system 

behavior and therefore the change in these parameters can be used to evaluate the health conditions of PMSM. For example, the 
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inter-turn short circuit can result in an abrupt change in winding resistance and inductance [5]; the demagnetization can result in 

a sudden decrease in the amplitude of fundamental back electromotive force (EMF) [6]. A controller with inappropriately 

designed parameters cannot work well, and can lead to a dysfunction of the machine especially for high power machines and 

large scale equipment or systems [4]. A PMSM is time-varying system, whose parameters are sensitive to the change of 

environmental conditions such as temperature, noise, load torque, and the aging of the motor, etc. [7].  

Recently, many parameter estimation approaches have been introduced in the literatures. Some measurement instruments such 

as thermal couplers, search coils and load test bench [8] were applied to observe the machine parameters. However, they are 

usually not preferred in practice for the potential increase of cost, for example it may need some extra investment in hardware 

such as external sensors, function generator, and spectrum analyzer. In practical engineering, parameter optimization using 

numerical methods is an ideal technology for directly estimating the needed parameters based on regular measurable data instead 

of using additional measurement instruments [7]. Existing research mainly focused on online estimation algorithms including 

self-commissioning technique [2] ,extended Kalman filter (EKF) [9], model reference adaptive system (MRAS) [10], recursive 

least-squares (RLS) [3] [11], adaptive observer [12], and artificial neural networks (ANN) [10] [11]. However, with the 

increasing complexity of operation conditions, these methods may not always work well. For example, in [2] a 

self-commissioning technique was proposed to estimate PMSM parameters under standstill .However, it cannot estimate the 

permanent magnet when the machine is at standstill state. In [9], an EKF algorithm was proposed to estimate the rotor speed and 

position of PMSM, but it may be difficult for real applications as the algorithm is sensitive to noise. The MRAS estimators 

proposed in [10] cannot simultaneously estimate winding resistance, inductance and rotor flux linkage accurately. In this method, 

in order to estimate a group of parameters, some are fixed to their nominal values for the estimation of other parameters given in 

the motor manual. For example, the winding resistance parameter needs to be set to its nominal value in order to estimate the 

rotor flux linkage afterward, the accuracy of estimation results depend on the accuracy of the nominal values of machine. 

However, the nominal value is usually not consistent with the actual operating value, thus these estimators cannot ensure to 

converge to the actual parameter value. In comparison with other algorithms, RLS possesses a good property of rapid 

convergence rate, but the algorithm may suffer from high computational burden and poor tracking ability in non-stationary 

environments [3].An adaptive observer was introduced in [12] to obtain the estimated values of PMSM systems. It can estimate 

the PMSM parameters accurately, but has poor robustness when dealing with the uncertainties in machine parameters estimation. 

Usually, the existing parameter estimation models are based on the conventional dq-axis equation, the dq-axis equations will be 

rank deficient for estimating three or four parameters when the motor is operating at a steady state, thus the estimation results 

may converge to suboptimal. To solve the rank deficient problem, the d-axis current injection method can be used to increase the 

number of state equations due to the variation of d-axis current [11]. However, in this current injection method the voltage 

measurement error is ignored. PMSM is usually fed by a voltage source inverter (VSI), and the reference voltages for the 

parameter estimator are measured from the PI regulator in a PMSM vector control system. This may introduce an error between 

the reference voltage of the controller and the actual output voltage of the VSI. Commonly, the researcher use the relevant 

parameters of the switching devices to calculated the VSI disturbance voltage, and then to compensate the reference voltage of 
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the controller [13].However, some device parameters (e.g. the dead-time period, switching times and voltage drops of switching 

device) vary with the operating conditions and they difficult to be measured by instruments. Thus, the parameter estimates could 

be biased due to the effect of nonlinearity of VSI such as switch voltage drop, switching delay and dead zone response [14]. To 

achieve accurate estimation, the influence of VSI nonlinearity has to be considered; in other words, it is necessary to take into 

consideration of both the VSI and machine. Additionally, the parameters of the PMSM system are inherently dependent on each 

other, and this is a big challenge for most conventional parameter estimation methods. 

More recently, a particle swarm optimization (PSO) algorithm was introduced for the estimation of parameter electrical 

machines including induction machine and PMSM machine [15]-[20]. The PSO algorithm is a nature-inspired algorithm with 

several advantages such as its easy implementation, self-tuning decoupling and fast convergence speed in dealing with 

multivariate coupling system parameter optimization problems [15]. In [15], a novel application of the improved PSO was 

reported for parameter estimation of an induction machine by modifying the movement equation of the standard PSO using a 

number of linear time-varying parameters. A PSO combing least mean squares (LMS) method was proposed to identify the 

parameters of an induction motor in [16]. In [18], a co-evolution based parameter estimator was developed to estimate the 

multi-parameters of PMSM by combining multiple PSO and artificial immune system (AIS). However, the computational load of 

this method is heavy. A parallel implementation of co-evolutionary immune PSO on GPU is proposed to accelerate the 

computation of parameter estimation and temperature monitoring in PMSM [19], for which the estimation accuracy and time 

consuming of the parameter estimates were greatly improved by combining PSO with a parallel computing technology. 

Nevertheless, the existing PSO-based parameter estimators of PMSM are based on the basic dq-axis equation and do not consider 

the VSI nonlinearity. A dynamic PSO embed with variable exploration vector and Gaussian-distribution based dynamic 

opposition-based learning operator is proposed for the estimation of machine parameters and voltage-source-inverter (VSI) 

nonlinearities in PMSM [20]. The development of a high performance PSO for the estimation of PMSM multi-parameters, 

together with the VSI nonlinearity is still highly demanded.  

In order to achieve better estimates for PMSM parameters, two important issues need to be solved when applying PSO 

algorithms. Firstly, the dynamic performance of the PSO need to be improved as the swarms are easily clustering together and 

losing their diversity in the later stage of evolution. Secondly, PSO would be time demanding if a large population size involves 

in the evolution and therefore some massively parallel devices may be required to accelerate the calculating speed. To overcome 

these problems, the labor division and cooperation mechanism ubiquitously existing in the biological world, together with the 

immune receptor editing mechanism in AIS, can be used to improve the dynamic performance of PSO during the search process. 

The time consuming problem can be solved by using Graphic processing units (GPUs), due to its massively parallel computing 

ability with hundreds of threads and low hardware cost [21]. 

This study aims to achieve better performance in PMSM parameters estimation using an accurate parameter estimation model 

where the effect of VSI nonlinearity is considered. A fast dynamic particles swarm optimization algorithm using immune 

receptor editing combined GPU acceleration technology for PMSM parameter optimization (called G-DPSO-RE) is proposed. 

The swarm is divided into two stages inspired by labor division in colony society, namely, the exploitation state and the 
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exploration state, according to the designed evolution factor during the evolution process. Novel movement update equations are 

proposed to update particles in the two sate. Moreover, an immune receptor editing operator is introduced to facilitate the global 

individual to explore a potentially better region. Furthermore, the proposed parameter estimation method is parallel accelerated 

by using a graphic processing unit. As will be shown, the proposed parameters estimation method is effective for the 

identification of the PMSM parameters along with VSI disturbance voltage; it only requires experimental data for currents, and 

rotor speed measured with inexpensive equipment.  

The main contributions and main advantages can be summarized as follows: 

1) An accurate parameter estimation model of surface permanent magnet synchronous machines (SPMSM) is established by 

taking into account voltage-source-inverter (VSI) nonlinearity. A labor division based dynamic particle swarm optimization 

(DPSO) algorithm combined with a receptor editing (RE) strategy is designed to explore the optimal values of parameter 

estimator. 

2) High-performance computing ability of GPU is fully utilized to speed up parameter estimation procedure. It can promote the 

practical application and real-time response of PSO as it takes full advantage of the inherent parallelism of population-based 

intelligent computing techniques.  

The remainder of this paper is organized as follows. In section Ċ, an accurate parameter estimation model is established. In 

section ċ, the G-DPSO-RE algorithm for PMSM parameter estimation is proposed, where the principle, mathematical model 

and implementation procedure of the algorithm are addressed in details. Experimental results and analysis are given in section IV. 

Finally, conclusions are summarized in section V. 

Ċ. PMSM MODEL AND DESIGN OF PARAMETER ESTIMATION MODEL 

A. PMSM Model 

The mathematical model of the PMSM in dq-axis voltage equation is given as 

m

didu Ri L L iq qd d d dt

diq
u Ri L L iq q q d ddt



  


  


    

           (1) 

 

where Ȧ is the electrical angular velocity, ud, uq, id and iq, are dq axis stator voltage and current. The elements of the parameter 

set{R, Ld, Lq, ȥ} are the motor winding resistance, magnet flux, d-axis and q-axis inductances, respectively, which are usually 

unknown to the users. Note that the estimated resistance R , as a lumped circuit resistance, includes two parts, namely, the 

ON-state slope resistances of the active switch and freewheeling diode in inverter and terminal wire resistance .At steady state 

the equation (1) can be discretized as follow. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d d q q

q q d d

u k Ri k L k i k

u k Ri k L k i k k



 

 

  





            (2) 

In a PMSM vector control system, the voltages used for the PMSM parameter estimation are usually measured from the output 
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voltage of the current controllers, and the terminal voltages of PMSM are PWM pulses from VSI which are difficult to measure 

directly [22]-[24]. The two output voltages, denoted by du  , qu  , are shown in Fig.1. Note that there exists an error between 

the reference voltage of the controller and the actual output voltage of the VSI due to the nonlinearity of VSI, so it is essential to 

estimate VSI nonlinearity. 

PI PI
PMSM

PI

*



*
qi

*
di

di

qi

 





*

du

*
qu SVPWM

Clarke(abc/dq)
, ,a b ci i i

VSI

qu

du
Load 

machine

 
Fig.1.The schematic of vector controlled PMSM drive system. 

 

Taking into account the influence of VSI nonlinearity, the model of PMSM and VSI as a whole, for surface-mounted PMSM, 

d-axis inductance is regarded as equal to q-axis inductance, that is Ld=Lq=L,(2) can be rewritten as  

 ( ) ( ) ( ) ( ) ( )deadd d qu k Dd k V Ri k L k i k               (3a) 

( ) ( ) ( ) ( ) ( ) ( )deadq q d mu k Dq k V Ri k L k i k k        (3b) 

where Dd and Dq are the function of rotor position[13] ,in (3) L, R, m and Vdead are the parameters to be estimated. The variable 

Vdead is the distorted voltage due to VSI nonlinearity, and can be represented as 

 .( ) 2
dead on off sat d

dead dc sat d
T T T V V

V V V VTs
        (4) 

where deadT is the dead-time period of the switching device,onT and offT are turn-on  and turn-off times of the switching device, 

dcV  is measured real-time dc bus voltages, satV  and dV are the saturation voltage drop of the active switch and the forward 

voltage drop of the freewheeling diode, Ts is the switching period . It can be seen that if variable Vdead is ignored, the estimation 

results may also be influenced by the nonzero VSI nonlinearity terms (Dd.Vdead and Dq.Vdead), and this may introduce an error 

into the estimation of the PMSM parameters.  

B. The Design of Estimation Model based on Parameter Optimization 

0 00 0 0, , , , dd q qu u i i 
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id
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Fig .2.Schematic diagrams of estimation and mathematical model. 

Apparently, the rank of equation (3) <3, while the number of unknown parameters is four, thus the equation (3) is rank deficient, 

the four parameters in (3) are not be identifiable and an estimate to converge to suboptimal. To solve this problem, a full rank 

reference model should be constructed if all these parameters need to be estimated simultaneously at steady state. Generally, 

d-axis current injection method is employed to obtain more state equations due to the variation of d-axis current .The parameters 

of machine can be assumed to be constant as the duration of injected pulse current is very short due to mechanical inertia and fast 

response of current loop PI controller. In this case, the influence of injecting a short pulse of id on output torque and speed can be 

negligible .Thus, the two sets of steady state data (Data0 and Data1) can be used together for the estimation machine parameters 

and VSI nonlinearity simultaneously modeling. An illustration is given in Fig.2, where id0 =0(A) during normal operation for the 

decoupling the flux and torque control of SPMSM, and a very short time of id1≠0 (A) is injected to obtain another dq-axis voltage 

equation model. Two groups of equations at id=id0 and id= id1 are obtained as 

               

00 0

00 0

11 1 1

11 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

deadd q

deadq q m

deadd d q

deadq q d m

u k L k i k Dd k V

u k Ri k k Dq k V

u k Ri k L k i k Dd k V

u k Ri k L k i k k Dq k V



 



  

  


  
   
    

      (5) 

The parameter identification can be addressed as an optimization problem where the system response to a known input is used to 

find the unknown parameter values of a model. The idea is to compare the system response with the parameterized model based 

on a cost function, which is defined to measure the similarity between the system response and the model response. The needed 

parameters can be estimated from regularly measured data, through the designed objective function. Based on (5), the cost 

function for the estimating parameter set (R, L ,ȥm, Vdead) is as  

1 0 0 2 0 0 3 1 1 4 1 1

1ˆ ˆ ˆ ˆ ˆ( ) { ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) }
1

d d q q d d q q

n
f p w u k u k w u k u k w u k u k w u k u k

n k
          


     (6) 

where w1, w2, w3, w4 are weight coefficients, satisfying 0<wi< 1 (i =1,2,3,4), and  w1+w2+w3+w4=1. Note that in this study, 
i

i
n

i
i=1

f
w =

f
, in which fi  is the i-th fitness function, n is the number of samples. ̂du , and ˆqu  indicate the estimated voltages in 

dq-axis computed by the measured currents and the estimated parameters. This cost function is non-linear and has many local 
optima as the PMSM is a dynamic system where a sudden change in the output voltage may occur even there is only some 
slower variations in operating motor such as current ,VSI nonlinearity and machine parameter.  

ċ. GPU-ACCELERATED PARALLEL DYNAMIC PSO WITH RECEPTOR EDITING   

A. Principle of Basic PSO Algorithm 

PSO [15] is a swarm-based intelligent optimization algorithm inspired by the ideas of simulating behaviors of bird flocking 

foraging. Assuming that each particle i in a d-dimensional solution space is composed of two vectors, which are the velocity 

vector
1 2{ }, ,...,i i i idV V V V and the position vector

1 2{ , ,..., }i i i idX X X X , the search procedure can be formulated as 

1 1

2 2

( 1) * ()( ( ) ( ))

* ()( ( ) ( ))

id id id id

d id

V t V c rand Pbest t X t

c rand gBest t X t

   

 
      (7) 

( 1) ( ) ( 1)id id idX t X t V t                          (8) 
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where c1 and c2 are the acceleration coefficients,  is the inertia weight factor decreasing linearly, rand1 and rand2 are random 

numbers in the interval [0,1], respectively. Pbestid represents the best position with the best fitness found by i-th particle up to 

now and gBestd is the best position found among the entire population.  

B. The proposed G-DPSO-RE Algorithm for PMSM parameter estimation 

As mentioned in Section II, the objective function is multimodal and therefore requires that the optimization method should 

have a good global search capability. The existing static optimization methods may easily get trapped in some local minima. To 

effectively solve the multimodal optimization problem (6), a fast dynamic parameter tracking approach is indeed developed to 

explore the optimal search ability for parameters estimator of the PMSM. Biological inspired PSO, combined with parallel 

computing technology, can meet such a requirement, since PSO has the intrinsic ability to automatically track the dynamic 

objective and the GPU acceleration technology can reduce the computation time with significantly low cost.  

The proposed G-DPSO-RE method involves three key strategies.  

1) Firstly, three novel schemes are developed to enhance the dynamic performance of PSO based on a division of labor concept 

in colony society. One of the designs is to divide the group into two parts dynamically according to evolution factor during the 

evolution process and two novel velocity updating equations are investigated for two different state particles respectively.  

2) Secondly, a novel strategy is to utilize RE using chaotic logistic to overcome the blindness in action of gBest particles 

stochastic evolution and make it drift from the local minima.  

3) Thirdly, GPU parallel computing technique is used to speed up the search process and then an optimized parallel accelerated 

G-DPSO-RE algorithm using CUDA (Compute Unified Device Architecture, is a GPU programming hardware and software 

architecture developed by NVIDIA Corporation). 
The general steps of G-DPSO-RE for PMSM parameter estimation are stated as follows. 

Algorithm: G-DPSO-RE algorithm for parameter estimation 

Step1: Initialize population, parameters and GPU device 
environment, signal sampling and recording as in Fig 1. 
Step2: Load data (ud,uq,id,iq, Ȧ) are used to drive the estimator 
model. 
Step3: launch parallel functions kernels in CUDA, transfer data 

from CPU to GPU. 

// sub-processes in “for” are done in parallel 

Step4:for i=1 to N //1≤i≤N, N is the number of particles 

Calculating an “evolutionary factor” E(i) 

IF ( )E i  :The  particlei  goto  State (ν)-exploitation{ 

update particlei velocity (Vi) utilizing equation (10) 

update particlei position (Xi) utilizing equation(11) } 

IF ( )E i  :The  particlei  goto  State (ξ)- exploration{ 

update particlei velocity utilizing equation (12) 

update particlei position utilizing equation(13) } 

Computing the parameter estimator model 

Evaluate the fitness value (Fit(Xi))of particlei using 
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equation(6); 

IF  Fit(Xi) < Fit(Pbesti) then Update Pbesti(Pbesti  Xi)  

IF  Fit(Pbesti) < Fit(gBbest) Then Update gBest (gBest Pbesti) 

end for 

Step5: Immune receptor editing operator for gBest particle 

by utilizing the equations (16)-(18) and the Fig. 4. 

Step6: If  a termination condition is met, or else, go to step3. 

Step7: Transfer result back to CPU and output. 

Step8:Record the optimal machine parameters(R, L ,ȥm, Vdead) 

C. Dynamic PSO model 

In PSO, each particle of swarm moves in a random direction, it has a potential trend of clustering together and may lose its 

diversity in the later stage of evolution. In a colony society, in order to get rich food, swarms perform different tasks 

simultaneously via collaborating with each other among their individual members (particles); some particles play a role for 

predation, and for food exploration. This is called a labor division. Based on the idea of the division of labor in nature life 

systems [25] [26], the group is divided into two different subgroups including exploitation group and exploration group during 

the evolution process according to the evolutionary state. A number of „good‟ particles should be able to refine their search 

performance step by step, converge to the best-known locations rapidly and then carry out a better search in the next step. Other 

particles should get larger momentum, and be able to jump out from local points and explore better search regions. Following the 

idea of natural evolution, the entire population is decomposed into two sates as shown in Fig. 3. In this model, particles are 

divided into two categories: 1) exploitation state and 2) exploration state. 
 

Population
(t Generation)

explorationexploitation

New Population
((t +1)Generation)

( )E i 
( )E i 

 
Fig.3. Dynamic evolution model for PSO 

In order to achieve the automatic control of population dynamic division, a real-time evolutionary state estimation procedure is 

performed to identify the two evolutionary states via computing an “evolutionary factor” of each individual. Therefore, in this 

mechanism the population evolutionary information in every generation has been taken into account, and details are given below. 

1) Denote the best fitness of the i-th particle at the t-th generation by iFit best, compute an “evolutionary factor” E(i). 
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   

   
1

( )
1

i iFit t Fit tbest bestE i i iFit t Fit tbest best 

 


  
        (9) 

where t is current generation, T is the total generation,  is a smooth coefficient. Let 
t
Te


 be a function measuring the 

convergence rate of the evolutionary factor E(i). If ( )E i   , then the particle i should converge to the exploitation state and 

carry out a fine search. Otherwise, if ( )E i  , then the particle i should shift to the exploration state and make a broader 

exploration of the solution space. Therefore, the designed dynamic evolution model makes particles more flexible in exploration 

and exploitation and is suitable to solve dynamic problems. Thus, the size of each subpopulation can be dynamically adjusted 

based on individual‟s evolutionary status. 
2) State (ν)-exploitation: In this exploitation state, we use the following velocity updating equation: 

1 1

2 2

[ ]( 1) * ()( ( ) ( ))

* ()( 1 ( ) ( ))

id id id

d id

dV t V c rand Pbest t X t

c rand gBest t X t

   

 
  (10) 

( 1) ( ) ( 1)id id idX t X t V t                      (11) 

where 1gBest is the best position discovered in the entire particles under exploitation state, the symbol ĳ is the randomly selected 

the exploitation population and *rand K     , k is total exploitation population size. The velocity updating equation of 

exploitation state indicates that all of exploitation particles‟ historical best information is used to update a particle‟s velocity. So, 

the elite particles in exploitation state can focus on the best-known solution region and search the optimal goal via the 

cooperative behavior of the entire sub-swarms.  
3) State (ξ) - exploration: In this exploitation state, we use the following velocity updating equation: 

1 1

2 2

max min

( 1) * ()( ( ) ( ))

* ()( 2 ( ) ( ))

( ).

jd jd jd

d jd

V t c rand Pbest t X t

c rand gBest t X t

X X Gauss

  

 

 

        (12) 

( 1) ( ) ( 1)id id idX t X t V t            (13) 

where 2gBest  is the best position discovered in the entire particles under exploration state. In this velocity updating equation, 

the old velocity idV component is omitted, that means the potential local information is forgotten .And also, the 

term( max min).X X Gauss is added to provide a broader exploration of the solution space for the j-th particle. The symbol 

Gauss is the density function with a zero mean u and a standard deviation (SD)ı, which can be expressed as:  

 
2

2

1 ( )
( ) exp( )

22

x u
Gauss x

 


          (14) 

  ( )max max min
t
T                    (15) 

where ımax and ımin are the upper and lower bounds of ı(in this paper fixed ımax=1, ımin=0.01). From the above discussion, it can 

be expected that the dynamic PSO scheme can make equilibrium between extensive searching and accurate searching. 

Furthermore, it can maintain the cycle of evolutionary computing will not halt as the population diversity is enhanced. 
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D. Chaotic Logistic-Based Receptor Editing for gBest 

The gBest particles usually used as the exemplars to lead the flying direction of other particles among the swarms. Unlike the 

other particles, the global leader has no exemplars to follow and may easily lead to local optima. It needs a reinforcement 

learning mechanism to improve the gBest search performance. It was discovered that B-lymphocytes in natural immune system 

with low quality will undergo a molecular selection and develop completely new ones by gene recombination or shift, which 

called immune receptor editing theory[27].The receptor editing mechanism can provide wider exploration of the solution space 

and help gBest push itself out to a potentially better region in unknown environment . If there another better region is found, then 

the rest of the swarm will follow the leader to jump out and converge to the better region. Nonlinear chaotic logistic series 

possesses the characteristics of randomness, ergodicity and so on, which can simulate the operations of gene drift or 

recombination in immune receptor editing. The receptor editing operator is defined as: 

max min

max min

( ) * ( ) *

( ) * ( ) *

( 1)

( 1)

m

m

d d d d

d d

gBest gBest rd P X X

rd P X X

x t

x t

   

   

  

 




     (16) 

1.... ..[ ] 0......
if rd Pmrd Pm else

 
                           (17) 

Where rd is a randomly generated number, and Pm is set to be 0.5, the search range [xd
max, x

d
min] is the upper bound and lower 

bound respective. The term x(t+1) is chaotic logistic sequence function:   

( 1) ( )(1 ( ))x t ux t x t                               (18) 

where control parameters uęN. The sequence (18) can exhibit chaotic behaviors when its initial values on [0, 1] except 0, 0.25, 

0.50, 0.75, and 1.0 [28]. Thus, chaotic-logistic-based receptor editing can be viewed as a refinement mechanism, which can 

provides a broader exploration of the solution space for the gBest particle and can lead it to the global optimum, as show in Fig. 

4. 
Begin

G=gBest(gBest1,gBest2);d=random(1,D);rd=random(),Pm=0.5

Make sure G is within 
the range

V<fit (gBest)

G is used to replace the particle with low fitness 

Compute V=fit (G)

gBest=G

End

rd>Pm

max min( ) * ( 1)d d d dG G X X x t   max min( ) * ( 1)d d d dG G X X x t  

[ ]min, max
dG X X

no

yes

yes no

 

Fig.4. Flowchart of receptor editing for gBest using chaotic logistic sequence 
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E. Parallelization Implementation on GPU 
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Fig.5.The G-DPSO-RE is parallel implementation on GPU 

Graphic processing unit (GPU) possesses an obvious advantage over CPU in terms of numerical processing ability, 

multithread instruction unit, and memory bandwidth, whereas it has a low cost and small power consumption, which can greatly 

reduce the required computing times. In order to speed up parameter estimation procedure, the proposed G-DPSO-RE 

algorithm is implemented in the GPU devices through the CUDA program. Both CPU and GPU are conducting heterogeneous 

collaborative computation where the GPU is carry out numeric parallel processing while CPU is in charge of serial computing 

such as logic and transaction processing.  

 Note that in the work the entire swarm is run at one block of GPU structure and each particle is run at one thread, as 

illustrated in Fig.5.The populations and related parameters are generated on CPU and allocated to a grid with one dimension of 

blocks at GPU. So, the proposed parameters estimation method can be speeded up significantly by GPU. 

Č. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Hardware Control System and Software Platform  

          

(a)                                                                          (b) 
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(c)                                                                   (d) 
Fig. 6. Schematic diagram of identification system and waveforms of sampled operation data. (a) Photograph of the experimental with prototype PMSM. (b) 
Sampled of dq-axis current.(c) sampled of voltage and electrical angular speed .(d) The schematic diagram hardware and software platform 

 

To perform our experiment, the schematic of the parameter estimation system is depicted in Fig.6, whose design parameters are 

shown in Table ĉ, where a permanent magnet synchronous motor prototype and DSP vector control hardware platform are used 

as the experimental facility. The design parameters and specification of surface-mounted PMSM are as follows: 
 
TABLE ĉ 

DESIGN PARAMETERS AND SPECIFICATION OF PMSM 

 

 

 

 

 

 

 

 

The waveforms of measured dq-axis currents/voltages and electrical angular speeds of PMSM such as normal temperature 

condition are shown in Fig.6 (b)-(c). The current signals are obtained from the Hall transducers and then sampled by the DSP. 

The DC link is connected with the DC power source whose output is fixed to 36V. The sampling period is set to 83.3 s. The 

signals from the DSP is transmitted to a PC via serial protocol communication network and recorded in memory, which used as 

parameters estimator data modeling. After this, the parameter estimator is computed iteratively in host computer by the proposed 

G-DPSO-RE using visual studio 2012 software. For a large-scale engineering application, there is a need to process a large 

amount of operating condition data and control signals, so it needs large computing and mass storage, for such a case the 

processing of parameter estimation can still be done in a PC, equipped with graphic processing units (GPUs), which has 

massively parallel computing ability with hundreds of threads and low hardware cost. The work can be done by collaborative PC 

with inverter controller: the high computational task and massive storage can be done by PC and the results can be sent to 

inverter controller for controller design. 

Rated speed 400rpm 
Rated current 4A 

DC link voltage 36v 
Nominal terminal wire resistance 0.043 

Nominal self inductance 2.91mh 
Nominal mutual inductance -0.330mh 
Nominal d-axis inductance 3.24mh 
Nominal q-axis inductance 3.24mh 

Nominal amplitude of flux induced by 
magnets 

77.6 mWb 

Number of pole pairs 5 
Nominal phase resistance (T=25 oC) 0.330  

Inertia 0.8e−5kgm2 
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A number of hybrid PSOs are used for a comparison purpose with the proposed G-DPSO-RE, including HGAPSO (hybrid 

PSO with genetic algorithm) [29], HPSOWM (hybrid PSO with Wavelet Mutation) [30], CLPSO (comprehensive learning PSO) 

[31], A-CLPSO (An improved comprehensive learning PSO) [32] and APSO (adaptive Particle Swarm Optimization) [33]. To 

assess the performance of parameter estimation, a statistical analysis is performed in terms of the mean results, standard 

deviation and the t-test value. The basic settings of these PSOs are as follows: the maximum iteration is 300 and the number of 

runs is 15. All hybrid PSOs are operated on the same platform with the same objective function and PMSM hardware. All 

experiments are carried out on the same computer with AMD Athlon(tm) II  X4 555, four-core processors, RAM 4.0GB and GPU 

of NVIDIA GeForce GTX560TI equipped with 512 cores.  

B. Parameter Estimation under Normal Temperature Condition 

Table Ċ presents the set of the parameters which are applied in the HGAPSO, HPSOWM, CLPSO, A-CLPSO, APSO, 

G-DPSO-RE algorithms for PMSM parameter estimation using data measured from normal temperature environment, and the 

convergence of different PSOs are shown in Fig.7 from which it is clear that the proposed G-DPSO-RE shows the best 

performance in terms of mean, standard deviations and t-values among those seven methods. Furthermore, all the t-values are 

higher than 9, which imply that the G-DPSO-RE has significantly better solution performance than other hybrid PSOs (the 

confidence level is 98%). As can be seen from Fig.8, DPSO-RE converges to the optimum after about 60 generations of 

evolution whereas other hybrid PSOs shows poor convergence performance. Moreover, as shown in Table Ċ , the execution 

time of G-DPSO-RE is shorter than the other seven methods.  

As demonstrated in Table Ċ and Fig.6 (a)-(d), the estimated winding resistance (0.372ȍ) by G-DPSO-RE is quite close to 

its measured value (0.373ȍ (0.33ȍ+0.043ȍ) under normal temperature condition. In addition, the estimated flux linkage ȥm 

(78.36mWb) by G-DPSO-RE is quite close to its nominal value (77.6mWb), the estimated dq-axis inductance (3.474mH) is also 

consistent well with the nominal value on manual (3.24mH). As shown in Fig. 8(d), the value of VSI disturbance voltage Vdead 

can be estimated along with other machine parameters based on the proposed estimator model. Although the accurate value of 

Vdead cannot be acquired, it can be seen from Table II and III that the estimation results of the machine parameters (i.e. resistance 

(R), rotor flux linkage (ȥm)) are of the highest estimation accuracy, and thus it can be expected that the estimated value of Vdead 

should be close to true value. 

In this study, we conducted the parameter estimation on the basis of the steady-state dq axis equations of the motor as in (5), so 

the inverter nonlinearity dynamic ripples will not influence the estimated parameters, meanwhile, dc components of Dd.Vdead and 

Dq.Vdead can be minimized to some negligible values if the VSI nonlinearity is compensated properly. 

In all, the proposed G-DPSO-RE is of high accuracy in parameter estimation under normal temperature condition though there 

is a slight difference between the estimated and nominal values of (R, L, ȥm) due to nonlinearity on load condition. It can also be 

observed from Tableĉand Fig.8 (a)-(c) that the proposed G-DPSO-RE produced more precise parameter estimates for motor 

resistance, dq-axis inductances and the rotor flux, and the estimates converge to their desired values rapidly. The proposed 

estimator has a global convergence performance by combining the labor division cooperation mechanism inspired by the 

biological world and immune receptor editing mechanism in AIS. The results confirm that the cost function previously defined is 
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related to the reality problems with local minima, and the poor performance of the identification method will progress from 

convergence to localization.  

Moreover, as is shown in Fig.11, in terms of time-consuming, it requires 23.85s, 36.24s, 18.30s, 18.17s, and 12.47s for 

HGAPSO, HPSOWM, CLPSO, A-CLPSO and APSO, respectively .However, the computation time of G-DPSO-RE is only 6.97 

s, which is smaller than all the comparative PSO methods. All this demonstrates that the potential of the high-performance 

computing ability of GPU is well exploited to speed up the parameter estimation procedure. It can promote the real-time 

response of the proposed G-DPSO-RE as it takes the advantage of the inherent parallelism of population-based intelligent 

computing techniques. 

As mentioned above, the proposed G-DPSO-RE for the estimation of PMSM parameters converge to the global optimal solution 

when solving dynamically nonlinear PMSM parameters estimation problem. A brief summary for this is given below.  

Firstly, a labor division based dynamic particle swarm optimization (DPSO) algorithm combined with a receptor editing (RE) 

strategy makes a good contribution to explore the optimal values of parameter estimator. 

Secondly, a number of improved PSOs are used for a comparison purpose with the proposed G-DPSO-RE, including HGAPSO, 

HPSOWM, CLPSO, A-CLPSO and APSO. All the PSOs are used for PMSM parameter estimation using the same objective 

function. The numerical results show the proposed G-DPSO-RE has the best performance in terms of mean, standard deviations 

and t-values among those seven methods. 

Thirdly, from Table Ċ and Fig.6 (a)-(d), the parameter estimation experiments under normal temperature condition shows that 

the proposed G-DPSO-RE based parameter estimation method can converge to the actual machine parameters.  

 
Fig. 7. The fitness convergence curve of six PSOs on PMSM parameter identification under normal temperature condition. 

 
TABLEĊ.  

 RESULT COMPARISONS AMONG SIX PSOS ON PMSM PARAMETER IDENTIFICATION WITH NORMAL TEMPERATURE 
 
 
 
 
 
 
 
 
 
 
 
 
 

Estimated Parameters HGAPSO HPSOWM CLPSO A-CLPSO APSO G-DPSO-RE 

R(ȍ) 0.359 0.367 0.333 0.321 0.369 0.371 

 ȥm(mWb) 78.23 77.69 78.62 78.51 79.62 78.36 

L (mH) 3.528 3.589 3.278 3.133 3.755 3.474 

Vdead(V) -0.286 -0.211 -0.116 -0.139 -0.109 -0.078 

Fitness 

Mean 1.23 1.09 2.072 1.74 2.12 0.85 
Std.dev 0.259 0.123 0.553 0.608 0.588 0.0045 
Time(s) 23.85 36.24 18.30 18.17 12.47 6.97 
t-value 10.04 12.11 15.51 10.29 15.17 0 
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(a)                                                                 (b)  

    
             (c)                                                                 (d)              

Fig. 8. Identified parameters under normal temperature condition (a) winding resistance. (b) rotor flux linkage (c) d-axis inductance.(d)the estimated VSI distorted voltage. 
  

C. Parameter Estimation under Temperature Variation Condition 

Temperature is the main indicator for the reliable operation of PMSM, the variation of temperature can change the machine 

physical parameters. In order to evaluate the dynamic performance of the proposed method for tracking the change of parameters 

under temperature variation conditions, experiments on a varying temperature condition are carried out. A heater is used to heat 

the prototype PMSM. Firstly, continuously heating the PMSM for 20 minutes and then recording experimental data for the 

estimation of the machine parameters (t=20 minutes).  

The comparisons of the performance for different PSOs are shown in Table ċ, Fig.9. and Fig.10. The convergence curves of 

different PSOs are shown in Fig.9. From Table ċ, it is obvious that G-DPSO-RE produces the best performance in terms of 

mean, standard deviations and t-values. Fig.9 further shows that the G-DPSO-RE has a fast convergence speed compared to other 

hybrid PSOs. Additionally, the stability of the G-DPSO-RE is better than other hybrid PSOs. Meanwhile, as can be seen from 

Table ċ and Fig.10, the estimated winding resistance R, dq-axis inductance L and rotor flux linkage ȥ vary with the changing 

temperatures. For example, the estimated winding resistance value varies from 0.371( ) to 0.446 ( ) after 20 minutes heating 

due to the effects of the thermal metal, the estimated rotor flux linkage decreased from 78.36 (mWb) to 76.81 (mWb) after 20 

minutes heating ,the abrupt drop in the estimated rotor flux linkage after 20 minute heating can be explained by the fact that the 

residual flux density of the PM reduces when the temperature of NdFeB magnets increases, since the flux density has changed 
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during the data measurement after20-minitue heating. Furthermore, from Table Ċ and Table ċ, it can be seen that the 

estimated VSI disturbance voltage Vdead varies from -0.078 (V) to -0.107(V) after 20 minute heating. This phenomenon can be 

explained by the fact that the VSI nonlinearity is also influenced by the temperature variation. 

The experimental results indicate that G-DPSO-RE has a good dynamic tracking performance. Hence, the G-DPSO-RE is 

significantly better and statistically more robust than other listed hybrid PSOs in terms of global search capacity and local search 

precision in our experiments.  
TABLE ċ.  

RESULT COMPARISONS AMONG SIX PSOS ON PMSM PARAMETER IDENTIFICATION UNDER TEMPERATURE VARIATION CONDITION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. The fitness convergence curve of six PSOs on PMSM parameter identification under variation temperature condition. 

 

  
(a)                                                          (b) 

Estimated Parameters HGAPSO HPSOWM CLPSO A-CLPSO APSO G-DPSO-RE 

R(ȍ) 0.478 0.457 0.479 0.419 0.473 0.446 

 ȥm(mWb) 75.84 76.08 74.98 77.00 75.14 76.81 

L (mH) 3.572 3.277 2.539 3.453 3.335 3.466 

Vdead(V) -0.258 -0.207 -0.602 -0.161 -0.044 -0.107 

Fitness 

Mean 1.131 0.973 2.121 2.15 1.446 0.855 
Std.dev 0.293 0.121 0.412 0.357 0.474 0.084 
Time(s) 23.86 36.23 18.31 18.18 12.46 6.98 
t-value 4.73 2.66 17.77 19.91 7.52 0 
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(c)                                                            (d) 

Fig. 10. Identified parameters under variation temperature condition (a) winding resistance. (b) rotor flux linkage (c) d-axis inductance.(d)the estimated VSI distorted 
voltage. 
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Fig.11.The time cost of six PSOs on SPMSM parameter identification 

         
D. Speedup Achieved by GPU Parallel Implementation 

TABLE Č 
COMPUTING TIME FOR PMSM PARAMETER IDENTIFICATION BASED ON G-DPSO-RE WITH MULTI-CORE ARCHITECTURE 

 

 
 

 

        
Fig.12.The comparison for time cost of G-DPSO-RE in PMSM              Fig.13. The comparison for SUR of G-DPSO-RE in PMSM parameter 

estimation parameter using different multi-core architecture                       using different multi-core architecture 

The speed-up ratio is defined as SUR= Ts/Tp, where Ts and Tp are the execution runs of the serial and parallel algorithms 

respectively. In this work speedup ratio is used to evaluate the efficiency of our proposed method implemented on different 

multi-core architecture. A GTX560TI GPU and multi-core CPU systems (range from one core to four cores) are compared in 

CPU-with one core CPU- with two cores CPU- with three cores CPU- with four cores GPU-GTX560TI 
Time(s) SUR Time(s) SUR Time(s) SUR Time(s) SUR Time(s) SUR 
64.01 1 52.34 1.22 38.93 1.64 24.19 2.65 6.97 9.18 
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terms of computation speedup when applied to the estimation of PMSM parameters. The results are shown in Table Č, Fig.12 

and Fig.13, where the symbol CPU-1, CPU-2, CPU-3, and CPU-4 are means CPU with one core, two cores, three cores, and four 

cores respectively.  

The results show that the execution time of the G-DPSO-RE reduces greatly when it runs on increasing multi -core CPU. For 

example, it requires 64.01s, 52.34s ,38.93s and 24.19s for running with one core, two cores , three cores and four cores CPU 

under the normal temperature condition ,respectively. Whereas, the average time required for GPU is only 6.97s. The 

computation of optimal solution is accelerated by 9.18×in comparison of a sequential execution on CPU through exploiting the 

massively parallel architecture of GPUs. This fact shows that the speed and efficiency of the proposed parameter estimation 

method has been remarkably improved by GPU parallel execution. There are two main reasons behind this. Firstly, the 

computing speed of GPU with hundreds of threads is much faster than that of CPUs. Secondly, the proposed estimator involves 

mass intensive computing including data and program because of the G-DPSO-RE with intrinsic parallel character.  

E Comparison Between With and Without Considering the VSI Nonlinearity 

In this section, an experimental is conducted to provide a comparison between the results with and without including the effect of 

VSI nonlinearity. Fig.14(a)-(c) show the estimated machine parameters (winding resistance, rotor flux linkage and dq-axis 

inductance) with and without considering the VSI nonlinearity under normal temperature condition using the proposed 

G-DPSO-RE. The estimated machine parameters without considering the VSI nonlinearity are as follows:: the estimated winding 

resistance(R) is 0.453(ȍ), the estimated rotor flux linkage (ȥm) is 75.9(mWb) and the estimated dq-axis inductance (L) is 

3.433(mH), while the estimates with considering the VSI nonlinearity are: 0.371(ȍ), 78.36(mWb) and 3.474(mH), respectively. 

It is obvious that the estimated values with considering the VSI nonlinearity are different from that without considering the VSI 

nonlinearity, especially for the estimated winding resistance value and the estimated flux linkage. For example, the estimated 

winding resistance value (0.453ȍ) without considering VSI nonlinearity is much larger than that (0.371ȍ) with considering VSI 

nonlinearity (with an error of 0.453-0.371)/0.371≈22%. the estimated rotor flux linkage value (75.95mWb), without considering 

VSI nonlinearity,  is obviously smaller   than 78.36 mWb which was estimated with considering VSI nonlinearity, with an 

error of 78.36-75.95)/78.36≈3%.  

  The differences between the parameter estimates are are mainly accounted for by effect of the VSI nonlinear disturbance 

voltage (i.e, Vdead.Dd and Vdead.Dq in (3a) and(3b)) which results in an increase in the estimated winding resistance. From the 

experiment, the distort voltage Vdead is about 0.1V, the two terms Dq.Vdead ( about 0.4V) and Dd.Vdead ( about 0.2V) could 

introduce an error into the estimation of the PMSM parameters. This can be analyzed by using the typical electrical parameters in 

Table I and equation (3b). Note that Riq is about 1.3V, Ȧȥm is about 12V, and Dq.Vdead / Riq≈30%, Dq.Vdead/ Ȧȥm ≈ 3%, so, after 

Clarke and Park transforms, the dq-axis voltage will change because Dq.Vdead can significantly affect the winding resistance and 

flux linkage estimation significantly. 

The results show that the proposed parameter estimation model with considering the effect of VSI nonlinearity can improve 

the accuracy for machine parameter estimation. 
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(a)                                       (b)                                    (c) 

Fig14.The comparison of the identified parameters between with considering VSI nonlinearity and without considering VSI nonlinearity under normal temperature 

condition using the proposed G-DPSO-RE (a) winding resistance. (b) rotor flux linkage (c) dq-axis inductance 

č. CONCLUSION 

In this study, an accurate estimation model of combining the SPMSM parameters with VSI nonlinearity is established. A 

labor-division based dynamic PSO combined immune receptor editing strategy is designed for dynamic optimization and 

parallel implementation on GPU to accelerate the convergence process for parameter estimation. The computational efficiency of 

the parameter estimation procedure is greatly improved by the GPU parallel computing technique. The proposed parameter 

optimization method can be used to collectively estimate several parameters including the resistance, inductance, rotor flux along 

with VSI disturbance voltage with no expensive equipment. The influence of the VSI nonlinearity on the accuracy of the 

parameter estimation is also analyzed. In comparison with other PSO algorithms, the proposed estimation algorithm is relatively 

more complicated and the implementation of GPU techniques needs some special knowledge and programming skills, and this 

may be a major challenge for most of control or electrical engineers. But with the development of computer technology, it can be 

expected that this estimation algorithm can become easier for commercial PMSM drives. The proposed parameter estimation 

model   focuses on steady state operation of machines and may not be suitable for other complex cases, for example for 

machine operating under time-varying operating conditions. This is a limitation of the proposed method. In our future work, we 

will investigate a new dynamic parameter estimation model for  machine parameter estimation under dynamic operating state 

including the consideration of variation in the load disturbance and speed. To meet the increasing interest and demands from 

industrial especially for real-time applications, in our future work we will carry out on Field-Programmable Gate Array (FPGA), 

to improve the performance of real-time performance control of PMSM. For all these potential applications, the present study 

provides a feasible solution to parameter estimation and control of PMSM systems. 
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