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We present a novel terahertz (THz) quantum cascade laser (QCL) design where

Γ-valley states are used for lasing transition and X-valley states—in particular, Xz-

states—are used as injector subbands. Since the lasing states in our proposed struc-

ture are populated and depopulated mainly through the interface roughness assisted

Γ-Xz electron scattering, we present a model to describe this intervalley carrier trans-

port. In the injector region of the proposed THz QCL, we use quaternary AlGaAsP

material to introduce tensile strain, which plays a crucial role in increasing the gain.

To compensate the strain per period, we propose to grow the periodic heterostruc-

ture on a GaAs.94P.06 virtual substrate. To simulate the carrier transport, and hence

calculate the gain and lasing performance of the proposed THz QCL, we use a simpli-

fied density matrix formalism that considers resonant tunneling, dephasing, and the

important intersubband scattering mechanisms. Since electron temperature signifi-

cantly varies from lattice temperature for QCLs, we take their difference into account

using the kinetic energy balance (KEB) method. We show that the proposed struc-

ture is capable of lasing up to a maximum lattice temperature of ∼119 K at 4.8 THz.

For future improvements of the device, we identify major performance-degrading

factors of the proposed design.

a)Electronic mail: anis@eee.buet.ac.bd
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I. INTRODUCTION

Since the first realization in 2002,1 terahertz (THz) quantum cascade lasers (QCLs) have

gone through rapid improvements with respect to maximum operating temperature, output

power, and frequency range covered.2 Nevertheless, to make THz QCLs more appealing for

various applications such as chemical sensing, astronomy, spectroscopy, and imaging, further

improvements are necessary. In particular, high temperature operation is still an issue for

THz QCLs. So far, after fifteen years of research, lasing up to ∼200 K has been achieved with

the GaAs/AlGaAs material system,3 while lasing up to ∼225 K has been achieved with the

assistance of strong magnetic field.4 Therefore, for further improvement of the temperature

performance, thinking beyond the existing designs is necessary.

In QCLs based on III-V materials, carrier transfer to X-valley is often considered as an

undesirable phenomenon for several reasons. Firstly, X-valley band edge is located higher

in energy than Γ-valley band edge in most III-V materials used for QCL designs. Therefore,

X-subbands help neither in carrier extraction from the lower lasing state (LLS) nor in carrier

injection to the upper lasing state (ULS). On the contrary, X-subbands cause carrier leakage,

which reduces gain and increases threshold current density.5 Secondly, electron effective mass

atX-valley is high, which discourages one to exploitX-valley states as lasing levels since gain

coefficient decreases as the electron effective mass increases.6 However, by utilizing X-valley

states as injector subbands, one can expect an improved temperature performance. Since

electrons prefer to scatter from a subband of lower density of states (DOS) to a subband of

higher DOS, X-subbands that have higher DOS than Γ-valley states, if employed as injector

states, will result in reduced thermal backfilling of the LLS.

The potential of X-valley states being used as injector subbands has inspired us to carry

out this work where we design a novel THz QCL with Γ-valley states for lasing transition

and X-valley states as injector subbands and investigate the performance of the designed

structure. In Fig. 1, we schematically show the relevant energy levels in the Γ- and X-valleys

of the proposed structure. Due to mass anisotropy and quantum confinement, electrons inX-

valley can be found in non-degenerate Xz- and doubly degenerate Xxy-states. The intrinsic

elastic Γ → Xz carrier scattering rate is ∼7 ps−1, which is much greater than ∼0.15 ps−1

Γ → Xxy carrier scattering rate.7 Therefore, we design the injector region in such a way

that the carrier extraction and injection occur mainly through Xz-states. In particular, the
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FIG. 1. Schematic illustration of (a) the energy levels in the Γ and Xz-states and carrier transport

mechanisms through the energy states. Electrons scatter from a Γ-valley ULS to a Γ-valley LLS by

lasing transition (LT), and then subsequently transport to another Γ-valley state SΓ by resonant

tunneling (RT). Electrons transport through Xz states in the injector region by elastic and non-

elastic mechanisms. (b), (c) Energy-wave vector (E-k) diagrams for the Γ and Xz-subbands,

respectively. In both (b) and (c), electrons at the blue-shaded region can perform in-plane wave

vector-non-conserving elastic transfer and those at the red region can perform in-plane wave vector-

conserving elastic transfer.

carrier transport through our structure takes place according to the following sequence as

shown in Fig. 1(a): First, from the LLS, electrons transfer to a Γ-state through resonant

tunneling. Next, electrons are extracted from the Γ-state to a resonant injector Xz-state

through Γ → Xz elastic scattering mechanisms. Then, carriers relax to the ground Xz-state

of the injector region due to the intravalley Xz-Xz phonon and interface roughness (IR)

scattering mechanisms. Finally, carriers are injected into the Γ-valley ULS of the following

period from ground Xz-state mainly through the Xz → Γ elastic scattering mechanisms.

In semiconductor heterostructures, Γ-Xz elastic transfer can take place in two ways: With

conservation of in-plane wave vector (k) and without conservation of k. k-non-conserving

Γ-Xz elastic transport is likely to take place due to IR assisted scattering mechanism.7 On

the contrary, if the envelope functions vary slowly compared to a sinusoid of wavelength

equal to lattice parameter of the substrate, as is the case for the proposed structure, the

contribution of ionized impurity scattering to the Γ-Xz transport will be small. In case of

3



Γ → Xz elastic scattering with the Xz-state being resonant, a small portion of the electrons

of the Γ-state is allowed to perform k-conserving transfer, whereas all the electrons of Γ-

state are eligible for the IR assisted transfer8 as schematically shown in Fig. 1(b). This

statement is also true for the Xz → Γ elastic scattering. Therefore, we expect that both

carrier extraction and injection in our proposed structure to be dominated by the IR assisted

Γ-Xz scattering mechanism as schematically shown in Fig. 1(c). Therefore, we designed the

proposed structure in a way so that the IR assisted Γ-Xz scattering rate can be significant.

Since IR scattering mechanism is expected to govern the Γ-Xz transfer in our design, we

derive an expression to calculate the IR assisted intervalley scattering rate.

Although most of the THz QCLs to date have been realized with GaAs/AlGaAs materials,

the proposed THz QCL requires novel materials for efficient carrier injection and extraction

throughX-valley states. In the proposed structure, we use quaternary AlGaAsP to introduce

tensile strain at the injector region so that Γ and Xz quantum wells are created at the same

layers. As a result, there is a significant overlap between wavefunctions of the Γ and Xz

states. The significant overlap between the wavefunctions provides us an opportunity to

improve the intervalley IR scattering rate. Additionally, the tensile strain places the ground

Xxy-state at a considerably higher energy than the ground Xz-state at the injector. If the

ground Xz and Xxy states were situated close to each other, carriers would accumulate at the

injector region, and result in small gain. To ensure mechanical stability of the structure, it is

necessary to compensate the strain over a period, which is done by adding 6% GaP to GaAs

substrate. We calculate the average intersubband transition rates due to the dominant

scattering mechanisms and use a simplified density matrix (SDM) approach to simulate

the carrier transport. In addition to the Γ-Xz IR assisted transfer, in our simulation, we

include the Γ-Xz phonon assisted transfer mechanism, although the scattering rate due to the

latter process is weaker. Also, we consider the difference between lattice (TL) and electron

temperatures (Te). We find that, for typical Cu metal-metal waveguide losses, our proposed

THz QCL lases up to a maximum TL of ∼119 K. Finally, we present a brief discussion on

the crucial performance-degrading factors for the proposed THz QCL.

The remainder of this article is organized as follows: In Sec. II, we present a model of IR

assisted Γ-Xz electron transport. In Sec. III, we present and discuss the proposed THz QCL

design. In Sec. IV, we investigate the device performance and identify the major factors

that are responsible for performance degradation. Finally, in Sec. V, we conclude our work
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with a brief summary.

II. INTERVALLEY Γ-Xz CARRIER TRANSPORT DUE TO INTERFACE

ROUGHNESS

Let us consider a heterojunction formed from two zinc-blende semiconductors with the

layers grown along the [001] direction, which is the z-axis in this work. In the absence of

roughness, the interface would be located at z0. However, the fabrication process inevitably

introduces imperfection at the interface, which can be described by a local deviation of the

interface ∆(r) from z0, where r denotes the two-dimensional position vector, i.e., r ≡ (x, y).

We assume that ∆(r) varies continuously with r, rather than being a discrete multiple of a/2,

where a is the the lattice parameter of the face-centered rhombohedral cubic lattice. Interface

roughness causes electrons to scatter from an initial state Ψik′ = S−1/2ψi(z)e
jk′·rφi(R) with

energy Eik′ = Ei + ~
2k′2/(2m∗

ti) to a final state Ψfk′′ = S−1/2ψf (z)e
jk′′·rφf (R) with energy

Efk′′ = Ef + ~
2k′′2/(2m∗

tf ). Here, subscripts i and f denote that the parameters belong to

initial and final states, respectively; S denotes the in-plane cross sectional area; ψ and φ

denote the normalized envelope function and Bloch function, respectively; j andR denote the

imaginary unit and three-dimensional position vector, i.e., R ≡ (r, z), respectively; k′ and

k
′′ denote the in-plane wave vectors of initial and final states, respectively; Ei and Ef are the

energies at the bottom of the respective subbands; and m∗
t represents the average transverse

electron effective mass. Bloch functions are assumed to be real and are given by φΓ = uΓ,

φXz
= ejQzuXz

, where u denotes the lattice periodic part and Q = 2π/a. Additionally, we

assume that uΓ is independent of the materials that constitute the heterostructure9 and so

is uXz
.

Let UA(R) and UB(R) be the crystal potentials, extended across the entire heterostruc-

ture, of the left-hand (z < z0) and right-hand (z > z0) materials, respectively. The deviation

∆(r) of the interface position produces a perturbing potential Vp = δU

[
Θ(z − z0)− Θ(z −

z0 −∆)

]
, where δU(R) = UA(R)−UB(R) and Θ(z) represents the Heaviside step function.

The matrix element of Vp between initial and final states is

〈Ψik′ |Vp|Ψfk′′〉 =
1

S

∫

S

∫ ∞

−∞

δUψ∗
i ψfP (R)e−j(k′−k

′′)·rφiφf d
2r dz, (1)

where P (R) = Θ(z−z0)−Θ(z−z0−∆). The deviation ∆(r) is usually small. For example,
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in GaAs-based THz QCLs, the root mean square ∆(r) is generally smaller than the width

of a monolayer of GaAs.10 Therefore, the slowly varying envelope functions can be replaced

by their values at z0 in Eq. (1), and thus we get

〈Ψik′ |Vp|Ψfk′′〉 =
1

S
ψ∗
i (z0)ψf (z0)

∫
uΓδUuXz

P (R)e−j(k′−k
′′)·rejQz d3R. (2)

Since uΓδUuXz
is a lattice periodic function, we can expand it as a series using Fourier

coefficients, and thereby we obtain

〈Ψik′ |Vp|Ψfk′′〉 =
1

S
ψ∗
i (z0)ψf (z0)

∑

l

C̃l

∫
P (R)e−j(k′−k

′′)·rejQze−jKl·R d3R

=
1

S
ψ∗
i (z0)ψf (z0)

∑

l

C̃lP̃ (k
′ − k

′′ +Kl‖,−Q+Klz). (3)

Here, Kl is the reciprocal lattice vector, Kl‖ and Klz are the components of Kl in the direc-

tions parallel and perpendicular to the layer plane, respectively, P (R) and P̃ (K) constitute a

Fourier transform pair withK representing the three-dimensional wave vector [K ≡ (k, Kz)],

and C̃l denotes the Fourier series coefficient given by

C̃l =
1

Ωc

∫

Ωc

uΓδUuXz
ejKl·R d3R

=
1

Ωc

∫

Ωc

φΓδUφXz
ejKl‖·rej(−Q+Klz)z d3R, (4)

where Ωc is the volume of the conventional unit cell.

Now, let us consider the function P̃ (K), which can be written as

P̃ (k, Kz) =

[
πδ(Kz) +

1

jKz

]
e−jKzz0

[
(2π)2δ(k)−

∫
e−jKz∆(r)e−jk·r d2r

]
. (5)

Using z0 = Na/2 with N being a non-negative integer, expanding e−jKz∆(r) in a power series,

and utilizing the relation Kzδ(Kz) = 0, we get

P̃ (k, Kz) = e−jKzN
a

2

∑

n=1,2,3,···

(−jKz)
n−1

n!
F̃n(k), (6)

where F̃n(k) and ∆n(r) constitute a Fourier transform pair. In the case of intravalley Γ-Γ

IR scattering, the most dominant term in the summation in Eq. (3) (in this case, Q = 0

and φXz
must be replaced by φΓ), which comes with K0 = (0, 0, 0), is usually retained.10

Likewise, in our case, we keep only the most significant terms in Eq. (3), which come with

the vectors (K0‖,−Q + K0z) = (0,−2π/a) and (K9‖,−Q + K9z) = (0, 2π/a). The terms
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with other vectors in the summation are less important due to smaller |C̃l| and/or smaller

|P̃ |. Thus, we get

〈Ψik′ |Vp|Ψfk′′〉 =
1

S
ψ∗
i (z0)ψf (z0)

[
C̃0P̃ (k

′ − k
′′,−2π/a) + C̃9P̃ (k

′ − k
′′, 2π/a)

]

=
2

S
(−1)Nψ∗

i (z0)ψf (z0)D
∑

n=1,3,5,···

(jQ)n−1

n!
F̃n(k

′′′), (7)

where D = (1/Ωc)
∫
Ωc

φΓδUφXz
cos(2πz/a) d3R and k

′′′ = k
′ − k

′′. The terms with even n

vanish because they contain the integral (1/Ωc)
∫
Ωc

φΓδUφXz
sin(2πz/a) d3R, which is zero.

The functions φΓδU and φXz
sin(2πz/a) belong to Γ1 and Γ15 symmetries, respectively, and

hence are orthogonal. Multiplication of Eq. (7) with its complex conjugate yields

|〈Ψik′ |Vp|Ψfk′′〉|2 =
4

S2
|ψi(z0)ψf (z0)|

2D2
∑

n=1,3,5,···

∑

n′=1,3,5,···

(jQ)n+n′−2

n!n′!
F̃n(k

′′′)F̃ ∗
n′(k′′′). (8)

Now, let us pay attention to the term F̃n(k
′′′)F̃ ∗

n′(k
′′′), which is given by

F̃n(k
′′′)F̃ ∗

n′(k′′′) = S

∫ [
1

S

∫
∆n′

(r′)∆n(r′ + r) d2r′
]
e−jk′′′·r d2r

= S

∫
E

[
∆n′

(r′)∆n(r′ + r)

]
e−jk′′′·r d2r

≡ S

∫
E [∆n′

∆n
r
]e−jk′′′·r d2r. (9)

Here, E [·] denotes the expectation operator. We take the covariance between ∆ and ∆r, also

known as autocovariance at lag r, to be Gaussian. Gaussian approximation for autocovari-

ance between ∆ and ∆r is often used for modeling carrier dynamics in QCLs and has been

found to agree well with experimental findings.10 Thus, we can write

E [∆∆r] = σ2e−r2/Λ2

, (10)

where σ and Λ represent standard deviation and correlation length, respectively. If we

further assume that E [∆r] = 0 and the random vector (∆,∆r) has a multivariate normal

distribution, we can use Isserlis theorem11,12 to express E [∆n′
∆n

r
] in terms of E [∆∆], E [∆∆r],

and E [∆r∆r]. The number of terms that need to be retained in the summation in Eq. (8)

depends on a and σ. In Table I, we give expressions of E [∆n′
∆n

r
] and F̃n(k)F̃

∗
n′(k), which

have been found with the help of Isserlis theorem and Eq. (9), respectively, for all the pairs

of (n, n′) satisfying n + n′ ≤ 12. For σ ≤ a/6, it is more than sufficient to retain only the
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terms associated with these pairs in Eq. (8). However, additional terms may be required

for larger values of σ. We note that we used σ ≈ a/6 for our structure. Now, replacing

F̃n(k
′′′)F̃ ∗

n′(k
′′′) with corresponding expressions in Eq. (8), we obtain

|〈Ψik′ |Vp|Ψfk′′〉|2 =
4

S
πσ2Λ2|ψi(z0)ψf (z0)|

2D2

(
M ′e−k′′′2Λ2/4 +M ′′e−k′′′2Λ2/12

+M ′′′e−k′′′2Λ2/20 + · · ·

)
, (11)

where M ′, M ′′, and M ′′′ are given by

M ′ = 1−
Q2

3!
6σ2 +

Q4

5!
30σ4 −

Q6

7!
210σ6 +

Q8

9!
1890σ8 −

Q10

11!
20790σ10 +

Q4

3!3!
9σ4

−
Q6

3!5!
900σ6 +

Q8

3!7!
630σ8 −

Q10

3!9!
5670σ10 +

Q8

5!5!
225σ8 −

Q10

5!7!
3150σ10 + · · · , (12a)

M ′′ =
Q4

3!3!
2σ4 −

Q6

3!5!
40σ6 +

Q8

3!7!
420σ8 −

Q10

3!9!
5040σ10 +

Q8

5!5!
200σ8

−
Q10

5!7!
4200σ10 + · · · , (12b)

M ′′′ =
Q8

5!5!
24σ8 −

Q10

5!7!
1008σ10 + · · · . (12c)

To find the transition rate from the initial state Ψik′ to all the states of the subband f ,

we need to apply Fermi’s golden rule and then sum the result over all the wave vectors k′′.

Following the steps of Ref. 10, we find the expression for the transition rate as

W ′
ik′,f =

4m∗
tfσ

2Λ2

~3
|ψi(z0)ψf (z0)|

2D2

[
M ′

∫ π

0

e−k′′′2Λ2/4 Θ(k′′′2) dθ

+M ′′

∫ π

0

e−k′′′2Λ2/12 Θ(k′′′2) dθ +M ′′′

∫ π

0

e−k′′′2Λ2/20 Θ(k′′′2) dθ + · · ·

]
, (13)

where k′′′(θ) is given by

k′′′(θ) =

[(
1 +

m∗
tf

m∗
ti

)
k′2 + k20 − 2k′

(
m∗

tf

m∗
ti

k′2 + k20

)1/2

cos θ

]1/2

. (14)

Here, k20 = 2m∗
tf (Ei − Ef )/~

2 and θ is the angle between the wave vectors k
′ and k

′′.

Equation (13) represents the transition rate due to an interface located at z0. The other

interfaces, if exist, will also contribute to the scattering rate. We can assume that the

standard deviations of the roughness at all the interfaces of a heterostructure are identical

and so are the correlation lengths, and E [∆I∆r,I′ ] = 0 for I 6= I ′, where I and I ′ are the
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TABLE I. The expressions of E [∆n′
∆n

r ] and F̃n(k)F̃
∗
n′(k) for all pairs of (n, n′) that satisfy n+n′ ≤

12.

(n, n′) E [∆n′
∆n

r ] F̃n(k)F̃
∗
n′(k)

(1, 1) σ2e−r2/Λ2

Sπσ2Λ2e−k2Λ2/4

(1, 3), (3, 1) 3σ4e−r2/Λ2

Sπ3σ4Λ2e−k2Λ2/4

(1, 5), (5, 1) 15σ6e−r2/Λ2

Sπ15σ6Λ2e−k2Λ2/4

(3, 3) 9σ6e−r2/Λ2

+ 6σ6e−3r2/Λ2

Sπ9σ6Λ2e−k2Λ2/4 + Sπ2σ6Λ2e−k2Λ2/12

(1, 7), (7, 1) 105σ8e−r2/Λ2

Sπ105σ8Λ2e−k2Λ2/4

(3, 5), (5, 3) 45σ8e−r2/Λ2

+ 60σ8e−3r2/Λ2

Sπ45σ8Λ2e−k2Λ2/4 + Sπ20σ8Λ2e−k2Λ2/12

(1, 9), (9, 1) 945σ10e−r2/Λ2

Sπ945σ10Λ2e−k2Λ2/4

(3, 7), (7, 3) 315σ10e−r2/Λ2

+ 630σ10e−3r2/Λ2

Sπ315σ10Λ2e−k2Λ2/4 + Sπ210σ10Λ2e−k2Λ2/12

(5, 5) 225σ10e−r2/Λ2

+ 600σ10e−3r2/Λ2

Sπ225σ10Λ2e−k2Λ2/4 + Sπ200σ10Λ2e−k2Λ2/12

+120σ10e−5r2/Λ2

+Sπ24σ10Λ2e−k2Λ2/20

(1, 11), (11, 1) 10395σ12e−r2/Λ2

Sπ10395σ12Λ2e−k2Λ2/4

(3, 9), (9, 3) 2835σ12e−r2/Λ2

+ 7560σ12e−3r2/Λ2

Sπ2835σ12Λ2e−k2Λ2/4 + Sπ2520σ12Λ2e−k2Λ2/12

(5, 7), (7, 5) 1575σ12e−r2/Λ2

+ 6300σ12e−3r2/Λ2

Sπ1575σ12Λ2e−k2Λ2/4 + Sπ2100σ12Λ2e−k2Λ2/12

+2520σ12e−5r2/Λ2

+Sπ504σ12Λ2e−k2Λ2/20

interface indices.10 Thus, the total transition rate becomes

Wik′,f =
4m∗

tfσ
2Λ2

~3

[∑

I

|ψi(zI)ψf (zI)|
2D2

I

][
M ′

∫ π

0

e−k′′′2Λ2/4 Θ(k′′′2) dθ

+M ′′

∫ π

0

e−k′′′2Λ2/12 Θ(k′′′2) dθ +M ′′′

∫ π

0

e−k′′′2Λ2/20 Θ(k′′′2) dθ + · · ·

]
. (15)

The expression of D in its original form is not convenient for the design purpose because

it does not explicitly show how D varies with the known material parameters, e.g., band

offset. Therefore, we examine whether D can be expressed in a convenient form. The

Bloch functions at the Γ-point are complete with respect to lattice periodic functions.13 The

function φXz
cos(2πz/a), being lattice periodic, can be expressed as a linear combination of

the Γ Bloch functions, i.e.,

φXz ,1 cos(2πz/a) =
∑

s

csuΓ,s , (16)
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where c stands for the numerical coefficient, s stands for the band index, i.e., s = 0, 1, 2, · · · ,

and the band corresponding to s = 1 is taken as the conduction band. We note that the

band index was not shown explicitly in the previous calculations as the involved quantities

belonged to only one band, i.e., conduction band. Using AlAs Bloch functions given in

Ref. 14, we find |c1| ≈ 0.5. GaAs Bloch functions14 also yield an approximately identical

value. Now, let us find D for a GaAs/AlAs heterostructure. Since we used GaAs.94P.06 as

the virtual substrate in our structure, we assume that every heterostructure considered in

this section for the calculation of D is pseudomorphically grown on GaAs.94P.06. Using AlAs

Bloch functions in the calculations, we can write

DGaAs/AlAs =
1

Ωc

∫

Ωc

uΓ,1,AlAs(UGaAs − UAlAs)φXz ,1,AlAs cos(2πz/a) d
3R

=
1

Ωc

∫

Ωc

uΓ,1,AlAs(HGaAs −HAlAs)
∑

s

cs,AlAs uΓ,s,AlAs d
3R, (17)

whereH denotes the Hamiltonian operator. If we assume that
∫
Ωc

uΓ,1,AlAsHGaAs uΓ,s,AlAs d
3R ≈

0 for s 6= 1 due to orthogonality, Eq. (17) simplifies to

|DGaAs/AlAs| ≈ |c1,AlAs|V
Γ
GaAs/AlAs ≈

V Γ
GaAs/AlAs

2
, (18)

where V Γ represents the Γ-valley conduction band offset. To justify the orthogonality as-

sumption, we also directly calculate DGaAs/AlAs using the pseudopotential form factors of

GaAs and AlAs given in Ref. 15. We note that, for a GaAs/AlAs heterostructure grown

on GaAs.94P.06, the Γ-band offset is ∼958 meV. Therefore, we take the form factor V S(0)

of AlAs to be −0.457 eV so that the Γ-valley conduction band offset becomes ∼958 meV,

i.e., |(1/Ωc)
∫
Ωc

uΓ,1,AlAs(UAlAs−UGaAs) uΓ,1,AlAs d
3R| ≈ 958 meV. We find that |DGaAs/AlAs| ≈

V Γ
GaAs/AlAs/4, which proves that Eq. (18) cannot be true for the proposed structure and the or-

thogonality of the states cannot be assumed. Now, consider an AlmGa1−mAs/Alm′Ga1−m′As

structure. If we apply linear interpolation scheme to find the form factors of ternary

AlGaAs, we get |DAlmGa1−mAs/Al
m′Ga

1−m′As| = |(m−m′)DGaAs/AlAs| ≈ |m−m′|V Γ
GaAs/AlAs/4 =

V Γ
AlmGa1−mAs/Al

m′Ga
1−m′As/4 for any m and m′.

Now, let us calculate D for the Al.10Ga.90As.68P.32/AlAs heterostructure. As the mole

fraction of aluminum is small, we assume the form factors of quaternary Al.10Ga.90As.68P.32

to be equal to those of ternary GaAs.68P.32. We find the form factors of GaAs.68P.32

by linearly interpolating those of GaP16 and GaAs. We note that the Γ-band offset is

10



∼748 meV for this heterostructure, which is assumed to be grown on GaAs.94P.06 sub-

strate. Therefore, we take the form factor V S(0) of GaAs.68P.32 as −0.039 eV so that

|(1/Ωc)
∫
Ωc

uΓ,1,AlAs(UAlAs − UAl.10Ga.90As.68P.32
) uΓ,1,AlAs d

3R| ≈ 748 meV. Therefore, the cal-

culation results in |DAl.10Ga.90As.68P.32/AlAs| ≈ V Γ
Al.10Ga.90As.68P.32/AlAs/4. For Al.10Ga.90As.68P.32

/Al.68Ga.32As heterostructure, we get a similar result as well. Therefore, we conclude that

D, for a heterojunction that matches closely to one of the categories discussed above, can

be expressed as

|D| ≈
V Γ

4
. (19)

We emphasize that Eq. (19) is an approximate one as we have not taken into account

complexities such as bowing and strain induced modification of the pseudopotential form

factors. In this paper, we use Eq. (15) withD as given by Eq. (19) to calculate the intervalley

IR scattering rate. In Eq. (15), we include only M ′, M ′′, and M ′′′ terms and neglect higher

order terms, and in Eqs. (12a)–(12c), we include terms up to Q10 and neglect higher order

terms.

To validate the developed model, we have calculated Γ → Xz scattering lifetime for a

GaAs/AlAs multiple-quantum-well structure that has been investigated experimentally in

Ref. 17. The investigated structure consists of 100 alternating layers of 10-nm-thick GaAs

quantum wells and 2.5-nm-thick AlAs barriers. Intervalley electron scattering time from

the second Γ-miniband to the first Xz-miniband was experimentally determined as 2.5 ps at

TL = 10 K. With the help of Eqs. (15) and (19), we calculated the same scattering lifetime

for this structure and found it to be 3.15 ps. This close agreement between the theoretical

and experimental values validates our model. In this calculation, we have set Te = TL +100

K. We have also used σ = 0.94 Å and Λ = 100 Å, which are within the ranges that are

often used for the GaAs-based THz QCLs.10. We note that the uncertainty in the parameter

values can play a role in the difference between the calculated and experimental values.

III. DEVICE DESIGN

The key feature of the proposed THz QCL structure is the X-valley-based injector re-

gion. Therefore, it is important to discuss the principle that we followed in designing the

injector region. Before we present the proposed structure, we show what we may expect

if we use AlGaAs and AlAs materials for a THz QCL with an X-valley based injector

11
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FIG. 2. Schematic illustration of the layers and localization of the wavefunctions for the injector

regions of QCLs that exploit Xz-states for carrier extraction (E) and injection (I). The horizontal

blue colored solid, dashed, and dotted lines are used to indicate the regions where the envelope

functions of respectively the Γ-, Xz-, and Xxy-states are mostly concentrated. The injector region

in (a) belongs to a typical AlGaAs/AlAs-based QCL, whereas the injector region in (b) belongs

to the proposed design. In both (a) and (b), carriers transfer from LLS (not shown) to SΓ-state

through RT, subsequently scatter to the Xz-states due to IR, and finally reach the ULS from

the ground Xz-state through the intervalley IR scattering mechanism. The AlGaAs/AlAs-based

injector region in (a) is assumed to be designed in a way so that the spread of the envelope functions

of the lasing states and the lasing frequency are approximately identical to that in (b).

region. Figure 2(a) schematically illustrates the layers and localization of the wavefunc-

tions for the injector region of a typical AlGaAs/AlAs-based QCL—assumed to be grown

on GaAs substrate—that employs Xz-states as injector subbands. The major drawback of

AlGaAs/AlAs-based structures is that the ground Xxy-state is located in energy very close

to the ground Xz-state in the AlAs layer. Since the Xxy → Γ IR scattering rate is very

slow, the total out-scattering rate is much smaller than the total in-scattering rate for the

Xxy-state. As a result, a significant number of carriers accumulate at Xxy-state, causing the

current density (J) to be small. Due to a small J , this type of structures will yield a small

gain.

However, we can overcome the carrier accumulation at Xxy by using a design principle as

is schematically shown in Fig. 2(b). In this scheme, the orange layers will serve as quantum
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wells for both the Γ- and Xz-valleys and as barriers for the Xxy-valley. The thicknesses of

the Xz-wells, i.e., orange layers, will be chosen in a way so that the corresponding Xz-states

extend over the wells, as shown by the blue dashed lines. The thinnest two tan layers will help

to enhance the intervalley IR scattering rate in two ways: Firstly, the deep Xz-wells attract

the Xz envelope functions and thus increase their absolute values at the interfaces; secondly,

they introduce very high Γ-band offsets. This new scheme has two advantages over the

AlGaAs/AlAs-based structures. Firstly, the ground Xxy-state is located significantly above

the ground Xz-state as the orange layers act as barriers to the Xxy-valley, and hence barely

affects the gain unlike the previous structure. Secondly, in this design, a significant overlap

occurs between the Xz- and Γ-wavefunctions, i.e., between the wavefunctions of SΓ and

ULS, which allows us to further enhance the intervalley IR scattering rate. In particular,

this scheme offers substantial amount of space containing significant values (magnitudes) of

both the Γ and Xz envelope functions, and within that region, we may insert thin layers of

a material with a high Γ-band edge. As Fig. 2(b) shows, a thin aqua layer with high Γ-band

edge will be inserted at the overlapping region of the envelope functions of SΓ and Xz-states,

to enhance the carrier extraction rate. To improve the extraction or injection rates even

further, a number of such layers can be inserted in the orange layers.

Following the principle outlined in Fig. 2(b), we designed a THz QCL structure. The

thicknesses and material compositions of different layers of the structure are given in Table II.

We use AlGaAsP with the mole fractions specified in Table II to introduce tensile strain in

the corresponding layers. The in-plane tensile strain lowers both the Γ- and Xz-band edges

in layers L1, L7, and L9 compared to when the layers are not strained, and thereby forms

quantum wells, as shown in Fig. 3. As a result, a considerable overlap occurs between the

Γ- and Xz-wavefunctions. The tensile strain also elevates the Xxy-band edge in the same

L1, L7, and L9 layers, as is also shown in Fig. 3. As a result, the ground Xxy-state, which

is mostly concentrated in the layers L10, L11, and L12, is located substantially higher in

energy than the ground Xz-state.

To ensure mechanical stability, the thicknesses of individual strained layers must be kept

within a limit known as critical layer thickness (CLT). People’s and Bean’s energy balance

model18 and Matthews’ and Blakeslee’s mechanical equilibrium model19 are the two most

popular methods to determine CLT. However, it has been shown in different literatures18,20,21

that Matthews’ and Blakeslee’s model often underestimates the critical thickness. Therefore,

13



TABLE II. Material composition, thickness, and amount of in-plane strain (ǫ‖) for each of the

layers of a period of our designed THz QCL. The values of ǫ‖ were calculated by assuming that the

structure was grown on a virtual substrate GaAs.94P.06. Positive (negative) sign before ǫ‖ implies

that the corresponding layer is under tensile (compressive) strain. Layers are labeled from L1 to

L12.

Layer Material used Thickness ǫ‖ Layer Material used Thickness ǫ‖

(Å) (%) (Å) (%)

L1 Al.13Ga.87As.71P.29 45 +0.81 L7 Al.10Ga.90As.68P.32 17 +0.92

L2 Al.27Ga.73As 23 −0.25 L8 Al.68Ga.32As 06 −0.31

L3 Al.43Ga.57As 23 −0.28 L9 Al.10Ga.90As.68P.32 17 +0.92

L4 Al.29Ga.71As 76 −0.26 L10 AlAs 03 −0.36

L5 Al.43Ga.57As 62 −0.28 L11 Al.43Ga.57As 17 −0.28

L6 Al.27Ga.73As 20 −0.25 L12 AlAs 03 −0.36

in this work, we use People’s and Bean’s model to calculate CLTs of different strained layers.

With the help of People’s and Bean’s model, the CLT for layers L7 and L9, which are under

the highest strain according to Table II, is determined as ∼1458 Å. Because of smaller

strain, the CLTs of other layers are much greater than 1458 Å. Table II shows that the layer

thicknesses of the designed structure are well within the limit limit of CLT. Furthermore,

according to the strain balancing model,22 the lattice parameter of the substrate should

be 5.6391 Å to completely compensate the strain over a period. We chose GaAs.94P.06 as

the virtual substrate, which has a lattice parameter ≈ 5.641 Å for the growth of periodic

quantum heterostructure. With GaAs.94P.06 as the virtual substrate, the net strain per

period can be calculated as ∼0.03%, which is so small that one can assume the structure to

be strain balanced.

The unstrained conduction band offsets for relevant ternary semiconductors were derived

with the help of valence band offsets, band gaps, and bowing parameters. The relations

for Γ- and X-valley band offsets are shown in Table III. The necessary data were collected

from Refs. 23 and 24. The material parameters necessary to determine strain-splitting and

to solve Schrödinger and Poisson equations are listed in Table IV. The Γ-valley effective

masses for relevant binaries and ternaries were calculated following an approach discussed
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FIG. 3. Potential profiles for a period of the designed QCL in (a) unstrained and (b) strained

conditions at 17 kV/cm bias. The details of the layers are given in Table II. Layers L1 and L1′′

mark the beginning of the respective periods.

TABLE III. Unstrained Γ- and X-valley conduction band offsets for different ternary semiconduc-

tors relevant to this work. The band offsets were calculated with respect to the Γ-valley conduction

band edge of GaAs.

Ternary material Γ-valley band offset (meV) X-valley band offset (meV)

AlrGa1−rAs 1136.7r − 1492r2 + 1310r3 476.3− 360.6r

AlAs1−rPr 954.7− 80.3r + 220r2 115.7− 306.3r + 220r2

AlrGa1−rP 788.7 + 305.7r 284.4− 384.9r + 130r2

GaAsrP1−r 788.7− 978.7r + 190r2 284.4− 48r + 240r2
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TABLE IV. Lattice parameters, effective masses at Γ-valley (mΓ) at 98 K, longitudinal and trans-

verse effective masses at X-valley (ml and mt, respectively), elastic stiffness constants (C11, C12),

static and high frequency dielectric constants (εr0 and εr∞, respectively), hydrostatic deformation

potentials at Γ- and X-valleys (aΓh and aXh , respectively), and shear deformation potentials at X-

valley (aXs ) for different binary semiconductors relevant to our work.23,27–31 m0 denotes the rest

mass of a free electron.

Material a mΓ ml mt C11 (×1011 C12 (×1011 εr0 εr∞ aΓh aXh aXs

(Å) (×m0) (×m0) (×m0) dyn/cm2) dyn/cm2) (eV) (eV) (eV)

GaAs 5.65325 0.066 0.741 0.230 11.84 5.370 12.90 10.86 −7.17 1.05 6.50

AlAs 5.66110 0.150 0.741 0.284 11.93 5.730 10.06 08.16 −5.64 1.20 6.90

GaP 5.45050 0.129 3.060 0.253 14.05 6.203 11.00 08.80 −7.14 2.70 6.30

AlP 5.46720 0.219 0.900 0.300 13.25 6.670 09.60 07.40 −5.54 1.81 3.25

in Ref. 23. To estimate the other material parameters for ternaries, linear interpolation

scheme was adopted. It is well-known that the X-valley dispersions of bulk AlAs and GaP

take the form of a “camel’s back.”25,26 Therefore, to find ml for AlAs and GaP, we used26

ml = mz

[
1−

(
ζ

ζ0

)2
]−1

, (20)

wheremz is the effective mass in the z-direction in the absence of interaction between the X1

and X3 bands, ζ is the energy difference between the bulk X1 and X3 states, ζ0 = 2mzR
2/~2,

and R is a band parameter. The camel’s back parameters for AlAs and GaP were collected

from Refs. 25 and 32, respectively. GaAs was assumed to have the camel’s back dispersion

with the parameters identical to those of AlAs.33 In the case of AlP, camel’s back dispersion

was not assumed and the value presented in Ref. 31 was used for ml. To approximate the

conduction band offsets, as well as other material parameters for quaternary AlGaAsP, the

interpolation method introduced by Glisson et al.34 was used.

By solving the Schrödinger equation separately for Γ- and Xz-potential profiles in the

effective mass approximation, we found the envelope functions, which are shown in Fig. 4.

The non-parabolic dispersion around the Γ-point was taken into consideration by assuming

the effective mass to be energy dependent.35 We doped layer L6 and the adjacent-half of

layer L5 with Si to have a total electron sheet density of 2.7 × 1010 cm−2 under complete
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E
n
er
g
y
(m

eV
)

Γ-valley Xz-valley

Xxy -valley

L12

L1
L7′

S1

S2

S4′

S6′
S5′

S7′

S5

S4
S3

S6

S7

(h + 1)
h-th period

(h − 1)

FIG. 4. Potential profile along with moduli-squared envelope functions of the designed THz QCL

at an applied electric field of 17 kV/cm and an operating temperature of 98 K. Here, h stands

for the period index. States S1 to S7 and S1′ to S7′ belong to the h-th and (h − 1)-th periods,

respectively. S1 and S2 act as the ULS and LLS, respectively. The Xxy-states are not shown as

they play a minor role in carrier transport.

ionization. We also solved the Poisson equation and found the maximum band-bending to

be ∼1.5 meV only, and hence, neglected the potential due to space charge. Our calculation

shows that, at the design bias of 17 kV/cm and temperature of 98 K, the energy difference

between the ULS and LLS becomes equivalent to an emission frequency of ∼4.8 THz.

In our proposed THz QCL, carriers scatter from the Xz-states, predominantly from S7′,

of the (h− 1)-th period to the ULS of the h-th period mainly due to IR. We used AlAs for

layer L12′, which provides a high Γ-band offset as well as a deep Xz-well, and thus enhances

the IR assisted Xz → Γ scattering rate. Because the DOS associated with an Xz-subband

is higher, the back-scattering of carriers from S1 to S7′ would be significant if the two states

were resonant. So, S1 state was designed to be situated ∼12 meV lower in energy than S7′.

Layers L2 and L6′ were used to restrict the Xz-wells from being very wide. Replacing the

materials of the above layers with those of respectively L1 and L7′—thus making the Xz-

wells as wide as the corresponding Γ-wells—we found that the gain dropped. This happened

mainly due to the decrease in the average Xz → ULS IR scattering rate, which ensued from

the attenuation of the Xz envelope functions at the interfaces of L12′, which results due to

widening the Xz-wells.
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From LLS, carriers move to state S3 through resonant tunneling. In the designed struc-

ture, the anticrossing energy gap for the doublet S2↔S3 was made ∼4.8 meV. From state

S3, carriers scatter to Xz-states—predominantly to the resonant state S5—of the h-th period

through mainly the intervalley IR scattering. Layer L10 enhances the Γ → Xz IR scattering

rate in the same manner layer L12′ does for the Xz → Γ transfer. Because both L7 and L9

serve as quantum wells for both the Γ- and Xz-valleys, considerable overlap occurs between

the envelope functions of S3 and the Xz-states, and this situation allowed us to further

enhance the IR scattering rate. As is shown in Fig. 4, we inserted a thin layer L8 of high

Γ-band edge at the region where the envelope functions of the states from both the valleys

have significant magnitudes, thereby improving the scattering rate. Finally, from the states

S4 and S5, carriers move to the lower states through the intravalley longitudinal optical

(LO) phonon and IR scattering mechanisms.

IV. PERFORMANCE EVALUATION AND DISCUSSION

For the simulation of carrier transport, we used an SDM formalism.10 In the carrier

transport model, we included intravalley LO22 and intervalley X-point phonon scattering,5

and inter- and intravalley10 IR scattering mechanisms. Since layer L4 is the widest Γ-well in

the structure, the energy of the LO phonons responsible for the Γ-Γ carrier-phonon scattering

was assumed to be equal to the energy of the LO phonons of Al.29Ga.71As, which forms L4.

For the ternary AlGaAs, the energy of the GaAs-like LO phonon was calculated according

to Ref. 36. Since the envelope functions of the injector Xz-states are mostly concentrated

in the AlGaAsP layers and layer L1 is the widest of them, we assumed the LO phonons

for the carrier-phonon scattering between the Xz-states to have energy equal to that of the

LO phonons of Al.13Ga.87As.71P.29. Because Al.13Ga.87As and GaAs.71P.29 are dominating

among all the four ternaries of which the quaternary Al.13Ga.87As.71P.29 is composed and

the energies of the GaAs-like LO phonons are expected to be nearly identical in these two

ternaries. We note that Ref. 37 experimentally determined the energy of the GaAs-like

LO phonons of GaAs.77P.23, which is very close to that of the GaAs-like LO phonons of

Al.13Ga.87As. Since the difference in the mole fractions of GaAs.77P.23 and GaAs.71P.29 is

small, we expect the GaAs-like LO phonons of GaAs.71P.29 also to be equal in energy to that

of Al.13Ga.87As. The GaAs-like LO phonons of Al.13Ga.87As.71P.29 were taken to be equal in
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TABLE V. Average phonon and IR assisted carrier scattering rates between relevant states and

electron sheet densities at 17 kV/cm bias and 98 K temperature. State S1′′ belongs to the (h+1)-th

period.

Average scattering rates Subband populations

States involved Phonon IR State Population

(×1012 s−1) (×1012 s−1) (×109 cm−2)

S1 → S2, S2 → S1 0.63, 0.05 0.06, 0.01 S1 5.39

(S3 → S4) + (S3 → S5) (carrier extraction) 0.05 1.93 S2 2.80

S5 → S3 0.01 0.35 S3 1.97

(S4 → S6) + (S4 → S7) 3.51 1.28 S4 0.39

(S5 → S6) + (S5 → S7) 0.97 3.94 S5 1.62

S6 → S5, S7 → S5 0.08, 0.05 0.47, 0.33 S6 4.85

Average carrier injection from Xz-states to S1′′ 0.07 0.30 S7 9.98

Total backscattering from S1′′ to Xz-states 0.05 0.37

energy to that of Al.13Ga.87As. The intervalley Γ-Xz carrier-phonon scattering was supposed

to be caused by the X-point longitudinal acoustic (LA) phonons of Al.13Ga.87As.71P.29. The

X-point LA phonons in GaAs have X1 symmetry.27 As Al.13Ga.87As.71P.29 is rich in GaAs,

the X-point LA phonons in this quaternary are expected to have X1 symmetry. The X-

point LA phonon energy was calculated according to the interpolation scheme of Glisson

et al.34 The LA phonon energies for the binaries GaAs, AlAs, GaP, and AlP were taken as

27.9,38 42.3,27 31,39 and 43.9 meV,40 respectively. The intervalley Γ-X deformation potential

constant was taken to be the same as that of GaAs.41 For both the inter- and intravalley

IR scattering, we used σ = 0.94 Å, which yields σ ≈ a/6, where a ≈ 5.641 Å is the lattice

parameter of the virtual substrate GaAs.94P.06, and Λ = 100 Å. These values of σ and Λ are

very close to the values frequently used for the GaAs-based THz QCLs.10 The steady-state

electron sheet densities for each of the subbands were found in an iterative manner where

each iteration involved computing the average intersubband scattering rates and solving

Eq. (146) in Ref. 10. We assumed Te to be identical for all the subbands and incorporated

the KEB method10 in our simulation to take into account the difference between TL and Te.

In Table V, the calculated average electron scattering rates between relevant states of the
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FIG. 5. Peak gain of the proposed THz QCL as a function of lattice temperature. The blue dashed

line represents the total estimated loss.

designed structure and corresponding subband populations are presented. We calculated

the unsaturated peak gain at different TL, and the results are shown in Fig. 5. The gain

spectrum was assumed to be Lorentzian, and the corresponding full-width at half-maximum

was calculated by assuming the pure dephasing time as 0.33 ps.42 The total loss, represented

by the blue dashed line in Fig. 5, was supposed to be composed of two parts. The first

part—waveguide loss considering the active region to be “lossless”—was taken from Ref. 43.

We assumed that our structure employed Cu metal-metal waveguide for mode confinement.

The second part—free carrier absorption due to the bound and quasi-bound Γ- and Xz-

subbands—was estimated using the Eq. (34) of Ref. 44. From Fig. 5, we conclude that our

designed THz QCL is capable of lasing up to a maximum TL of ∼125 K. Figure 6 shows J

and unsaturated net gain as a function of applied bias for three different temperatures. We

observe that the net gain peaks at 18 kV/cm and drops gradually past this bias at all three

different temperatures. This happens because the state S3 almost perfectly aligns with S2

at 18 kV/cm, and the detuning of their alignment gradually increases as the bias increases

beyond. We also find that negative-differential conductance phenomenon does not occur in

the shown bias and temperature ranges.

Since the calculations of steady-state carrier densities and gain using the developed model

are computationally demanding, we included the dominant Γ-valley states S1–S3 and Xz-

valley states S4–S7 in the simulation results presented in Figs. 5 and 6. However, in reality,
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the scattering from these Γ- and Xz-valley states to other bound and quasi-bound Γ and

Xz-valley states that are located at higher energies could be significant, especially at a

higher temperature. Also, there could be carrier leakage to Xxy-valley states. Therefore,

to calculate the gain at a more realistic case, we included one more Γ-valley state that has

energy greater than S1–S3 and four more Xz-valley states that have energies greater than

S4–S7. We also included carrier scattering to and from the Xxy-valley states. In particular,

we included Xxy-Xxy Γ-point LO phonon, Xxy-Xxy X-point LA phonon, Xxy-Xxy intravalley

IR, and Xxy-Γ and Xxy-Xz X-point LA phonon scattering mechanisms to the model already

described. We calculated the gain using this extended model at 98 K and 130 K. We found

that the gain dropped by ∼1.5 and ∼2 cm−1 at TL of 98 and 130 K, respectively, with respect

to that in Fig. 5. Since Xxy-states are doubly degenerate and are located lower in energy

compared to other states that have higher energies than S1–S3 in Γ-valley and S4–S7 in

Xz-valley, leakage of carriers to the Xxy-states is mainly responsible for the decrease of the

gain calculated using the extended model. If the extended model with carrier leakages to

higher energy Γ- and Xz-states and also to Xxy-states are taken into account, we estimate

the maximum operating temperature for the proposed QCL to be ∼119 K.

For future improvement of our device, it is extremely important to identify the major

performance-degrading factors. We identify three factors that we think are critical factors

in deteriorating the performance of our designed THz QCL. The first factor is that the
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average electron effective mass at the lasing subbands of our QCL (∼0.09m0) is higher

than that of the conventional GaAs/AlGaAs QCLs. As a result, gain coefficient decreases.

The second factor is the not-so-fast IR assisted Xz → Γ carrier injection into the ULS and

significant back-scattering from the Γ-valley ULS to the injector Xz-states. Although the

carrier extraction rates from the LLS are relatively fast such as from S3 to S4 and S5, from

S4 to S6 and S7, and from S5 to S6 and S7, the carrier injection rates to the ULS are

relatively slow if we compare to QCL designs that employ only Γ-valley states in Ref. 45.

The third factor is that the coupling between the states S1 and S3 is strong, which causes

radiative leakage from S1 to S3, and thus decreases the peak gain. To maximize the gain of

the proposed structure and thereby improve the current maximum operating temperature,

an in-depth analysis of the influences of the various design variables on the device gain and

current density needs to be performed.

V. CONCLUSION

We have designed a novel ∼4.8 THz QCL that utilizes Γ-subbands for lasing transition

and Xz-subbands as injector subbands. In our designed structure, carrier transition be-

tween the Γ- and Xz-states occurs predominantly through the k-non-conserving IR assisted

scattering mechanism. We presented a model for the calculation of IR assisted intervalley

electron transport. In the proposed structure, we introduced tensile strain at the injector

region by using AlGaAsP, which helped to achieve substantial overlap between the Γ- and

Xz-wavefunctions. The tensile strain also helped to push the ground Xxy-state considerably

higher in energy than the ground injector Xz-state, and thus contributed importantly toward

gain enhancement. We chose GaAs.94P.06 as the virtual substrate to essentially balance the

strain over a period. We found that the maximum operating temperature reachable by our

design was ∼119 K. We identified three important factors responsible for the performance

degradation. We believe that our proposed design, although has not demonstrated an excel-

lent performance, will inspire researchers to explore novel intersubband devices that involve

X-valley states in carrier dynamics.
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Phys. Rev. B 77, 165327 (2008).

32M. Oshikiri, K. Takehana, T. Asano, and G. Kido, J. Phys. Soc. Jpn. 65, 2936 (1996).

33L. E. Bremme and P. C. Klipstein, Phys. Rev. B 66, 235316 (2002).

34T. H. Glisson, J. R. Hauser, M. A. Littlejohn, and C. K. Williams, J. Electron. Mater. 7,

1 (1978).

35J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, in Intersubband Transitions in

Quantum Wells: Physics and Device Applications II, edited by H. C. Liu and F. Capasso

(Academic Press, New York, 2000), p. 06.

36S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors

(Wiley, Chichester, 2009), p. 106.
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