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Abstract 

Background 

There is growing interest in the use of routinely collected electronic health records to 

enhance service delivery and facilitate clinical research. It should be possible to detect and 

measure patterns of care and use the data to monitor improvements but there are 

methodological and data quality challenges. Driven by the desire to model the impact of a 

patient self-test blood count monitoring service in patients on chemotherapy, we aimed to 

(i) establish reproducible methods of process-mining electronic health records, (ii) use the 

outputs derived to define and quantify patient pathways during chemotherapy, and (iii) to 

gather robust data which is structured to be able to inform a cost-effectiveness decision 

model of home monitoring of neutropenic status during chemotherapy. 

Methods 

Electronic Health Records at a UK oncology centre were included if they had (i) a diagnosis 

of metastatic breast cancer and received adjuvant epirubicin and cyclosphosphamide 

chemotherapy or (ii) colorectal cancer and received palliative oxaliplatin and infusional 5-

fluorouracil chemotherapy, and (iii) were first diagnosed with cancer between January 2004 

and February 2013. Software and a Markov model were developed, producing a schematic 

of patient pathways during chemotherapy.  

Results 

Significant variance from the assumed care pathway was evident from the data. Of the 535 

patients with breast cancer and 420 with colorectal cancer there were 474 and 329 pathway 

variants respectively. Only 27 (5%) and 26 (6%) completed the planned six cycles of 

chemotherapy without having unplanned hospital contact. Over the six cycles, 169 (31.6%) 
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patients with breast cancer and 190 (45.2%) patients with colorectal cancer were admitted 

to hospital.   

Conclusion 

The pathways of patients on chemotherapy are complex.  An iterative approach to addressing 

semantic and data quality issues enabled the effective use of routinely collected patient records to 

produce accurate models of the real-life experiences of chemotherapy patients and generate 

clinically useful information.  Very few patients experience the idealised patient pathway that is used 

to plan their care. A better understanding  of real-life clinical pathways through process mining  can 

contribute to care and data quality assurance, identifying unmet needs, facilitating quantification of 

innovation impact, communicating with stakeholders, and ultimately improving patient care and 

outcomes.   
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Introduction 

 

Over the last 30 years, Western medicine has become increasingly systematised (1, 2). 

Drivers bringing this about include a call for improvements in quality, the desire to 

standardise care, a need to disseminate best practice, demands for cost containment 

coupled with rising demand and not least, patient safety (3). An important tool in this regard 

has been clinical pathways that establish the expected standard of care and the processes 

and procedures that should be followed (4). These pathways are becoming more evidence 

based (5, 6), but such evidence is generally derived from carefully structured clinical trials 

rather than learning directly from routine clinical practice which can be very different. 

Moreover, the majority of such clinical pathways are linear, relate to single conditions, and 

do not reflect real-life variations in individual patient genotype, phenotype, co-morbidities, 

environment and response to treatment. There are, therefore, good reasons to question 

whether perceived patterns of existing care are accurate and meaningful when used to plan 

and evaluate patient management. 

 

With the trend towards integrated care and electronic health record (EHR) systems, a 

wealth of data on what actually happens to patients during their episodes of care are 

ƉŽƚĞŶƚŝĂůůǇ ĂǀĂŝůĂďůĞ͘ IŶ ŽŶĐŽůŽŐǇ͕ ƚŚĞƌĞ ŝƐ ŝŶĐƌĞĂƐŝŶŐ ĂƚƚĞŶƚŝŽŶ ŽŶ ƚŚĞ ƵƐĞ ŽĨ ͞ďŝŐ ĚĂƚĂ͟ (7), 

with much of the focus being on applications of next generation sequencing genomics (8). 

Process mining is ŽŶĞ ĞŵĞƌŐŝŶŐ ͞ďŝŐ ĚĂƚĂ͟ approach for discovering and analysing process 

models based on the very large event logs contained within information systems (9) and 

there is a growing body of literature on process mining in healthcare (10).  Our review of the 

process mining literature identified 37 peer reviewed papers using electronic health record 
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(EHR) data to map pathways in oncology (11). Challenges included the difficulty of capturing 

outpatient events (12), the use of data collected for non-clinical purposes, missing data and 

clinically inaccurate time-stamps (13). Our chemotherapy pathway mapping addressed 

these issues and is comprehensive and patient-centred, reporting most contacts the patient 

has with the hospital including in- and outpatient events, telephone contacts and pathology 

results. We use a novel iterative approach to addressing data quality through using clinical 

review to refine the model. We argue that mining true real-life clinical pathways of patients 

with cancer will facilitate the visualisation, quantification and improvement of such 

pathways.   

 

The United Kingdom (UK) is in a strong position to address the issue of acquiring and 

applying lessons learned to improve complex patient pathways and outcomes due to the 

comprehensive nature of the National Health Service (NHS) model which extends across 

primary and secondary care with equity of access for all. The challenges were identified by 

the National Confidential Enquiry into Patient Outcome and Death (NCEPOD) in 2008, which 

reported that 42% of patients who died within thirty days of systemic anticancer therapy 

were admitted with a treatment related complication to a general medical ward, rather 

than to a ward with oncology-specific expertise (14).  This identified problems at a high level 

with limited amount of detail.  The NCEPOD and the National Chemotherapy Advisory Group 

highlighted the incompleteness of patient records, many of which were paper-based at the 

time, along with shortcomings of conventional real-life data collection (15). In the UK, EHRs 

are now commonly used in routine practice to collect comprehensive clinical data in all 

patients, at all points of care. We used a large and comprehensive EHR to study clinical 

pathways in patients with cancer receiving chemotherapy and their risk of developing 
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neutropenic infections in order to get a more detailed understanding of neutropenic 

complications during chemotherapy. 

  

We describe a methodology to extract detailed information on individual patient care 

pathways from Patient Pathway Manager (PPM), a mature, large and comprehensive EHR 

which has been in place for patients with cancer for over a decade in Leeds Teaching 

Hospitals NHS Trust (LTHT) (16, 17). We studied patients with two common malignancies, 

breast and colorectal cancer, receiving two frequently used chemotherapy regimens; 

adjuvant epirubicin and cyclophosphamide (EC90) and palliative oxaliplatin and modified de 

Gramont 5-fluorouracil (OxMdG). The key objectives of this study were (i) to establish 

reproducible methods of mining EHRs, (ii) to define accurate clinical pathways of patients 

with cancer on chemotherapy, and (iii) to gather robust data that is structured to inform a 

cost-effectiveness decision model of home monitoring of neutropenic status during 

chemotherapy.  

 

Materials & Methods 

Patient Pathway Manager (PPM) 

PPM is a mature EHR that is used to capture comprehensive clinical data on all patients 

undergoing treatment for cancer at the Leeds Cancer Centre within LTHT.  Initially 

developed in 2003 to support collection of the National Cancer Dataset, the system has 

been extended to collect comprehensive coded data to support the collection and reporting 

of the Cancer Outcomes Services Dataset (18). The system integrates electronic data held 

within multiple disparate systems within the Trust into a single EHR database including data 
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on patient admissions and out-patient events from the Patient Administration System (PAS), 

chemotherapy data from Chemocare (19), radiotherapy data from Mosaiq (20), blood, 

pathology and microbiology results from laboratory systems and data entered directly into 

PPM including surgery, cancer waiting times and multi-disciplinary team meetings (Figure 1). 

The system has recently been extended to collate data on all patients whose care has been 

delivered at LTHT since 2000 and contains the records of more than 2.39 million patients. It 

is therefore one of the largest hospital EHRs in the UK. The PPM system now underpins the 

move away from paper records at LTHT and also provides the platform for the Leeds Care 

Record, a common integrated digital care record used across the Leeds City Region for 

primary, secondary/tertiary care, social care, community care and mental health services. 

Within PPM, each event is recorded with a patient identification and metadata, including 

date time stamp, enabling a historical pathway to be extracted for every patient. 

Patient Selection Criteria 

Patient records were included if the patient had (i) a diagnosis of breast cancer (ICD-10 C50) 

and received epirubicin and cyclophosphamide (EC90) chemotherapy as adjuvant treatment 

or (ii) a diagnosis of colorectal cancer (ICD-10 C18-C20) and received oxaliplatin and 

infusional 5-fluorouracil chemotherapy (OxMdG) in the palliative setting. Breast and colo-

rectal cancer were selected as both are common cancers in which chemotherapy plays an 

important role. The breast cancer setting was adjuvant, whereas the patients with colo-

rectal cancer were being treated with palliative intent; we sought, therefore, to select 

populations with potentially different challenges. The chemotherapy regimens chosen 

represented those most commonly used in Leeds Cancer Centre in the specified time period 
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in each setting.  Patients first diagnosed with the cancer between 1st January 2004 and 1st 

February 2013 were included; 535 with breast cancer and 420 with colorectal cancer.  

 

Figure 1: Overview of data entered into PPM.  

MDT - multi-disciplinary team, Chemocare - chemotherapy electronic prescribing   system, 

PAS - patient administration system, Results server - LTHT software importing all patient 

investigation results from multiple disciplines, CWT - cancer waiting times, MOSAIC - 

radiation oncology software, ePRO - clinical information management system working with 

WŝŶƐĐƌŝďĞ͛Ɛ ĚŝŐŝƚĂů ĚŝĐƚĂƚŝŽŶ ƐǇƐƚĞŵ͕ ƚĞůĞƉŚŽŶĞ ĐŽŶƚĂĐƚ ʹ hospital staff telephone patient, 

patient telephone inquiries ʹ patient rings hospital with a clinical inquiry.  
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Computing Resources  

An information technology data analyst developed the data extraction and transformation 

software and developed the pathway model as described in the next section (Data mining 

software & Markov model development). Data in PPM is stored in a Microsoft SQL database 

and records for the two patient groups were extracted using C# with embedded SQL queries 

to create a secure Microsoft SQL database containing all relevant events. The software 

followed the extract, transform and load (ETL) design pattern (21). Transformations to the 

data were coded to address completeness, quality, exclusion and aggregation issues and 

followed a change control process with clinical oversight. The data was used to generate 

Comma Separated Value (CSV) exports of aggregate figures and animated visualisations of a 

Markov model. The key elements of Markov models are described in Appendix A. The 

software was run on a secure LTHT machine with an Intel Core I7 processor with 16GB of 

memory.   

Data Mining Software & Markov Model Development 

Data modelling followed a disciplined agile development process with eight iterations in 

total (22). The first iteration started with a simplified model schematic of the patient 

pathway based on expert opinion (Figure 2); this was followed by the development of the 

initial data mining software that extracted only the Markov events in the patient pathway 

defined by the initial model. Rules used to transform clinical events into model states and a 

more detailed description of the whole process are described in Appendix B.   

 

Software was developed to extract patient records from the main PPM dataset using 

database queries and segment these by regimen type and cycle number. A randomly 



12 

 

generated integer was used to identify patients for pseudonymisation. Each patient was 

allocated to particular states in the model by applying a data mining process in two main 

stages.  Firstly, events were extracted for each patient from PPM and transformed into a 

single table, ordered by date and time. Creation of the pathway of events for each patient is 

described in detail in Appendix B.  Secondly, this pathway of events was matched to a 

pathway of states in the model described below (Figure 2). A model state reflects a cluster 

of patient events happening within a small time span. In Figure 2, chemotherapy delivery is 

the point at which the pathway starts, repeats and represents state S1 in the model.   

 

Figure 2: The patient pathway model at the beginning of the first iteration.  

S1, patient presents and the chemotherapy goes ahead as normal. S2, patient attends 

hospital for chemotherapy but it is re-scheduled/delayed due to neutropenia. S3, patient is 

admitted acutely to hospital with problems unrelated to their cancer or treatment. S4, 

patient is admitted acutely to hospital with problems related to their cancer or treatment 

(not neutropenic). S5, Patient is admitted acutely to hospital with problems related to their 

cancer or treatment (neutropenic). 
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There were two main steps in each successive data model iteration (Figure 3).  First the 

model was redefined based on the results of data mining from the previous iteration, in 

order to account for complexity revealed by the data that was not previously foreseen; for 

example, a number of patients had blood test results present outside episodes of hospital 

care due to attendances at their GP.  Secondly, there was further refinement of the data 

mining software based on the outcome of the model redefinition. This consisted of the 

addition of validation checks, to ensure that state transitions found in the data did not occur 

between states in the model that did not have a defined path between them.  For example, 

it was initially indicated by the data that patients were still receiving chemotherapy 

treatment after they had died, which created state transitions in the model that were 

clearly invalid. This was caused by the pre-emptive booking of many treatments into the 

system while the patient was still alive which were not subsequently deleted.     

 

The final model schematic of the patient pathway for a cycle of chemotherapy is shown in 

Figure 4. The model includes a number of health states, each with a code. Across both 

regimen and diagnosis combinations, 40,047 health states were analysed (18,529 EC90, 

21,518 OxMdG) which included 69,326 raw events (34,037 EC90, 35,289 OxMdG). S1 is the 

point at which the patient receives chemotherapy; states clustered near the bottom right 

corner represent admissions, whereas those clustered in the bottom left represent events 

when the patient is not admitted, and states clustered in the upper half of Figure 4 

represent events that occur when the patient is due their next cycle of chemotherapy.  

When patients experienced more than one state within a cycle of chemotherapy, they were 

prioritised by the most severe event (Table 1), but counts were kept of the frequency of all 
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health states. An uncomplicated case would be represented by a patient traversing through 

chemotherapy delivery (S1), followed by no contact (D1), then by patient review (R1) and 

back to chemotherapy delivery (S1). By contrast, an emergency admission to hospital and a 

blood test result within 24 hours indicating a neutrophil count of <1.5 x109/L would 

represent state S5 in the model.  Attendance for chemotherapy that was not delivered on 

the expected date and a blood test result within 24 hours indicating a neutrophil count of 

<1.5 x109/L would represent state S2 in the model. 

 

 

Figure 3: The process of creating and iteratively improving the state model. 
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Ethical Considerations 

This work was sanctioned according to local LTHT Research and Development policy. Data 

extraction was carried out under strict information governance procedures, including 

anonymisation of patient-level data.   
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Figure 4: The state model at the end of iteration eight with the description of states.  

S1, patient presents and the chemotherapy goes ahead as normal. D0, home discharge 

following chemotherapy. D1, patient makes no contact with the hospital. D2, telephone 

contact between hospital and patient. D3, patient has an urgent outpatient review. D4, 

patient has an urgent outpatient appointment. D5, death without hospital admission. D7, 

GP attendance with neutropenia. S2, patient attends hospital for chemotherapy but it is re-

scheduled/delayed due to neutropenia. S4, patient is admitted acutely to hospital with no 

evidence of neutropenia. S5, patient is admitted acutely to hospital with evidence of neutropenia. 

S6, patient develops bacteraemia. S8, patient does not develop bacteraemia. S9, patient is 

admitted without neutropenia but develops it during admission. D6, patient dies in hospital. S7, 

patient fully recovers from acute event. F1, patient undergoes further hospital admissions. R1, 

review before the day of planned chemotherapy for patients without hospital admission (in that 
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cycle). R2, review before the day of planned chemotherapy for patients with hospital admission (in 

that cycle). C1, complete all planned chemotherapy. C2, stop planned chemotherapy 

prematurely. C3, re-schedule before hospital attendance to undergo chemotherapy due to 

neutropenia. C4, re-schedule before hospital attendance to undergo chemotherapy due to 

reasons other than neutropenia. C5, patient attends hospital for chemotherapy but it is re-

scheduled  due to reasons other than neutropenia. Neutropenia is defined as a neutrophil 

count of < 1.5 x 109/L. Bacteraemia is defined as any positive blood culture. 
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Results 

Clinical Pathways 

During the first cycle of chemotherapy, 66.4% and 77.4% of patients receiving EC90 and 

OxMdG chemotherapy, respectively, traversed the planned pathway i.e. without 

encountering deviation caused either by treatment toxicity, other health complications or 

personal events unrelated to health such as holidays.  Patients receiving the first cycle of 

EC90 chemotherapy experienced a higher percentage of emergency admission to hospital 

with neutropenia, urgent outpatient review, GP contact with positive test for neutropenia 

and telephone contact between hospital and patient (Table 1).  Conversely, patients 

receiving first cycle of OxMdG chemotherapy experienced a higher percentage of death 

without hospital contact, emergency admissions without neutropenia and day case reviews. 

 

With both regimens, only a small minority of patients received six cycles of chemotherapy 

on the planned pathway (Table 2).  Of the 535 patients with early breast cancer receiving 

the adjuvant EC90, only 27 (5%) completed all six planned cycles of chemotherapy on the 

planned pathway (Table 2). In all, there were 474 pathway variants indicating that almost all 

of the remaining 508 patients followed a unique trajectory through the care system. 

Likewise, of the 420 patients with advanced colorectal cancer receiving palliative OxMdG, 

only 26 (6%) completed six cycles of chemotherapy on the planned pathway and there were 

329 pathway variants. Additionally, the likelihood of an adverse event decreased with each 

successive cycle of EC90 chemotherapy, whereas that likelihood fluctuated with successive 

OxMdG chemotherapy cycles (Table 2).  Over the 6 cycles of chemotherapy, 169 (31.6%) of 

patients receiving EC90 chemotherapy and (190) 45.2% of patients receiving OxMdG 

chemotherapy were admitted to hospital. 
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Table 1: Counts of the main pathways traversed for the first cycle of chemotherapy. 

Ordered from most severe event type to least severe (EC90 in breast cancer patients and 

OxMdG in colorectal cancer patients). *Emergency admissions include those admitted to 

hospital and those who attended the oncology acute assessment unit. Letter/number in 

brackets refers to states in Figure 4. 

 

 

 

  EC90 OxMdG 

Event Count Percentage Cumulative Count Percentage Cumulative 

Death without hospital 

contact (D5) 
0 0.0% 0 14 3.3% 3.3% 

Emergency admission to 

hospital with 

neutropenia (S5) * 

21 3.9% 3.9% 8 1.9% 5.2% 

Emergency admission 

without neutropenia, 

progressing to 

neutropenia whilst in 

hospital (S9) * 

2 0.4% 4.3% 2 0.5% 5.7% 

Emergency admission to 

hospital without 

neutropenia (S4) * 

40 7.5% 11.8% 52 12.4% 18.1% 

Day case review (D4) 3 0.6% 12.3% 9 2.1% 20.2% 

Urgent outpatient review 

(D3) 
19 3.6% 15.9% 0 0.0% 20.2% 

Contacted GP and tested 

positive for neutropenia 

(D7) 

24 4.5% 20.4% 6 1.4% 21.7% 

Telephone contact from 

hospital to patient (D2) 
71 13.3% 33.6% 4 1.0% 22.6% 

No contact (D1)  
355 66.4% 100.0% 325 77.4% 100.0% 

(planned pathway) 

Total 535     420     
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  EC90 OxMdG 

Cycle 
No Contact Admission No Contact  Admission 

(D1) (S5/S4/S9) (D1) (S5/S4/S9) 

1 66.6% 11.8% 77.4% 14.8% 

2 80.0% 6.5% 80.0% 14.2% 

3 72.9% 6.4% 83.0% 8.9% 

4 74.2% 6.9% 81.0% 11.7% 

5 82.7% 5.4% 80.1% 12.1% 

6 86.5% 4.6% 90.0% 5.8% 

All 5.0% 31.6% 6.2% 45.2% 

 

Table 2: Adverse event rate by cycle of chemotherapy (EC90 for breast cancer and OxMdG 

for colorectal cancer). Letter/number in brackets refers to states in Figure 4. No contact 

ƌĞƉƌĞƐĞŶƚƐ ƚŚĞ ͞ƉůĂŶŶĞĚ ƉĂƚŚǁĂǇ͘͟ 

 

Discussion 

 

We have demonstrated how data collected as part of routine clinical practice can be used to 

define real-life pathways of care. The key outcomes of this work are the description of the 

reproducible steps followed to successfully construct the pathways, and the clear 

demonstration that clinical pathways of real-life patients are far more complex than those 

defined by standard guidelines, expert opinion, consensus discussions, and clinical trials.   

 

The percentage of patients admitted to hospital over all the six cycles was higher than 

compared to phase III trials (23, 24). This may reflect the real-life, heterogeneous population 

served by the Trust delivering the care. The differences between the pathways of patients 

receiving EC90 and OxMdG chemotherapy may reflect in part the dose intensity and 

myelotoxicity of regimens used in the adjuvant and palliative settings, patient characteristics 

and co-morbidities associated with metastatic cancer.  
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Key strengths of this work are that the data have been collected for routine clinical care 

from a large base population over a period of almost ten years and that the EHR is 

sufficiently mature and detailed (drawing from multiple disparate databases) to enable 

construction of accurate reports of real-life patient pathways. There are, however, 

limitations to using EHR data. The on-going debate in the UK around weekend admissions 

and increased mortality highlights how secondary uses of coded data can be valuable, but 

caution should be applied to avoid misinterpretation by apportioning un-evidenced cause to 

the findings. The detail and accuracy of pathways is limited by the accuracy and detail of 

data recorded.  For example, we did not have electronic records of temperature 

measurements so our transformation rules used the taking of blood cultures as a surrogate 

indicator of fever. There was also inconsistency over time in the chemotherapy regimen 

nomenclature used due to prescribing and recording systems changing, meaning that the 

two regimens studied were only referenced in the system by identical names in a subset of 

the total records. The remaining records were excluded due to uncertainty about whether 

the treatments were identical in drugs used, dosage and method of delivery. In light of the 

recent publication of the Caldicott report (25), which this work pre-dates, we acknowledge 

there was no opt out process for patients from whom data was included in this analysis. This 

was a service evaluation process, with strict information governance procedures, where 

data was extracted, anonymised and analysed by aggregated pathways, not at an individual 

patient level.  

 

Importantly, this pathway mapping provides additional data not apparent from national 

cancer datasets in the UK such as the National Cancer Waiting Times Monitoring Dataset 
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(NCWTMD), Cancer Outcomes and Services Dataset, Systemic Anticancer Therapy Dataset 

and cancer registries (26). Not all care elements are well represented in the national 

datasets such as suspected cancer diagnoses not referred by a general practitioner, care 

prior to a 2-week wait referral and care post referral to community palliative care teams. In 

addition to establishment of and checking adherence to guidelines, mapping real-life 

pathways gives a clear indication of current clinical practice, making it possible to identify 

unmet needs and process delays contributing to delayed targets, such as those mandated by 

the NCWTMD. 

   

Specifically in the context of the research question that prompted this process mining 

initiative, the data has provided a more detailed picture of the issues around the risk of 

developing neutropenic sepsis, including how it is managed in routine practice. We selected 

the populations phenotypically using diagnosis and chemotherapy regimen combinations, 

but this can be narrowed further by selecting populations using parameters such as 

genotype and co-morbidity. We have demonstrated a method of organising clinical data into 

meaningful, quantified pathway models, which practically can be used to identify unmet 

need, model process improvements and inform health economic analyses. Focusing on 

neutropenic sepsis, the models of EC90 and OxMdG, can be used to determine where in the 

pathways home neutrophil monitoring will provide the greatest clinical and economic 

benefits for both patients and care providers.   

 

As EHRs expand across care-provider boundaries, such as the Leeds Care Record, the ability 

to map such integrated pathways provides opportunity to measure health and healthcare in 

ways that have not been possible previously on large numbers of patients, including costs, 
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clinical outcomes and societal impacts.  In the UK NHS payments are based on Healthcare 

Resource Group (HRG) codes, which assume an ͞average͟ payment for finished consultant 

episodes. The size and frequency of the variance in pathways may therefore adversely affect 

financial performance and the sustainability of an organisation. Basing commissioning 

contracts on idealised planned pathways is, therefore, prone to serious under estimation of 

true costs since many of the variant pathways have very high associated costs, such as 

admissions to intensive care (27). The described pathway in the format of a Markov model, 

is suitable to inform parameter inputs into health economic analysis of the pathways, 

without the need to collect additional data. Also, pathway mapping enables improved 

quality assurance through electronic criteria adherence reporting, computation of quality 

indicators and visualising pathways thus facilitating identification and checking of 

anomalies.   

 

We are applying process mining for real-life pathway modelling to all cancer diagnoses and 

chemotherapy combinations in our large Cancer Centre, in order to model the impact of 

innovative new pathways aiming to reduce the frequency and severity of neutropenic 

complications.  Further detailed knowledge is required to appropriately inform clinical 

practice.  We are addressing this through process mapping at the individual patient level, 

and service line costing to quantify the resource utilisation associated with the departures 

from the planned pathway.  All of this is required to support the investment in research 

applied to addressing the unmet needs, and later to facilitate adoption of new pathways if 

trials show potential interventions to be clinically effective. 

 



24 

 

In conclusion, real life healthcare pathways are highly variable. This paper represents 

͞ƉƌŽŽĨ-of-ƉƌŝŶĐŝƉůĞ͟ ƚŚĂƚ, even in the complex field of oncology, comprehensive data 

derived from EHRs can generate clinically important information. Understanding and 

visualising real-life patient-centred pathways should have an important role in identifying 

unmet needs and facilitating quantification of potential and actual impact of proposed 

innovations or changes in practice outside of clinical trials.  There are implications for 

planning and supporting routine care, clinical and operational research, performance 

management and quality improvement.  
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Appendix A 

Explanation of Markov Models 

Markov models can be used to aid health care decision making. They are suited to decisions where 

the timing of events is important and when events may happen more than once, appropriate when 

the strategies being evaluated are of sequential or repetitive nature. They can be used to model the 

cost-effectiveness of interventions by incorporating long terms costs and health outcomes.  Here we 

briefly describe the principles behind Markov models for the uninitiated reader, as there are existing 

comprehensive introductions to Markov modelling (1, 2). 

A cluster of clinical events are simplified by defining them as a clinically important health states or 

Markov states.  For example, in our model, a patient in the health state of febrile neutropenia, had 

an entry in the hospital admissions table, was neutropenic, had blood cultures taken which did not 

grow a pathogenic organism.  Markov models assume that the health states are mutually exclusive 

as a patient cannot be in more than one state at any one time.  The transition of a patient from one 

health state to another is assigned a probability, known as the transition probability.  In our work, 

this probability was defined by the patient data from the electronic health records.  Markov models 

represent repetitive processes over time whereby the patient passes through the same health state 

on more than one occasion, represented in our model by the delivery of chemotherapy.  Patients 

can therefore, only exit the repetitive model via defined exit states, which in our model exist as one 

of only three states; complete chemotherapy, stop chemotherapy prematurely, death.  There is also 

an assumption that transition to future states depend only on the current state, and not on any 

events that occurred before the current state.  This is known as the Markov assumption.  For 

example, in our model, a patient defined as being treated for febrile neutropenia (A3,S5,M1,S8), is 

dependent only on the current health state (blood cultures being taken, which is A3, S5, M1), which 

is in no way influenced by the occurrence of febrile neutropenia in previous chemotherapy cycles.        

Markov models enable estimates of cost and outcomes associated with disease and intervention.  

This is done by assigning estimates of resource usage and health outcomes to health states and 

transitions between states, then running the model over a large number of the repeated Markov 

cycles.  In this way, the cost and effectiveness of a proposed intervention can be modelled using 

assumptions of the effect on transition probabilities.  Drawing the above together, the steps 

commonly followed to construct a Markov model are; deciding on the health/Markov states, 

defining acceptable transitions, identifying transition probabilities, identifying health outcomes, then 

running the model over repeated Markov cycles.   
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 Appendix B 

Detailed description of the development of the datamining software and pathway models. 

In early iterations of the software for this project, the full analysis took around 20 hours to 

run on a machine with an Intel Core I7 processor with 16GB of memory, but it was realised 

that patients could be processed independently of each other and the time to run was 

reduced to around 3 hours by using multithreading. 

The warehousing process is done in three stages: 

Stage 1 

A cryptographically secure random integer for each patient is generated to be used as an 

anonymous identifier. This is stored in a separate database on a secure server within the 

Trust, and the patient is only referenced by their anonymous identifier in the warehouse 

database. 

The relevant data for this study is stored in many different tables in the PPM database, for 

example, admission and discharge event data is stored in the admissions table, and 

chemotherapy administration event data is stored in the chemotherapy table. Events from 

all relevant PPM Tables are merged into one raw events table containing the date and time 

that each event happened, a code to indicate the type of event and code(s) to indicate 

additional attributes of the event that will be used for the state categorisation rules in stage 

2. Merging the events into one table makes it easy for the software to iterate over each 

event in sequence during stage 2. 

A copy of the regimens table from PPM is created, containing data from only the patients 

selected in the study, and with columns removed that are not relevant for this study. 

Computed columns are added that do not exist in PPM; the regimen end date is calculated 

by taking the start date of the last cycle in the regimen and adding the cycle length. The 

diagnosis that the regimen is indicated for is inferred ďǇ ƚĂŬŝŶŐ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ ĚŝĂŐŶŽƐŝs that is 

closest to the regimen start date. This table will assist in creating reports with results 

categorised by regimen and or diagnosis 
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A copy of the Cycles table from PPM is created, with only the necessary data, and with 

additional computed column end date calculated by taking the start date of the next cycle if 

there is one, or the start date of the current cycle plus the cycle length. This table will assist 

with categorising results by cycle number. 

Stage 2 

TŚĞ ĞǀĞŶƚƐ ŝŶ ƚŚĞ ƌĂǁ ĞǀĞŶƚƐ ƚĂďůĞ ĨŽƌŵ Ă ƐŝŶŐůĞ ĐŽŶĐƵƌƌĞŶƚ ƉĂƚŚǁĂǇ ĨŽƌ ĞĂĐŚ ƉĂƚŝĞŶƚ͘ TŚŝƐ 

ƐƚĂŐĞ ŽĨ ƚƌĂŶƐĨŽƌŵĂƚŝŽŶ ĂƚƚĞŵƉƚƐ ƚŽ Ĩŝƚ ƚŚŝƐ ƉĂƚŚǁĂǇ ƚŽ ƚŚĞ ŵŽĚĞů ;FŝŐƵƌĞ ϰ ŝŶ ŵĂŶƵƐĐƌŝƉƚͿ 

ĚĞĨŝŶĞĚ ďǇ ƚŚĞ ƌĞƐĞĂƌĐŚ ƚĞĂŵ͘ TŚŝƐ ƐƚĂŐĞ ƵƐĞƐ ƚŚĞ ĨŽůůŽǁŝŶŐ ƉƌŽĐĞƐƐ͗ 

 

 FŽƌ ĞĂĐŚ ƉĂƚŝĞŶƚ ƚŚĞ ĞǀĞŶƚƐ ĨƌŽŵ ƚŚĞ ƌĂǁ ĞǀĞŶƚƐ ƚĂďůĞ ĂƌĞ ůŽĂĚĞĚ ŝŶƚŽ ŵĞŵŽƌǇ͘  Aůů 

ĞǀĞŶƚƐ ďĞĨŽƌĞ ƚŚĞŝƌ ĨŝƌƐƚ ĐŚĞŵŽƚŚĞƌĂƉǇ ĂĚŵŝŶŝƐƚƌĂƚŝŽŶ ĞǀĞŶƚ ĂƌĞ ƐŬŝƉƉĞĚ ĂƐ ƚŚŝƐ ƐƚƵĚǇ 

ŝƐ ŶŽƚ ĐŽŶĐĞƌŶĞĚ ǁŝƚŚ ĞǀĞŶƚƐ ďĞĨŽƌĞ ƚŚŝƐ͘ 

 EĂĐŚ ĞǀĞŶƚ ŝƐ ŝƚĞƌĂƚĞĚ ŽǀĞƌ ĂŶĚ ƚŚĞ ƌƵůĞƐ ŝŶ TĂďůĞ Bϭ ĂƌĞ ƵƐĞĚ ƚŽ ĚĞĐŝĚĞ ƚŚĞ 

ĂƉƉƌŽƉƌŝĂƚĞ ŵŽĚĞů ƐƚĂƚĞ͘ 

 WŚŝůƐƚ ƚŚĞƐĞ ƐƚĂƚĞƐ ĂƌĞ ďĞŝŶŐ ĐŽŵƉƵƚĞĚ͕ ƚƌĂŶƐŝƚŝŽŶ ǀĂůŝĚŝƚǇ ŝƐ ĂůƐŽ ĐŚĞĐŬĞĚ͘ A 

ƚƌĂŶƐŝƚŝŽŶ ĨƌŽŵ ŽŶĞ ŵŽĚĞů ƐƚĂƚĞ ƚŽ ĂŶŽƚŚĞƌ ŝƐ ǀĂůŝĚ ŝĨ ƚŚĞƌĞ ŝƐ Ă ůŝŶĞ ďĞƚǁĞĞŶ ƚŚĞŵ ŽŶ 

ƚŚĞ ŵŽĚĞů ĚŝĂŐƌĂŵ͕ ĨŽƌ ĞǆĂŵƉůĞ “ϭ ƚŽ Dϰ ǁŽƵůĚ ďĞ ǀĂůŝĚ͕ ďƵƚ “ϰ ƚŽ Dϰ ǁŽƵůĚ ďĞ 

ŝŶǀĂůŝĚ͘ AůƚŚŽƵŐŚ ƐŽŵĞ ƚƌĂŶƐŝƚŝŽŶƐ ĂƌĞ ǀĂůŝĚ ƚŚĂƚ ĂƌĞ ŶŽƚ ƌĞƉƌĞƐĞŶƚĞĚ ŝŶ FŝŐƵƌĞ ϰ͕ ĂƐ 

ĨƵƌƚŚĞƌ ƐŝŵƉůŝĨŝĐĂƚŝŽŶ ŽĨ ĐĞƌƚĂŝŶ ĞǀĞŶƚ ƐĞƋƵĞŶĐĞƐ ƚĂŬĞƐ ƉůĂĐĞ ůĂƚĞƌ ŽŶ ;ĚĞƐĐƌŝďĞĚ ŝŶ 

ƐƚĂŐĞ ϯͿ͘  IĨ ĂŶ ŝŶǀĂůŝĚ ƚƌĂŶƐŝƚŝŽŶ ŝƐ ĚĞƚĞĐƚĞĚ ƚŚĞŶ ƚŚŝƐ ŝƐ ĂĚĚĞĚ ƚŽ ĂŶ ĞƌƌŽƌ ůŽŐ͘ Aůů 

ŝŶǀĂůŝĚ ƚƌĂŶƐŝƚŝŽŶƐ ŵƵƐƚ ďĞ ŝŶǀĞƐƚŝŐĂƚĞĚ ďǇ ĞǆĂŵŝŶŝŶŐ ĚĂƚĂ ƌĞĐŽƌĚƐ ŝŶ PPM ŵĂŶƵĂůůǇ͘   

TŚĞ ŵŽƐƚ ĐŽŵŵŽŶ ĐĂƵƐĞƐ ŽĨ ƚŚĞƐĞ ǁŝůů ďĞ ŝŶǀĂůŝĚ ŝŶƉƵƚ ĚĂƚĂ͕ ŝŶĐŽŵƉůĞƚĞ ŝŶƉƵƚ ĚĂƚĂ͕ 

Žƌ ĂŶ ŝŶĐŽŵƉůĞƚĞ ŵŽĚĞů͘ 

 

Stage 3 

TŚĞ ƐĞƋƵĞŶĐĞ ŽĨ ƐƚĂƚĞƐ ŽƵƚƉƵƚ ďǇ ƐƚĂŐĞ Ϯ ĐĂŶ ĐŽŶƚĂŝŶ ƐĞƋƵĞŶĐĞƐ ŽĨ ĞǀĞŶƚƐ ƚŚĂƚ ĂƌĞ ƚŽŽ 

ĐŽŵƉůŝĐĂƚĞĚ ĨŽƌ ƚŚĞ ŵŽĚĞů ŝŶ FŝŐƵƌĞ ϰ ƚŽ ĞĂƐŝůǇ ƌĞƉƌĞƐĞŶƚ ƚŚĞŵ͘ FŽƌ ĞǆĂŵƉůĞ Ă ƉĂƚŝĞŶƚ ĐĂŶ 

ŚĂǀĞ ŵĂŶǇ ĂĚŵŝƐƐŝŽŶƐ͕ ƚĞůĞƉŚŽŶĞ ĨŽƌ ĂĚǀŝĐĞ ŵĂŶǇ ƚŝŵĞƐ͕ Žƌ ŚĂǀĞ ĂŶǇ ĐŽŵďŝŶĂƚŝŽŶ ŽĨ ŵĂŶǇ 
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ĞǀĞŶƚƐ͘ TŚŝƐ ǁŽƵůĚ ŵĂŬĞ ƚŚĞ ƌĞƐƵůƚĂŶƚ ŵŽĚĞů ĞǆƚƌĞŵĞůǇ ĐŽŵƉůĞǆ ƚŽ ǀŝƐƵĂůŝƐĞ ŝĨ ƚŚĞ ƉĂƚŚǁĂǇ 

ǁĞƌĞ ƚŽ ĂĐĐŽŵŵŽĚĂƚĞ Ăůů ŽƵƚĐŽŵĞƐ͘ “Ž ƚŚŝƐ ƐƚĂŐĞ ĂƚƚĞŵƉƚƐ ƚŽ ƐŝŵƉůŝĨǇ ƚŚĞ ŽƵƚƉƵƚ͘  

 

TŚŝƐ ŝƐ ĂĐŚŝĞǀĞĚ ďǇ ƐƉůŝƚƚŝŶŐ ƚŚĞ ůŽŶŐ ĐŽŵƉůĞǆ ƐĞƋƵĞŶĐĞ ŽĨ ĞǀĞŶƚƐ ŝŶƚŽ ƐŵĂůů ƐĞƚƐ͘ A ƐŵĂůů 

ĞǀĞŶƚ ƐĞƚ ŝƐ Ă ƐĞƋƵĞŶĐĞ ŽĨ ŽŶĞ Žƌ ŵŽƌĞ ĞǀĞŶƚƐ ƚŚĂƚ ŝƐ ĐƌĞĂƚĞĚ ďǇ ƐƉůŝƚƚŝŶŐ ƚŚĞ ƚƌƵĞ ƐĞƋƵĞŶĐĞ 

ŽĨ ĞǀĞŶƚƐ Ăƚ ĞĂĐŚ ƉŽŝŶƚ ǁŚĞƌĞ ƚŚĞ ƉĂƚŚǁĂǇ ĚĞǀŝĂƚĞƐ ĨƌŽŵ ƚŚĞ ŵŽĚĞů ŝŶ FŝŐƵƌĞ ϰ͘ 

TŚŝƐ ƉƌŽĐĞƐƐ ŝƐ ƐŚŽǁŶ ǀŝƐƵĂůůǇ ŝŶ FŝŐƵƌĞ Bϭ͘ TŚĞ ƌĞĚ ƉĂƚŚǁĂǇ ŚŝŐŚůŝŐŚƚƐ ƚŚĞ ƚƌƵĞ ƉĂƚŚǁĂǇ 

ƚĂŬĞŶ ďǇ ƚŚĞ ƉĂƚŝĞŶƚ ƚŚƌŽƵŐŚ ƚŚĞ ĨŽůůŽǁŝŶŐ ƐƚĂƚĞƐ͗ “ϭ х DϮ х Dϰ х “ϰ х “ϴ х “ϳ͘ TŚŝƐ ƉĂƚŚǁĂǇ 

ŝƐ ƐƉůŝƚ Ăƚ ƚŚĞ ďůƵĞ X Ɛ͛ ŝŶƚŽ ƚŚƌĞĞ ƐŵĂůů ĞǀĞŶƚ ƐĞƚƐ͗  

1. “ϭ х DϮ 

2. Dϰ 

3. “ϰ х “ϴ х “ϳ 

 

TŚĞ ƐĞƚƐ ĂƌĞ ƚŚĞŶ ǁĞŝŐŚƚĞĚ ďǇ ƐĞǀĞƌŝƚǇ͘  EĂĐŚ ƐƚĂƚĞ ŝŶ ƚŚĞ ŵŽĚĞů ŚĂƐ Ă ƐĞǀĞƌŝƚǇ ǁĞŝŐŚƚŝŶŐ 

;ƐŚŽǁŶ ŝŶ TĂďůĞ BϮ ĂŶĚ ĐŚŽƐĞŶ ďĂƐĞĚ ŽŶ ŝŵƉĂĐƚ ƚŽ ƋƵĂůŝƚǇ-ĂĚũƵƐƚĞĚ ůŝĨĞ ǇĞĂƌ ;QALYͿ ĨŽƌ ƚŚĞ 

ƉĂƚŝĞŶƚ ĂŶĚ ĐŽƐƚ ĨŽƌ ƚŚĞ ŚŽƐƉŝƚĂůͿ͘ TŽ ĐĂůĐƵůĂƚĞ ƚŚĞ ƐĞǀĞƌŝƚǇ ǁĞŝŐŚƚŝŶŐ ĨŽƌ Ă ƐĞƚ͕ ƚŚĞ ǁĞŝŐŚƚŝŶŐ 

ŽĨ Ăůů ŝƚƐ ĐŽŶƐƚŝƚƵĞŶƚ ƐƚĂƚĞƐ ĂƌĞ ƐƵŵŵĞĚ͕ ŐŝǀŝŶŐ ƚŚĞ ĨŽůůŽǁŝŶŐ ǁĞŝŐŚƚŝŶŐƐ ĨŽƌ ƚŚĞ ĂďŽǀĞ 

ĞǆĂŵƉůĞ͗ 

1. Ϭ н Ϯ с Ϯ 

2. ϰ 

3. ϱ н ϭ н Ϭ с ϲ 
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RĂǁ ĞǀĞŶƚ RƵůĞƐ MŽĚĞů ƐƚĂƚĞ 

CŚĞŵŽƚŚĞƌĂƉǇ 
ĂĚŵŝŶŝƐƚĞƌĞĚ 

CŚĞŵŽƚŚĞƌĂƉǇ ǁĂƐ ĚĞůŝǀĞƌĞĚ ŽŶ ƚŝŵĞ Žƌ ƵƉ ƚŽ Ϯ ĚĂǇƐ ůĂƚĞ͘ “ϭ 

CŚĞŵŽƚŚĞƌĂƉǇ ǁĂƐ хс ϯ ĚĂǇƐ ĚĞůĂǇĞĚ ĂŶĚ ďůŽŽĚ ƚĞƐƚ ƌĞƐƵůƚ 
ŝŶĚŝĐĂƚŝŶŐ ŶĞƵƚƌŽƉĞŶŝĂ ĞǆŝƐƚƐ ŝŶ ƚŚĞ ƉĞƌŝŽĚ ŽĨ -ϳ ƚŽ нϯ ĚĂǇƐ ĨƌŽŵ 
ƚŚŝƐ ĞǀĞŶƚ͘ 

Cϯ 

CŚĞŵŽƚŚĞƌĂƉǇ ǁĂƐ хсϯ ĚĂǇƐ ĚĞůĂǇĞĚ ĂŶĚ ŶŽ ƌĞƐƵůƚ ŝŶĚŝĐĂƚŝŶŐ 
ŶĞƵƚƌŽƉĞŶŝĂ͘ 

Cϰ 

EŵĞƌŐĞŶĐǇ ĂĚŵŝƐƐŝŽŶ 

NŽ ƌĞƐƵůƚ ŝŶĚŝĐĂƚŝŶŐ ŶĞƵƚƌŽƉĞŶŝĂ ĚƵƌŝŶŐ ĂĚŵŝƐƐŝŽŶ ;ďĞƚǁĞĞŶ 
ĂĚŵŝƐƐŝŽŶ ĞǀĞŶƚ ĂŶĚ ĚŝƐĐŚĂƌŐĞ ĞǀĞŶƚͿ͘ 

“ϰ 

 

NĞƵƚƌŽƉĞŶŝĐ ƌĞƐƵůƚ ƵƉ ƚŽ Ϯϰ ŚŽƵƌƐ ĂĨƚĞƌ ĂĚŵŝƐƐŝŽŶ͘ “ϱ 

NŽ ŶĞƵƚƌŽƉĞŶŝĐ ƌĞƐƵůƚ ĚƵƌŝŶŐ ƚŚĞ Ϯϰ ŚŽƵƌƐ ĨŽůůŽǁŝŶŐ ƚŚĞ ĂĚŵŝƐƐŝŽŶ 
ďƵƚ ŶĞƵƚƌŽƉĞŶŝĐ ƌĞƐƵůƚ ďĞĨŽƌĞ ĚŝƐĐŚĂƌŐĞ͘ 

“ϵ 

BĂĐƚĞƌĂĞŵŝĐ ďůŽŽĚ ĐƵůƚƵƌĞ ƌĞƐƵůƚ ĚƵƌŝŶŐ ĂĚŵŝƐƐŝŽŶ “ϲ 

NŽ BĂĐƚĞƌĂĞŵŝĐ ďůŽŽĚ ĐƵůƚƵƌĞ ƌĞƐƵůƚ ĚƵƌŝŶŐ ĂĚŵŝƐƐŝŽŶ “ϴ 

DĞĂƚŚ ĚƵƌŝŶŐ ĂĚŵŝƐƐŝŽŶ Dϲ 

DŝƐĐŚĂƌŐĞ ĂĨƚĞƌ 
ĞŵĞƌŐĞŶĐǇ ĂĚŵŝƐƐŝŽŶ 

NŽŶĞ 
“ϳ 

BůŽŽĚ ĐŽƵŶƚ ƌĞƐƵůƚ IĨ ƌĞƐƵůƚ ŝŶĚŝĐĂƚĞƐ ŶĞƵƚƌŽƉĞŶŝĂ ĂŶĚ ĚĂƚĞ ǁĂƐ ŽƵƚƐŝĚĞ ŽĨ ĂĚŵŝƐƐŝŽŶ Dϳ 

TĞůĞƉŚŽŶĞ ĐŽŶƚĂĐƚ NŽŶĞ DϮ 

UƌŐĞŶƚ ŽƵƚƉĂƚŝĞŶƚ 
ƌĞǀŝĞǁ 

NŽŶĞ 
Dϯ 

DĞĂƚŚ 
IĨ ĚĂƚĞ ǁĂƐ ŽƵƚƐŝĚĞ ŽĨ ĂĚŵŝƐƐŝŽŶ Dϱ 

IĨ ĚƵƌŝŶŐ ĂĚŵŝƐƐŝŽŶ Dϲ 

NŽŶ-ĞŵĞƌŐĞŶĐǇ 
ĂĚŵŝƐƐŝŽŶ 

IĨ ĐŚĞŵŽƚŚĞƌĂƉǇ ǁĂƐ ƐĐŚĞĚƵůĞĚ ƚŽ ďĞ ĚĞůŝǀĞƌĞĚ ĚƵƌŝŶŐ ƚŚŝƐ 
ĂĚŵŝƐƐŝŽŶΎ͕ ďƵƚ ǁĂƐŶ͛ƚ͕ ĂŶĚ ŶĞƵƚƌŽƉĞŶŝĐ ďůŽŽĚ ĐŽƵŶƚ ƌĞƐƵůƚ ĞǆŝƐƚƐ 
фс Ϯ ĚĂǇƐ ĨƌŽŵ ĂĚŵŝƐƐŝŽŶ 

“Ϯ 

IĨ ĐŚĞŵŽƚŚĞƌĂƉǇ ǁĂƐ ƐĐŚĞĚƵůĞĚ ƚŽ ďĞ ĚĞůŝǀĞƌĞĚ ĚƵƌŝŶŐ ƚŚŝƐ 
ĂĚŵŝƐƐŝŽŶΎ͕ ďƵƚ ǁĂƐŶ͛ƚ͕ ĂŶĚ ŶŽ ĞǀŝĚĞŶĐĞ ŽĨ ŶĞƵƚƌŽƉĞŶŝĂ 

Cϱ 

NŽ ĐŚĞŵŽƚŚĞƌĂƉǇ ƐĐŚĞĚƵůĞĚΎ ĚƵƌŝŶŐ ƚŚŝƐ ĂĚŵŝƐƐŝŽŶ ĂŶĚ ůĞŶŐƚŚ ŽĨ 
ƐƚĂǇ фс ϭ ĚĂǇ 

Dϰ 

Ύ CĂůĐƵůĂƚĞĚ ďǇ ƚĂŬŝŶŐ ƉƌĞǀŝŽƵƐ ĐǇĐůĞ ĚĂƚĞ ƉůƵƐ ĐǇĐůĞ ůĞŶŐƚŚ 

Table B1: The rules used in stage 2 to transform raw events into model states. 

 

 

IŶ ƚŚŝƐ ƐƚƵĚǇ ƚŚĞ ƌĞƐĞĂƌĐŚĞƌƐ ǁĞƌĞ ƉƌŝŵĂƌŝůǇ ŝŶƚĞƌĞƐƚĞĚ ŝŶ ;ĨŽƌ ĞĂĐŚ ƉĂƚŝĞŶƚͿ ;ŝͿ ƚŚĞ ŵŽƐƚ 

ƐĞǀĞƌĞ ƐŵĂůů ĞǀĞŶƚ ƐĞƚ͕ ĂŶĚ ;ŝŝͿ ƚŚĞ ĨƌĞƋƵĞŶĐǇ ŽĨ ŽĐĐƵƌƌĞŶĐĞ ŽĨ ĞĂĐŚ ŵŽĚĞů ƐƚĂƚĞ͕ ƌĞŐĂƌĚůĞƐƐ 

ŽĨ ŝŶĐůƵƐŝŽŶ ŝŶ ƐŵĂůů ĞǀĞŶƚ ƐĞƚƐ͘  TŽ ƐĞƌǀĞ ƚŚĞƐĞ ƚǁŽ ŝŶƚĞƌĞƐƚƐ͕ ĞĂĐŚ ƐƚĂƚĞ ŝŶ ƚŚĞ ŵŽĚĞů ǁĂƐ 

ŐŝǀĞŶ ƚǁŽ ŶƵŵďĞƌƐ Žƌ ĐŽƵŶƚƐ ƚŽ ďĞ ŽƵƚƉƵƚ ŝŶ ƚŚĞ ĂŐŐƌĞŐĂƚĞ ƌĞƉŽƌƚ ĚĂƚĂ͘ TŚĞ ĨŝƌƐƚ ĐŽƵŶƚ ǁĂƐ 

ƚŚĞ ƐĞǀĞƌŝƚǇ ĐŽƵŶƚ͕ ǁŚŝĐŚ ŝŶĚŝĐĂƚĞĚ ŚŽǁ ŵĂŶǇ ƉĂƚŝĞŶƚƐ ĞǆƉĞƌŝĞŶĐĞĚ ƚŚĞ ƐƚĂƚĞ ĂƐ ƉĂƌƚ ŽĨ ƚŚĞŝƌ 

ŵŽƐƚ ƐĞǀĞƌĞ ƐŵĂůů ĞǀĞŶƚ ƐĞƚ͘ TŚĞ ƐĞĐŽŶĚ ĐŽƵŶƚ ǁĂƐ ƚŚĞ ĨƌĞƋƵĞŶĐǇ ĐŽƵŶƚ͕ ǁŚŝĐŚ ŝŶĚŝĐĂƚĞĚ 

ŚŽǁ ŵĂŶǇ ƚŝŵĞƐ ĞĂĐŚ ƐƚĂƚĞ ŚĂĚ ŽĐĐƵƌƌĞĚ ŝŶ ƚŽƚĂů͘  TŚĞ ƐĞǀĞƌŝƚǇ ĐŽƵŶƚ ƚŚĞŶ ŚĂƐ ƚŚĞ ƉƌŽƉĞƌƚǇ 

ƚŚĂƚ ŝĨ Ă ƐŝŶŐůĞ ƉĂƚŚǁĂǇ ƐƉůŝƚƐ ŝŶƚŽ ŵĂŶǇ ƚŚĞŶ ƚŚĞ ƐĞǀĞƌŝƚǇ ĐŽƵŶƚ ďĞĨŽƌĞ ƚŚĞ ƐƉůŝƚ ǁŝůů ĞƋƵĂů 

ƚŚĞ ƐƵŵ ŽĨ ƚŚĞ ƐĞǀĞƌŝƚǇ ĐŽƵŶƚ ŽŶ ĞĂĐŚ ŽĨ ŝƚƐ ďƌĂŶĐŚĞƐ͕ ǁŚŝĐŚ ŝƐ ƵƐĞĨƵů ĨŽƌ ĐŚĞĐŬŝŶŐ ĚĂƚĂ 

ǀĂůŝĚŝƚǇ ĂŶĚ ĨŽƌ ŵĂŬŝŶŐ ŝŶĨĞƌĞŶĐĞƐ ďĂƐĞĚ ŽŶ ĚŝƐƚŝŶĐƚ ƐĞƚƐ ŽĨ ƉĂƚŝĞŶƚƐ͘ TŚĞ ĨƌĞƋƵĞŶĐǇ ĐŽƵŶƚ ŝƐ 

ƵƐĞĨƵů ĨŽƌ ĞƐƚŝŵĂƚŝŶŐ ƚŽƚĂů ĐŽƐƚ ďǇ ƐŝŵƉůǇ ŵƵůƚŝƉůǇŝŶŐ ƚŚĞ ĨƌĞƋƵĞŶĐǇ ĐŽƵŶƚ ŽĨ Ă ƐƚĂƚĞ ďǇ ƚŚĞ 
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ĐŽƐƚ ƉĞƌ ŽĐĐƵƌƌĞŶĐĞ ŽĨ Ă ƐƚĂƚĞ͘  RĞƉŽƌƚƐ ǁĞƌĞ ƚŚĞŶ ŐĞŶĞƌĂƚĞĚ ƐŚŽǁŝŶŐ ƚŚĞ ƐĞǀĞƌŝƚǇ ĐŽƵŶƚ ĂŶĚ 

ĨƌĞƋƵĞŶĐǇ ĐŽƵŶƚ ĨŽƌ ĞǀĞƌǇ ƐƚĂƚĞ ŝŶ ƚŚĞ ŵŽĚĞů͕ ĂŶĚ ĐŽƵůĚ ďĞ ŐƌŽƵƉĞĚ ďǇ ĂŶǇ ĐŽŵďŝŶĂƚŝŽŶ ŽĨ 

ƌĞŐŝŵĞŶ͕ ŝŶĚŝĐĂƚŝŽŶ ĂŶĚ ĐǇĐůĞ ŶƵŵďĞƌ͘  

 

 

 
Figure B1: An excerpt of the model in Figure 4 used to demonstrate the process of splitting a 

long series of events into small event sets. 
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State Weighting Description 

S1 0 Chemotherapy received 

D0 0 Home discharge 

D1 0 No contact 

D7 1 GP contact with neutropenia 

D2 2 Telephone for advice 

D3 3 Urgent OP review 

D4 4 Day case review 

S4 5 Non-neutropenic emergency admission 

S9 6 Non-neutropenic emergency admission progressing to neutropenia during stay  

S5 7 Neutropenic emergency admission 

S6 0 No bacteraemia during admission 

S8 1 Bacteraemia during admission 

S7 0 Discharged from hospital 

D6 4 Death during hospital stay 

D5 9 Death outside of hospital stay 

C4 1 Reschedule before hospital attendance due to other reasons 

C3 2 Reschedule before hospital attendance due to neutropenia 

C5 3 Hospital attendance but no chemotherapy due to other reasons 

S2 4 Hospital attendance but no chemo due to neutropenia 

C2 5 Stop chemotherapy before completing the regimen 

C1 5 Complete all planned chemotherapy 

Table B2: The severity weighting of all major states in the model. 

 

 


