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Membrane-integral pyrophosphatases (mPPases) couple the hydrolysis of

pyrophosphate (PPi) to the pumping of Naþ, Hþ, or both these ions across a

membrane. Recently solved structures of the Naþ-pumping Thermotoga maritima
mPPase (TmPPase) and Hþ-pumping Vigna radiata mPPase revealed the basis of

ion selectivity between these enzymes and provided evidence for the mechanisms of

substrate hydrolysis and ion-pumping. Our atomistic molecular dynamics (MD) sim-

ulations of TmPPase demonstrate that loop 5–6 is mobile in the absence of the sub-

strate or substrate-analogue bound to the active site, explaining the lack of electron

density for this loop in resting state structures. Furthermore, creating an apo model

of TmPPase by removing ligands from the TmPPase:IDP:Na structure in MD simula-

tions resulted in increased dynamics in loop 5–6, which results in this loop moving to

uncover the active site, suggesting that interactions between loop 5–6 and the imido-

diphosphate and its associated Mg2þ are important for holding a loop-closed confor-

mation. We also provide further evidence for the transport-before-hydrolysis

mechanism by showing that the non-hydrolyzable substrate analogue, methylene

diphosphonate, induces low levels of proton pumping by VrPPase. VC 2017
Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4978038]

I. INTRODUCTION

Three types of convergently evolved enzymes hydrolyze inorganic pyrophosphate (PPi):

type I and type II soluble pyrophosphatases (sPPases) and membrane-integral pyrophosphatases

(mPPases). PPi is generated by at least 190 cellular reactions including DNA biosynthesis and

aminoacyl-tRNA generation; thus, tight control of PPi levels in the cell is crucial to prevent

product inhibition of these reactions.1–5 sPPases are present in all cells and are primarily

responsible for managing cellular PPi levels, with a kcat of �200–2000 s�1.6 In contrast,

mPPases are slower (kcat of 3–20 s�1), only found in select species,6 and utilize the hydrolysis

of PPi to pump ions across a membrane, generating an electrochemical gradient.
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Excluding multicellular animals, such as mammals, mPPases are found in organisms across

all three domains of life. Plants and algae express mPPases in vacuolar membranes7–9 that,

along with the vacuolar (V-type) Hþ-ATPase, acidify the organelle and are involved in devel-

opment and stress resistance.10–13 mPPases are also found in the membranes of the acidocalci-

some, a relatively small organelle found in protozoan parasites that plays a crucial role during

the transition between environments with varying osmotic pressures.14–16 Furthermore, mPPases

are present in many bacterial species, several of which are opportunistic human pathogens, such

as members of genus Bacteroides.17–19 Overexpression of mPPases in bacteria confers resis-

tance to heat, hydrogen peroxide, and salt stress.20

mPPases are selective in the ions they pump across the membrane: Naþ, Hþ, or both (dual-

pumping mPPases). Naþ-pumping mPPases, thought to be the ancestral form of the enzyme,

and dual-pumping mPPases occur in bacteria, with the former also found in archaea; both of

these require potassium for optimal activity.17,21 Plants and protozoans, conversely, contain

only Hþ-pumping mPPases.8 The Hþ-pumping mPPases are further subdivided into those that

require potassium ions for optimal activity and those that do not (Kþ-dependent and Kþ-inde-

pendent types, respectively). The difference is due to a key lysine residue (K12.46, using the

Ballesteros and Weinstein numbering system, as previously described22) that can functionally

replace Kþ in the active site.23

Recently, structures of two mPPases, the Naþ-pumping Thermotoga maritima mPPase

(TmPPase) and the Hþ-pumping, Kþ-dependent Vigna radiata mPPase (VrPPase), have been

solved in different conformations by X-ray crystallography.24–26 These static snapshots of differ-

ent states through the catalytic cycle, such as the resting state and the substrate analogue-bound

state, provide insight into the possible mechanism of hydrolysis and ion-pumping. However, pro-

teins can sometimes be forced into non-native conformations due to crystallographic contacts,

resulting in artefacts.27 We have generated atomistic molecular dynamics (MD) simulations of the

membrane-integral TmPPase within a lipid bilayer that highlight the importance of interactions

displayed in the crystal structures, thus strengthening evidence for our proposed model of the cat-

alytic mechanism. In addition, we have recently provided experimental data that support the

hypothesis that ion pumping precedes PPi hydrolysis in mPPases,26 and here, we provide further

experimental support for this mechanism of action.

A. Overview of mPPase structures

TmPPase has been solved in the resting state (TmPPase:Ca:Mg; PDB: 4AV3),24 substrate

analogue imidodiphosphate (IDP)-bound state (TmPPase:IDP:Na; PDB: 5LZQ),26 phosphate

analogue tungstate (WO4)-bound state (TmPPase:WO4; PDB: 5LZR),26 and a product-bound

state (TmPPase:Pi2; PDB: 4AV6).24 VrPPase has been solved in a substrate analogue imidodi-

phosphate (IDP)-bound state (VrPPase:IDP; PDB: 4A01) and a single phosphate-bound state

(VrPPase:Pi; PDB: 5GPJ).25

These structures reveal that TmPPase and VrPPase are, overall, very similar (Fig. 1);24,25 for

instance, the Ca root-mean-square deviation (RMSD) of the IDP-bound states is only 0.862 Å for

725 aligned residues.

II. RESULTS

A. MD simulations support the mechanism of substrate binding and hydrolysis

The recently solved structures of mPPase have allowed us to build a comprehensive model

for the mechanism of PPi hydrolysis, which we believe occurs via activation of a nucleophilic

water molecule. In both TmPPase:IDP:Na and VrPPase:IDP, the nucleophilic water is coordinated

by D6.43, a conserved Asp on TMH 6, and D16.39, a conserved Asp on TMH 16 (Ballesteros and

Weinstein numbering system22) (Fig. 2(a)). However, in the TmPPase resting structure

(TmPPase:Ca:Mg) and the VrPPase single phosphate-bound structure (VrPPase:Pi), D6.43 in par-

ticular, is coordinated by K12.50, a key Lys on TMH 12 (Fig. 2(b)). This interaction prevents it

from coordinating the nucleophilic water by holding TMH 6 in a strained conformation, thus
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preventing enzyme activation. The structures also suggest that binding of IDP by both TmPPase

and VrPPase leads to a closing of loop 5–6 (the loop between TMH 5 and 6) and loop 13–14

over the active site. A lack of electron density for loop 5–6 in the TmPPase resting state structure

suggests that this loop is disordered in the resting state, but the electron density shows that loop

5–6 is closed over the active site in the substrate analogue-bound structures.24–26 Residues E5.76

and D5.77 on loop 5–6 in both VrPPase:IDP and TmPPase:IDP:Na interact with the substrate-

analogue Mg5:IDP complex via water molecules in the hydrolytic center, which may contribute

to the stability of the loop-closed conformation (Fig. 2(c)). We hypothesize that closing of these

loops over the active site is a critical step in the catalytic cycle, coupling correct substrate binding

to conformational changes that lead to hydrolysis. The downward movement of TMH 12 that is

associated with loop-closure breaks the coordination of K12.50 with D6.43 and D16.39 and releases

the torsional deformation of TMH 6, akin to a “molecular mousetrap.” This leads to a reorienta-

tion of TMH 6 and allows D6.43 and D16.39 to activate the nucleophilic water, leading to PPi

hydrolysis.24–26

However, this proposed mechanism is based on the presently available crystal structures of

mPPases, which are static snap-shots and do not provide a complete picture of the intermediate

steps of the catalytic mechanism. Furthermore, protein crystals represent lattices of ordered

molecules that have reached equilibrium by attaining a global minimum of free-energy.

Sometimes, proteins crystallize in a non-native conformation, forgoing biologically relevant

interactions to establish crystallographic contacts that lower the free energy of the system.27

Finally, proteins in the solution are subject to thermal noise, which can have dramatic effects

FIG. 1. Overall protein structure of TmPPase in the substrate-analogue-bound state (PDB ID: 5LZQ). The protein is shown

as a dimer with each protomer depicted in a different color. IDP is shown in red with Mg2þ and Naþ shown as green and

purple spheres, respectively.
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on the protein shape and conformation. Knowledge of the nature and magnitude of these con-

formational changes can be key to understanding biological mechanisms.

To begin exploring the substrate-induced loop-closing aspects of the catalytic cycle, we

performed MD simulations of TmPPase in a self-assembled lipid bi-layer. These are the first

MD simulations of this class of proteins, and due to the important role of metal ions within the

active site, an all-atom approach was required, which incurs substantial additional computa-

tional expense relative to united-atom (where hydrogens are ignored) or coarse-grained MD.

Simulations were performed on three different models of TmPPase: the resting state TmPPase

structure on to which missing loops 5–6 and 13–14 were modelled (Figs. 3(a) and 3(b)), the

IDP-bound TmPPase structure, and the IDP-bound TmPPase structure from which Naþ, IDP,

and the three magnesium ions associated with IDP were removed (two magnesium ions

remained at sites equivalent to the resting state TmPPase structure).

Over a trajectory of 100 ns, the RMSD of all protein atoms in the MD simulations of the

resting and IDP-bound models was compared (Fig. 3(c)). These results showed that the rest-

ing state was significantly more dynamic than the IDP-bound state. The increase in protein

flexibility in the resting state is particularly evident in loop 5–6, which is the most dynamic

region, displaying dramatic fluctuations in RMSD (denoted by a star in Fig. 3(d)), with a

maximum RMSD fluctuation above 8 �̊A in one of the resting state TmPPase protomers. This

is in contrast to MD simulations of the IDP-bound state that, consistent with the x-ray struc-

tural results, showed much smaller fluctuations of loop 5–6 (2 �̊A maximum). Furthermore, the

range of different conformations adopted by loop 5–6 over the course of the 100 ns MD simu-

lation was much greater for the resting state structure compared to the IDP-bound structure

(Fig. 4).

FIG. 2. Structural overview of different regions of the mPPase hydrolytic region in different catalytic states. Comparison

of the base of the hydrolytic center in (a) TmPPase:IDP:Na (blue) and VrPPase:IDP (light brown); and in (b)

TmPPase:Ca:Mg (green) and VrPPase:Pi (brown). (c) Comparison of the cytosolic side of the hydrolytic center in

TmPPase:IDP:Na and VrPPase:IDP. In all structures, water molecules are depicted as red spheres, including the nucleo-

philic water in (a). Mg2þ and Ca2þ are depicted as green spheres in TmPPase and salmon spheres in VrPPase. IDP and

phosphate are depicted with orange phosphorous atoms for TmPPase structures and yellow for VrPPase structures.
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In addition to the difference between the resting state and the IDP-bound state, we wanted

to observe what might happen to loop 5–6 once the substrates were no longer available to con-

strain it; this would provide information on how the substrate binds to the enzyme. We moni-

tored the difference in distance between Glu217 (E5.76), which is central to loop 5–6, and

Asp696 (D16.39), a relatively motionless residue, over the course of MD simulations of both the

IDP-bound TmPPase structure and the IDP-bound TmPPase structure from which Naþ, IDP,

and the three magnesium ions associated with IDP were removed (Fig. 5). These results show

that in the presence of the substrate, there is a 2 �̊A change of distance between these two resi-

dues in either direction. However, once the substrate is removed, the loop immediately becomes

more dynamic, resulting in an increase in distance between these two residues of up to 9 �̊A
over the time course (Fig. 5(a)), corresponding to an outward movement of loop 5–6 as if

uncovering the active site pocket.

Taken together, these results suggest that interactions of the enzyme with IDP and Naþ, such

as IDP-Mg2þ-H2O-E5.76, IDP-Mg2þ-H2O-D5.77 (Fig. 2(c)), and Naþ with the residues E6.53, D6.50,

S6.54, and D16.46 (Fig. 6(a)), as seen in the crystal structure,31 maintain the loop-closed, substrate-

bound conformation of TmPPase. Therefore, removing the substrate results in a movement back

to an open-loop, resting state-like conformation.

B. Overview of ion pumping in mPPases

Unlike PPi hydrolysis, the mechanism of ion pumping and ion selectivity is more elusive

although the recently solved structures do give us some insights into possible mechanisms. The key

region of the enzyme responsible for ion selectivity and pumping is the ion-gate (Fig. 6), which sits

10 �̊A below the active site in the channel formed by the inner ring of helices. For TmPPase, we

could compare all three states (TmPPase:IDP:Na, TmPPase:WO4, and TmPPase:Ca:Mg), but for

FIG. 3. Atomistic molecular model of the TmPPase resting state in a 50% mixture of POPE:POPC lipids shown from the

side (a) and top (b). The solvent molecules present in the MD simulations are not shown for clarity. (c) RMSD measured

over all atoms for the resting (green) and IDP-bound (blue) states over the 100 ns trajectory. (d) Per-residue RMSD fluctua-

tions in TmPPase for the resting protomers (green and yellow) and IDP-bound protomers (blue and cyan). The asterisk

highlights loops 5–6 (residues 215–225).
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VrPPase, only the substrate-bound and single product-bound states were available (VrPPase:IDP

and VrPPase:Pi). However, the structural architecture of the ion-gate in TmPPase:WO4 and the rest-

ing state TmPPase:Ca:Mg is not significantly different, and therefore, we treat TmPPase and

VrPPase:Pi structures as equivalent in terms of interpreting differences in ion pumping (Fig. 6).

One key difference between the Naþ-pumping TmPPase and the Hþ-pumping VrPPase in

the ion-gate region is the location of the semi-conserved Glu (E6.53 and E6.57, respectively),

which is one helix turn lower on the VrPPase compared to the TmPPase (Fig. 6). The impor-

tance of the semi-conserved Glu position becomes evident in the formation of the ion-gate in

the resting or Pi-bound structures. In TmPPase, the ion-gate is formed by coordination of K16.50

with D6.50 and E6.53, whereas a salt-bridge between K16.50 and E6.57 forms the ion-gate in

VrPPase (Fig. 6(b)). The K16.50-E6.57 interaction prevents K16.50 from coordinating with D6.50.

In the IDP-bound TmPPase (Fig. 6(a)), E6.53 coordinates the Naþ, along with residues D6.50,

S6.54, and D16.46. The movement of TMH 16 down 1.1 �̊A in TmPPase moves K16.50 out of the

Naþ-binding pocket. This allows Naþ to bind, which is then coordinated by D6.50, E6.53, and

S6.54. In this structure, the Naþ is still positioned above the ion-gate. In contrast, E6.57 (the

semiconserved Glu) in the IDP-bound VrPPase structure (Fig. 6(a)) is not coordinated to K16.50,

which is instead coordinated to D6.50, S6.54, and D/N16.46.24–26 Therefore, E6.57 is most likely

protonated, possibly by the proton that will be pumped.

C. Support for the transport-before-hydrolysis mechanism

The structures suggest that conformational changes upon IDP or substrate binding lead to

nucleophilic water coordination and are linked to additional changes that promote ion pump-

ing.24–26 Despite the logical interpretation of the crystallographic data, we do not yet know

FIG. 4. Side and top views of the resting (left, green and yellow protomers) and IDP-bound (right, blue and cyan proto-

mers) TmPPase states, showing the range of conformations explored by loop 5–6 during the 100 ns MD. Colors in the loop

indicate the position in the trajectory, ranging from red (start) to white (end). The IDP and magnesium ions are shown in

space filling representation in red and green, respectively.
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whether PPi hydrolysis precedes ion pumping or whether ion pumping leads to PPi hydrolysis.6

The former idea suggests that PPi binding to mPPase results in conformational changes, such as

the closing of the loops and repositioning of residues that coordinate the nucleophilic water,

thus leading to activation of the nucleophilic water and PPi hydrolysis. Generation of the

FIG. 5. (a) Distance between Glu217 (E5.76) and Asp696 (D16.39) in each protomer when IDP is bound (blue and cyan) and

when it has been removed from the pocket (red and orange). (b) IDP-bound structure of TmPPase highlighting the Glu217

(E5.76) and Asp696 (D16.39) as pink spheres. The pink dashed line represents the inter-residue distance measured in the sim-

ulations in (a). IDP is shown in red with Mg2þ shown as green spheres.

FIG. 6. Structural overview of the ion-gate region of mPPases. (a) Comparison of the substrate-analogue-bound states of

TmPPase (blue) and VrPPase (light brown) showing the coordination of the bound sodium ion (purple sphere) with neigh-

boring residues of TmPPase and coordination of residues in the VrPPase ion gate. (b) Comparison of the resting state of

TmPPase (green) with the phosphate-bound state of VrPPase (brown), highlighting the coordination of residues around the

ion gate. Interactions between residues in TmPPase structures are shown in grey and VrPPase in yellow.
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phosphate product would then induce further conformational changes that result in ion pump-

ing. The latter idea implies that substrate binding drives pumping, in other words, conforma-

tional changes induced by substrate binding reposition D6.43 so that it can coordinate the nucle-

ophilic water alongside D16.39 (Fig. 2(a)), but PPi is not hydrolysed at this point; indeed, it is

possible that one of the aspartates is protonated. The structural changes induced by PPi binding

first promote ion pumping, which increases the negative charge in the active site and so causes

a deprotonation of the general base D6.43 and/or D16.39. This activates the water nucleophile,

leading to hydrolysis, i.e., ion pumping drives substrate hydrolysis.

Although all-atom classical MD simulations can provide insights into conformational

changes of proteins in the solution over 100 ns timescales, there are still several limitations to

this method. In regard to determining whether ion transport occurs before or after substrate

hydrolysis, one major limitation is the inability to break covalent bonds and thus actually

hydrolyze the substrate during the simulation. Therefore, complementary experimental

approaches are required to fully understand the catalytic cycle of mPPases.

We have recently published data that support the latter mechanism, in which substrate

binding drives ion pumping and is then followed by PPi hydrolysis.26 We used the SURFE2R

N1, from Nanion technologies, to directly measure the movement of charge across a membrane.

In the presence of PPi, VrPPase translocates protons across the membrane as expected.26

However, in the presence of IDP, a non-hydrolyzable substrate analogue that has nitrogen in

the place of the PPi central oxygen atom, the ion translocation current was lower.26 When

gramicidin was added alongside IDP, the current was decreased to the level of the phosphate

control.26 This suggested that binding IDP by VrPPase results in a single turnover ion-pumping

event. Since IDP is not converted into the product, it remains bound to VrPPase, preventing

further ion translocation and thus generating a reduced current compared to PPi. Gramicidin

permeabilizes the membrane to monovalent cations and dissipates Hþ gradients across mem-

branes, thus explaining the background levels of current when added with IDP.26

We have new ion-pumping evidence that further supports the transport-before-hydrolysis

model for mPPases. Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) specifically permea-

bilizes membranes to protons. Addition of CCCP to membrane-embedded VrPPase in the pres-

ence of PPi reduces the ion-pumping current from 3.10 nA to 0.65 nA above the baseline (Fig.

7(a)), illustrating that the translocation of charge across the membrane is due to Hþ and not

other monovalent ions, such as Kþ. The reduced current is not as low as the phosphate control

(0.08 nA above the baseline), possibly because the rate of energy-driven proton pumping by

VrPPase is greater than the CCCP-assisted diffusion rate of protons across the membrane.

Replicating the previous IDP experiments shows similar results,26 with a small, ion-pumping

peak of 0.27 nA above the baseline (Fig. 7(b)). However, replacing gramicidin with CCCP to

collapse the charge separation over the membrane illustrates that IDP-bound VrPPase specifi-

cally pumps protons, as a reduced change in a current of 0.07 nA is observed. VrPPase in the

presence of another substrate analogue, methylene diphosphonate (MEDP), similarly produces a

change in a current of 0.29 nA (Fig. 7(c)), comparable to that observed with IDP. MEDP con-

tains a carbon atom in place of the central oxygen atom of PPi and therefore cannot be hydro-

lysed by mPPases. The low level of current, as seen with IDP, further supports our theory that

ion pumping does not require substrate hydrolysis and instead occurs upon substrate binding. In

the presence of both MEDP and CCCP, only background levels of current are measured

(0.06 nA above the baseline), thus confirming the movement of charge across the membrane

upon MEDP binding, and a single turn-over pumping event is due solely to Hþ.

III. CONCLUSIONS

The numerous structures of the Naþ-pumping TmPPase and the Hþ-pumping VrPPase

determined by X-ray crystallography have provided insights into how this class of proteins

hydrolyzes PPi and pump ions across the membrane.24–26 However, to further understand

the catalytic cycle, we are working towards constructing in silico systems that allow us to

probe aspects of the mechanism that are inaccessible by X-ray crystallography, such as
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transition states that are energetically unstable and exist on the femtosecond timescale.28

Towards this goal, we have performed atomistic MD simulations of TmPPase in a self-

assembled lipid bi-layer that show dramatic changes in flexibility of loop 5–6 between

TmPPase in the resting state, IDP-bound state, and when IDP and Naþ are removed from the

IDP bound state (Figs. 4–6).

Our findings suggest that tight contacts between TmPPase and the bound Mg5:IDP complex

(Fig. 2(c)) and Naþ (Fig. 6(a)) help to maintain a loop-closed conformation that has previously

been observed in the crystal structures, dispelling concerns that this interaction was due to a

crystallographic artefact. In addition, atomistic MD simulations may be helpful in structure-

based drug design, for assessing the magnitude of thermodynamically unfavourable changes

both in conformational flexibility associated with binding and in the design of additional com-

pounds with related chemical scaffolds. Since mPPases are not found in humans, targeting these

proteins in human pathogens, such as protozoan parasites or Bacteroides species, is a viable

option and would carry a reduced risk of human toxicity.29 One strategy would be to combine

structural data with computer modelling by first identifying the binding site of the initial hit

compound by X-ray crystallography. This structure can then be used as a starting point for a

virtual screen to identify compounds with greater affinities. More detailed atomistic MD simula-

tions could then be employed for the most promising leads. The top hits would then be synthe-

sized and tested in vitro, before restarting the in silico cycle of the compound design.

FIG. 7. Electrometric measurements of VrPPase proteoliposomes using the Nanion SURFE2R N1. Currents obtained fol-

lowing the addition of (a) K4PPi, MEDP, K2HPO4, and all three in the presence of the protonophore: CCCP; (b) IDP,

K2HPO4, and IDP with CCCP; and (c) MEDP, K2HPO4, and MEDP with CCCP. All compounds were added in the activat-

ing buffer at the 1-s time point.
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Resolving the multiple steps of the mPPase reaction cycle will require employing addi-

tional approaches to overcome the limitations of classical MD simulations. Here, we have also

provided further experimental evidence to support our hypothesis that substrate binding, not

substrate hydrolysis, leads to ion pumping during the catalytic cycle of mPPases. MEDP, a

non-hydrolysable substrate analogue, induces a small ion-pumping peak in VrPPase, similar to

that observed with IDP (Figs. 7(a) and 7(c)).26 We interpret this as evidence that binding of a

substrate analogue, which cannot be hydrolysed, leads to one cycle of Hþ-pumping in the

VrPPase.26 Furthermore, the use of CCCP instead of gramicidin to dissipate the charge differen-

tial across the membrane proves that VrPPase is specifically pumping protons in the presence

of PPi, IDP, and MEDP (Fig. 7), and the currents observed are not due to motion of potassium

ions, as was possible in the previous gramicidin experiments.

Despite recent progress, there are still many unanswered questions. For example, what is

the structural basis for ion selectivity in dual pumping mPPases, which pump both Naþ and

Hþ? The IDP-bound structures show that the placement of the semi-conserved Glu in the

VrPPase (E6.57) one helix turn below the position in the TmPPase (E6.53) destroys the Naþ-

binding pocket and that E6.57 in VrPPase acts as a proton acceptor at the end of the ion-channel

Grotthuss chain (Fig. 6(a)).25,26 However, in dual-pumping mPPases, this Glu is in the same

position as in Naþ-pumping mPPases (E6.53). This issue is further complicated by the recent

discovery that the dual-pumping mPPases evolved over two separate lineages and are therefore

sub-classified into two groups. One lineage, the “true” dual-pumpers, co-transports Naþ and Hþ

over a range of Naþ concentrations, whereas the second lineage, the Naþ-regulated dual-

pumpers, loses the ability to pump Hþ at above-physiological levels of Naþ.30 Determining the

molecular structure of dual-pumping mPPases in each lineage may give clues as to the flexibil-

ity of these enzymes in terms of ion selectivity, as well as the mechanism for pumping two

ions. MD simulations could contribute in answering how these two lineages of dual-pumping

mPPases differ in their method of ion pumping.

IV. MATERIALS AND METHODS

A. Ion-pumping measurements

VrPPase was reconstituted into liposomes and used to obtain electrometric measurements

using the Nanion SURFE2R N1 following the protocol used in our previous publication.26 A

reconstituted protein is added to proprietary sensor chips following standard protocols from

Nanion technologies (details in Ref. 26). The sensor is rapidly switched between a control

buffer (containing no substrate or inhibitor) and an activating buffer (containing substrate and/

or inhibitor) over the course of 3 s, during which the amplitude is measured across the mem-

brane. 50 lM of the substrate (K4PPi) or inhibitors (IDP and MEDP) were used in the activating

buffer in separate experimental runs, and 200 lM K2HPO4 was used as a control. 10 lM CCCP

was used to destabilise the proton gradient. All experiments were carried out on a single sensor

chip to negate the effects of inter-sensor variation, and all experiments involving CCCP were

carried out after initial measurements with inhibitors to avoid residual effects of the protono-

phore in the membranes. The change in current was calculated by subtracting the baseline

value, before the rise in the signal, from the maximal peak value.

B. Molecular dynamics simulations

To generate the input co-ordinates for MD simulations of the resting state, loops 5–6 and

13–14 were built into the structure above the active site in an orientation that is parallel to the

protomer channel, as there was no electron density reported for these loops.24 The missing

amino acids 211–221 and 577–595 of chain A and 212–220 and 584–598 of chain B were

added using software MODELLER 9v14 (Ref. 31) with default settings in the Discovery Studio

4.5 platform.32 Eight generated models underwent visual evaluation, and among these, the rep-

resentative with loops not locating within the membrane bilayer was selected as a starting point

for the simulation. This modified TmPPase resting state, the IDP-bound state, and the IDP-state
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after removal of the ligands (IDP, three Mg2þ, and Naþ) were then embedded in a membrane

consisting of a 50% mixture of phosphatidylethanolamine (POPE) and phosphotidylcholine

(POPC) lipids, which was of sufficient dimension to ensure at least 8 Å between the protein and

the edge of the simulation box. The simulation cells were �135 Å2 in size in the plane of the

membrane and contained 496 lipids in total. The protein, ligand, and lipids were modelled with

the AMBER ff12SB, GAFF, and Lipid14 force fields, respectively,33–35 and long range electro-

statics was treated with the Particle Mesh Ewald technique. The protein and membrane were

then solvated with TIP3P water molecules and 0.1 M KCl using the CHARMM Molecular

Modelling Builder36 and, after a standard equilibration procedure, were subjected to 100 ns MD

at constant temperature and pressure using the Berendsen temperature and pressure coupling

schemes within the AMBER suite of programs,37 with an MD timestep of 2 fs. Data analysis

was performed using the PTRAJ module of AMBER,38 and trajectories were visualised using

Visual Molecular Dynamics.39 The atomistic model built for the protein and lipid bilayer is

shown for the resting state in Figs. 3(a) and 3(b).

In the first 10 ns of the MD simulations, we observed rapid and noisy fluctuations in the

data as the system came to equilibrium, and for this reason, we excluded the initial 10 ns of the

simulation from analysis. Consequently, in order to calculate the changes in RMSD and distan-

ces between residues, instead of taking the values of the initial frames of the MD simulation as

a reference structure, an average of all states between 10 and 20 ns of the respective MD simu-

lations was used in calculations.
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