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Linearisation Around The Zero Equilibrium

Clearly, (H,F ) = (0, 0) is an equilibrium of the system. We can perform

a linearisation around the zero equilibrium to determine the stability of this

fixed point. Let us define the following functions
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Now, since ∃ (H∗, F ∗), steady state of
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We can calculate the Jacobian matrix for (H∗, F ∗) as
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Evaluating the Jacobian at the equilbrium point (H∗

0 , F
∗

0 ) = (0, 0),
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Calculating the eigenvalues,

λ1 =
Lφ− 2µω −mφω − αφω − φ

√
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In order for the origin to be stable, we require all eigenvalues to be real

and of negative sign. If we assume that all other parameters are nonzero,

ω > 0,α > 0,φ > 0, L > 0,m > 0 and that stress is also nonzero µ > 0 then

this happens either when (1)
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L(m+ α)

mα
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Lφ+ ω

⇣

− φ(m+ α) +
q

φ2(L2+2Lω(m+α)+(m−α2)ω2)
ω2

⌘

2ω

or when (2),

ω ≥ L(m+ α)

mα

So in order for the system to have a stable equilibrium at (0, 0), we require

either (1) or (2) to hold true. If stress is present µ > 0, then we have obtained

the conditions for the stability of the origin.
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Bifurcations of Critical Parameters

Figure S1: The saddle-node bifurcation through the parameter of natural mortality rate,
m, with parameters taken from Table 1. The location of the limit point represents the
critical death rate after which the total number of in-hive bees will become 0. For low
initial values of in-hive bees, the colony can fail with no natural mortality present.

Figure S2: The saddle-node bifurcation through the parameter of recruitment α, with
parameters taken from Table 1. The bifurcation is similar to the natural mortality
bifurcation, with the limit point being approached from low parameter values. If recruitment
is critically high, then the colony will fail.
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Figure S3: The reversed direction saddle-node bifurcation through the parameter of social
inhibition σ, with parameters taken from Table 1. For high values of social inhibition task
switching, the colony can sustain if the initial number of bees is greater than the critically
low amount. If the social inhibition decreases below the limit point, then the colony will
fail.

Figure S4: The reversed direction saddle-node bifurcation through the parameter of laying
rate of the queen L, with parameters taken from Table 1. The bifurcation is similar to
the bifurcation for social inhibition. If the queen lays more than the critically low value
around the limit point, then the colony will sustain given that the initial number of bees is
greater than the unstable branch.
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Model Comparison

(a) Death Rate m = 0 (b) Death Rate m = 0.05

(c) Death Rate m = 0.2 (d) Death Rate m = 0.5

Figure S5: The comparison between our simulated model, and other author’s models,
with parameters taken from Table 1. The black curve represents our adjusted model
including the limiting γ function. The dotted curve represents the Khoury et al. [2011]
model and dashed curve represents the Bryden et al. [2013] model. As we increase each
model through the death rate parameter, the sudden switch between indefinite growth and
collapse exhibited by the Bryden model, and the very gradual decrease in the population
exhibited by the Khoury model can be compared to the stabilisation of the population at
low mortality and sudden collapse at higher mortality exhibited by our model.
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The effect of stress on population dynamics

(a) Stress function only in-hive bees (b) Stress function only forager bees

Figure S6: The bifurcation through stress when acting only on the in-hive population (a)
and only on the forager population (b), with parameters taken from Table 1. In (a) we see
similar dynamics to the original model, however in (b) the limit point occurs at a higher
stress level. The same qualitative dynamics are present (saddle-node bifurcation) in both
cases.
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