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Abstract 19 

Providing health services with the greatest possible value to patients and society given the constraints 20 

imposed by patient characteristics, health care system characteristics, budgets, etc. relies heavily on the 21 

design of structures and processes.  Such problems are complex and require a rigorous and systematic 22 

approach to identify the best solution.  Constrained optimization is a set of methods designed to identify 23 

efficiently and systematically, the best solution (the optimal solution) to a problem characterized by a 24 

number of potential solutions in the presence of identified constraints.  This report identifies: 1) key 25 

concepts and the main steps in building an optimization model; 2) the types of problems where optimal 26 

solutions can be determined in real world health applications and 3) the appropriate optimization 27 

methods for these problems.  We first present a simple graphical model based upon the treatment of 28 

“regular” and “severe” patients, which maximizes the overall health benefit subject to time and budget 29 
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constraints.  We then relate it back to how optimization is relevant in health services research for 30 

addressing present day challenges.  We also explain how these mathematical optimization methods relate 31 

to simulation methods, to standard health economic analysis techniques, and to the emergent fields of 32 

analytics and machine learning. 33 

Keywords: Decision making, care delivery, policy, modeling  34 
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1. Introduction 35 

In common vernacular, the term “optimal” is often used loosely in health care applications to refer to any 36 

demonstrated superiority among a set of alternatives in specific settings.  Seldom is this term based on 37 

evidence that demonstrates such solutions are, indeed, optimal – in a mathematical sense. By “optimal” 38 

solution we mean the best possible solution for a given problem given the complexity of the system inputs, 39 

outputs/outcomes, and constraints (budget limits, staffing capacity, etc.).  Failing to identify an “optimal” 40 

solution represents a missed opportunity to improve clinical outcomes for patients and economic 41 

efficiency in the delivery of care. 42 

 43 

Identifying optimal health system and patient care interventions is within the purview of mathematical 44 

optimization models. There is a growing recognition of the applicability of constrained optimization 45 

methods from operations research to health care problems.  In a review of the literature [1], note more 46 

than 200 constrained optimization and simulation studies in health care.  For example, constrained 47 

optimization methods have been applied in problems of capacity management and location selection for 48 

both healthcare services and medical supplies [2-5]. 49 

Constrained optimization is an interdisciplinary subject, cutting across the boundaries of mathematics, 50 

computer science, economics and engineering. Analytical foundations for the techniques to solve the 51 

constrained optimization problems involving continuous, differentiable functions and equality constraints 52 

were already laid in the 18th century [6]. However, with advances in computing technology, constrained 53 

optimization methods designed to handle a broader range of problems trace their origin to the 54 

development of the simplex algorithm--the most commonly used algorithm to solve linear constrained 55 

optimization problems--in 1947 [7-11]. Since that time, a variety of constrained optimization methods 56 

have been developed in the field of operations research and applied across a wide range of industries.  This 57 

creates significant opportunities for the optimization of health care delivery systems and for providing 58 

value by transferring knowledge from fields outside the health care sector. 59 

In addition to capacity management, facility location, and efficient delivery of supplies, patient scheduling, 60 

provider resource scheduling, and logistics are other substantial areas of research in the application of 61 

constrained optimization methods to healthcare [12-16]. Constrained optimization methods may also be 62 

very useful in guiding clinical decision-making in actual clinical practice where physicians and 63 

patients face constraints such as proximity to treatment centers, health insurance benefit designs, 64 

and the limited availability of health resources.  65 

Constrained optimization methods can also be used by health care systems to identify the optimal 66 

allocation of resources across interventions subject to various types of constraints [17-23]. These methods 67 

have also been applied to disease diagnosis [24, 25], the development of optimal treatment algorithms 68 

[26, 27], and the optimal design of clinical trials [28]. Health technology assessment using tools from 69 

constrained optimization methods is also gaining popularity in health economics and outcomes research 70 

[29]. 71 

Recently, the ISPOR Emerging Good Practices Task Force on Dynamic Simulation Modeling Applications 72 

in Health Care Delivery Research published two reports in Value in Health [30, 31] and one in 73 

Pharmacoeconomics [32] on the application of dynamic simulation modeling (DSM) to evaluate problems 74 

in health care systems. While simulation can provide a mechanism to evaluate various scenarios, by 75 

design, they do not provide optimal solutions.  The overall objective of the ISPOR Emerging Good 76 

Practices Task Force on Constrained Optimization Methods is to develop guidance for health services 77 

researchers, knowledge users and decision makers in the use of operations research methods to optimize 78 

healthcare delivery and value in the presence of constraints.  Specifically, this task force will (1) introduce 79 

constrained optimization methods for conducting research on health care systems and individual-level 80 

outcomes (both clinical and economic); (2) describe problems for which constrained optimization 81 
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methods are appropriate; and (3) identify good practices for designing, populating, analyzing, testing and 82 

reporting results from constrained optimization models. 83 

The ISPOR Emerging Good Practices Task Force on Constrained Optimization Methods will produce two 84 

reports.  In this first report, we introduce readers to constrained optimization methods.  We present 85 

definitions of important concepts and terminology, and provide examples of health care decisions where 86 

constrained optimization methods are already being applied.  We also describe the relationship of 87 

constrained optimization methods to health economic modeling and simulation methods.  The second 88 

report will present a series of case studies illustrating the application of these methods including model 89 

building, validation, and use. 90 

2. Definition of Constrained Optimization  91 

 92 

Constrained optimization is a set of methods designed to efficiently and systematically find the best 93 

solution to a problem characterized by a number of potential solutions in the presence of identified 94 

constraints.  It entails maximizing or minimizing an objective function that represents a quantifiable 95 

measure of interest to the decision maker, subject to constraints that restrict the decision maker’s freedom 96 

of action.  Maximizing/minimizing the objective function is carried out by systematically selecting input 97 

values for the decision from an allowed set and computing the objective function, in an iterative manner, 98 

until the decision yields the best value for the objective function, a.k.a optimum. The decision that gives 99 

the optimum is called the “optimal solution”. In some optimization problems, two or more different 100 

decisions may yield the same optimum. Note that, programming and optimization are often used as 101 

interchangeable terms in the literature, e.g., linear programming and linear optimization. Historically, 102 

programming referred to the mathematical description of a plan/schedule, and optimization referred to 103 

the process used to achieve the optimal solution described in the program.  104 

 105 

The components of a constrained optimization problem are its objective function(s), its decision 106 

variable(s) and its constraint(s). The objective function is a function of the decision variables that 107 

represents the quantitative measure that the decision maker aims to minimize/maximize. Decision 108 

variables are mathematical representation of the constituents of the system for which decisions are being 109 

taken to improve the value of the objective function. The constraints are the restrictions on decision 110 

variables, often pertaining to resources. These restrictions are defined by equalities/inequalities involving 111 

functions of decision variables. They determine the allowable/feasible values for the decision variables. In 112 

addition, parameters are constant values used in objective function and constraints, like the multipliers 113 

for the decision variables or bounds in constraints. Each parameter represents an aspect of the decision-114 

making context: for example, a multiplier may refer to the cost of a treatment. 115 

3. A Simple Illustration of a Constrained Optimization Problem 116 

 117 

Imagine you are the manager of a health care center, and your aim is to benefit as many patients as 118 

possible. Let us say, for the sake of simplicity, you have two types of patients-- regular and severe patients, 119 

and the demand for the health service is unlimited for both of these types. Regular patients can achieve 120 

two units of health benefits and severe ones can achieve three units. Each patient, irrespective of severity, 121 

takes 15 minutes for consultation; only one patient can be seen at any given point in time.  You have one 122 

hour of total time at your disposal. Regular patients require $25 of medications, and severe patients 123 

require $50 of medications.  You have a total budget of $150. What is the greatest health benefit this 124 

center can achieve given these inputs and constraints? 125 

At the outset, this problem seems straightforward.  One might decide on four regular patients to use up all 126 

the time that is available. This will achieve eight units of health benefit while leaving $50 as excess budget.  127 

An alternate approach might be to see as many severe patients as possible since treating each severe 128 

patient generates more per capita health benefits.  Three patients (totaling $150) would generate 9 health 129 
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units leaving 15 minutes extra time unused. There are other combinations of regular and severe patients 130 

that would generate different levels of health benefits and use resources differently.  131 

This is graphically represented in Figure 1, with regular patients on the x-axis and the severe patients on 132 

the y-axis. Line CF is the time constraint limiting total time to one hour. Line BG is the budget constraint 133 

limiting to $150. Any point to the south-west of these constraints (lines) respectively, will ensure that time 134 

and budget do not exceed the respective limits. The combination of these together with non-negativity of 135 

the decision variables, gives the feasible region.  136 

The lines AB-BD-DF-FA form the boundary of the feasibility space, shown shaded in the figure. In 137 

problems that are three or more dimensional, these lines would be hyperplanes. To obtain the optimal 138 

solution, the dashed line is established, the slope depends on the relative health units of the two decision 139 

variables (i.e., the number of regular and severe patients seen). This dashed line moves from the origin in 140 

the north-east direction as shown by the arrow. The optimal solution is two regular patients and two 141 

severe patients. This approach uses the entire one-hour time as well as the $150 budget.  Since regular and 142 

severe patients achieve two- and three-unit health benefits, respectively, we are able to achieve 10 units of 143 

health benefit and still meet the time and budget constraints.  144 

No other combination of patients is capable of achieving more benefits while still meeting the time and 145 

budget constraints. Note that not all resource constraints have to be completely used to attain the optimal 146 

solution. This hypothetical example is a small-scale problem with only two decision variables; the number 147 

of regular and severe patients seen.  Hence, they can be represented graphically with one variable on each 148 

axis.  149 

With the difficulty in representing larger problems graphically, we turn to mathematical approaches, such 150 

as the simplex algorithm to find the solutions. The simplex algorithm is a structured approach of 151 

navigating the boundary (represented as lines in two dimensions and hyperplanes in three or more 152 

dimensions) of the feasibility space to arrive at the optimal solution. Table 1 summarizes the main 153 

components of the example and notes several other dimensions of complexity (linear vs nonlinear, 154 

deterministic vs stochastic, static vs dynamic, discrete/integer vs continuous) that can be incorporated 155 

into constrained optimization models. 156 

  157 
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Figure 1. Graphical Representation of Solving a Simple Integer Programming Problem 158 

  159 

The mathematical formulation of the model is as follows: 160 

 161 

Max  fR xR + fL xL   (objective function) 162 

subject to cR xR + cL xL ≤ B  (budget constraint) 163 

tR xR + tL xL ≤ T   (time constraint) 164 

xR ,xL ≥ 0 and integer  (decision variables) 165 

 166 

Where: 167 

cR,cL= cost of regular and severe patients, respectively 168 

B = total budget available 169 

tR,tL= time to see regular and severe patients, respectively 170 

T = total time available 171 

fR,fL= health benefits of regular and severe patients, respectively 172 

xR,xL= number of regular and severe patients, respectively 173 

 174 

In the current version of the problem, the parameters are: 175 

fR = 2 health benefit units,  fL = 3 health benefit units 176 

cR = $25,  cL = $50, B = $150 177 

tR =0.25 hours,  tL = 0.25 hours, T = 1 hour 178 

 179 

So the model is as follows: 180 

 181 

Max  2 xR + 3xL   (objective function) 182 

subject to 25xR + 50xL ≤ 150  (budget constraint) 183 

0.25xR + 0.25xL ≤ 1  (time constraint) 184 

xR ,xL ≥ 0 and integer 185 

 186 

As described above, Figure 1 illustrates the graphical solution to this model.  However, problems with 187 

higher dimensionality must use mathematical algorithms to identify the optimal solution.  The problem 188 

described above falls into the category of linear optimization, because although the constraints and the 189 

objective function are linear from an algebraic standpoint, the decision variables must be in the form of 190 

integers. As it will be discussed further in section 5, there are other optimization modelling frameworks, 191 

such as combinatorial, nonlinear, stochastic and dynamic optimization.  192 

As the algorithms for integer optimization problems can take much longer to solve computationally than 193 

those for linear optimization problems, one alternative is to set the integer optimization problem up and 194 

solve it as a linear one. If fractional values are obtained, the nearest feasible integers can be used as the 195 

final solution.  This should be done with caution, however. First, rounding the solution to the nearest 196 

integers can result in an infeasible solution or, and second, even if the rounded solution is feasible, it may 197 

not be the optimal solution to the original integer optimization problem.  Nonlinear optimization is 198 

suitable when the constraints or the objective function are non-linear. In problems, where there is 199 

uncertainty, such as the estimated health benefit of each patient might receive in the above example, 200 

stochastic optimization techniques can be used.  201 

Dynamic optimization (known commonly as dynamic programming) formulation might be useful when 202 

the optimization problem is not static, that the problem context and parameters change in time and there 203 

is an interdependency among the decisions at different time periods (for instance, when decisions made at 204 

a given time interval, say number of patients to be seen now, affects the decisions for other time periods, 205 
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such as the number of patients to be seen tomorrow).  Table 1 summarizes the model components in the 206 

hypothetical problem, relates it to health services with examples and identifies the specific terminology. 207 

Table 1.  Model Summary and Extensions   208 

  209 

4. Problems That Can Be Tackled with Constrained Optimization Approaches  210 

 211 

In this section, we list several areas within health care where constrained optimization methods have been 212 

used in health services.  The selected examples do not represent a comprehensive picture of this field, but 213 

provide the reader a sense of what is possible.  In Table 2, we compare problems using the terminology of 214 

the previous section, with respect to decision makers, decisions, objectives, and constraints. 215 

Table 2.  Examples of Health Care Decisions for which Constrained Optimization is 216 

Applicable 217 

5. Steps in a Constrained Optimization Process  218 

 219 

An overview of the main steps involved in a constrained optimization process [33] is described here and 220 

presented in Table 3. Some of the steps are common to other types of modeling methods. It is important to 221 

emphasize that the process of optimization is iterative, rather than comprising a strictly sequential set of 222 

steps. 223 

a) Problem structuring 224 

 225 

This involves specifying the objective, i.e. goal, and identifying the decision variables, parameters and the 226 

constraints involved. These can be specified using words, ideally in non-technical language so that the 227 

optimization problem is easily understood. This step needs to be performed in collaboration with all the 228 

relevant stakeholders, including decision makers, to ensure all aspects of the optimization problem are 229 

captured.  As with any modeling technique, it is also crucial to surface key modeling assumptions and 230 

appraise them for plausibility and materiality. 231 

b) Mathematical formulation 232 

 233 

After the optimization problem is specified in words, it needs to be converted into mathematical notation. 234 

The standard mathematical notation for any optimization problem involves specifying the objective 235 

function and constraint(s) using decision variables and parameters. This also involves specifying whether 236 

the goal is to maximize or minimize the objective function. The standard notation for any optimization 237 

problem, assuming the goal is to maximize the objective, is as shown below: 238 

Maximize z=f(x1, x2, …. xn, p1, p2, …. pk) 239 

subject to 240 

cj(x1, x2, …. xn, p1, p2, …. pk)≤Cj 241 

for j=1,2,..m 242 

where, x1, x2, …. xn are the decision variables, f(x1, x2, …. xn) is the objective function; and cj(x1, x2, …. xn, p1, 243 

p2, …. pk)≤Cj represent the constraints. Note that the constraints can include both inequality and equality 244 

constraints and that the objective function and the constraints also include parameters p1, p2, …. pk, which 245 

are not varied in the optimization problem. Specification of the optimization problem in this mathematical 246 

notation allows clear identification of the type (and number) of decision variables, parameters and the 247 

constraints. Describing the model in mathematical form will be useful to support model development. 248 

c) Model development 249 

 250 
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The next step after mathematical formulation is model development. Model development involves solving 251 

the mathematical problem described in the previous step, and often performed iteratively.   The model 252 

should estimate the objective function and the left hand side (LHS) values of the constraints, using the 253 

decision variables and parameters as inputs.  The complexity of the model can vary widely. Similar to 254 

other types of modeling, the complexity of the model will depend on the outputs required, the level of 255 

detail included in the model, whether it is linear or non-linear, stochastic or deterministic, static or 256 

dynamic.  257 

d) Perform model validation 258 

 259 

As with any modeling, it is important to ensure that the model developed represents reality with an 260 

acceptable degree of fidelity [33]. The requirements of model validation for optimization are more 261 

stringent than for, for example, simulation models, due to the need for the model to be valid for all 262 

possible combinations of the decision variables. Thus, appropriate caution needs to be taken to ensure 263 

that the model assumptions are valid and that the model produces sensible results for the different 264 

scenarios. At the very least, the validation should involve checking of the face validity (i.e. experts evaluate 265 

model structure, data sources, assumptions, and results), and verification or internal validity (i.e. checking 266 

accuracy of coding).  267 

e) Select optimization method 268 

This step involves choosing the appropriate optimization method, which is dependent on the type of 269 

optimization problem that is addressed.  Optimization problems can be broadly classified, depending 270 

upon the nature of the objective functions and the constraints-for example, into linear vs non-linear, 271 

deterministic vs stochastic, continuous vs discrete, or single vs multi-objective optimization. For instance, 272 

if the objective function and constraints consist of linear functions only, the corresponding problem is a  273 

linear optimization problem. Similarly, in deterministic optimization, the parameters used in the 274 

optimization problem are fixed while in stochastic optimization, uncertainty is incorporated. Optimization 275 

problems can be continuous (i.e. decision variables are allowed to have fractional values) or discrete (for 276 

example a hospital ward may be either open or closed; the number of CT scanners which a hospital buys 277 

must be a whole number).  278 

Most optimization problems have a single objective function, however when optimization problems have 279 

multiple conflicting objective functions, they are referred to as multi-objective optimization problems. The 280 

optimization method chosen needs to be in line with the type of optimization problem under 281 

consideration. Once the optimization problem type is clear (e.g. discrete or nonlinear), a number of texts 282 

may be consulted for details on solution methods appropriate for that problem type [33-36].  283 

Broadly speaking, optimization methods can be categorized into exact approaches and heuristic 284 

approaches. Exact approaches iteratively converge to an optimal solution. Examples of these include 285 

simplex methods for linear programming and the Newton method or interior point method for non-linear 286 

programming [34, 37]. Heuristic approaches provide approximate solutions to optimization problems 287 

when an exact approach is unavailable or is computationally expensive. Examples of these techniques 288 

include relaxation approaches, evolutionary algorithms (such as genetic algorithms), simulated annealing, 289 

swarm optimization, ant colony optimization, and tabu-search. Besides these two approaches (i.e. exact or 290 

heuristic), other methods are also available to tackle large-scale problems as well (e.g. decomposition of 291 

the large problems to smaller sub-problems). 292 

There are software programs that help with optimization; interested readers are referred to the website of 293 

INFORMS (www.informs.org) for a list of optimization software. The users need to specify, and more 294 

importantly understand, the parameters used as an input for these optimization algorithms (e.g., the 295 

termination criteria such as the level of convergence required or the number of iterations). 296 

http://www.informs.org/
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f) Perform optimization/sensitivity analysis 297 

Optimization involves systematically searching the feasible region for values of decision variables and 298 

evaluating the objective function, consecutively, to find a combination of decision variables that achieve 299 

the maximum or minimum value of the objective function, using specific algorithms. Once the 300 

optimization algorithm has finished running, in some cases, the identified solution can be checked to 301 

verify that it satisfies the “optimality conditions” (i.e. Karush-Kuhn-Tucker conditions) [38], which are the 302 

mathematical conditions that define the optimality. Once the optimality is confirmed, the results need to 303 

be interpreted.  304 

First, the results should be checked to see if there is actually a feasible solution to the optimization 305 

problem, i.e. whether there is a solution that satisfies all the constraints. If not, then the optimization 306 

problem needs to be adjusted, (e.g., relaxing some constraints or adding other decision variables) in order 307 

to broaden the feasible solution space. If a feasible optimal solution has been found, the results need to be 308 

understood – this involves interpretation of the results to check whether the optimal solution, i.e., values 309 

of decision variables, constraints and objective function makes sense.  310 

It is also good practice to repeat the optimization with different sets of starting decision variables to 311 

ensure the optimal solution is the global optimum rather than local optimum. Sometimes, there may be 312 

multiple optimal solutions for the same problem (i.e. multiple combinations of decision variables that 313 

provide the same optimal value of objective function). For multi-objective optimization problems (i.e. 314 

problems with two or more conflicting objectives), Pareto optimal solutions are constructed from which 315 

optimal solution can be identified based on the subjective preferences of the decision maker [39, 40]. 316 

It is good practice to run the optimization problem using different values of parameters, in order to verify 317 

the robustness of the optimization results. Sensitivity analysis is an important part of building confidence 318 

in an optimization model, addressing the structural and parametric uncertainties in the model by 319 

analyzing how the decision variables and optimum value react to changes in the parameters in the 320 

constraints and objective function, which ensures that the optimization model and its solution are good 321 

representations of the problem at hand.   322 

Sometimes a solution may be the mathematically optimal solution to the specified mathematical problem, 323 

but may not be practically implementable.  For example, the “optimal” set of nurse rosters may be 324 

unacceptable to staff as it involves breaking up existing teams, deploying staff with family responsibilities 325 

on night shifts, or reducing overtime pay to level where the employment is no longer attractive.  Analysts 326 

should resist the temptation to spring their optimal solution on unsuspecting stakeholders, expecting 327 

grateful acceptance: rather, those affected by the model should be kept in the loop through the modeling 328 

process. The optimal solution may come as a surprise: it is important to allow space in the modeling 329 

process to explore fully and openly concerns about whether the “optimal” solution is indeed the one the 330 

organization should implement.   331 

g) Report results 332 

 333 

The final optimal solution, and if applicable, the results of the sensitivity analyses should be reported. This 334 

will include the results of the optimum ‘objective function’ achieved and the set of ‘decision variables’ at 335 

which the optimal solution is found. Both the numerical values (i.e. the mathematical solution) and the 336 

physical interpretation, i.e., the non-technical text describing the meaning of numerical values, should be 337 

presented. The optimal solution identified can be contextualized in terms of how much ‘better’ it is 338 

compared to the current state. For example, the results can be presented as improvement in benefits such 339 

as QALYs or reduction in costs. 340 

  341 
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It is often necessary to report the optimization method used and the results of the ‘performance’ of the 342 

optimization algorithm, e.g., number of iterations to the solution, computational time, convergence level, 343 

etc. This is important as it helps users understand whether a particular algorithm can be used “online” in a 344 

responsive fashion, or only when there is significant time available, e.g. in a planning context.  Dashboards 345 

can be useful to visualize these benefits and communicate the insights gained from the optimal solution 346 

and sensitivity analyses.  347 

 348 

h) Decision making 349 

 350 

The final optimal solution and its implications for policy/service reconfiguration should be presented to all 351 

the relevant stakeholders. This typically involves a plan for amending the ‘decision variables’, (e.g., shift 352 

patterns, screening frequency--see Table 2 for examples of decision variables--to those identified in the 353 

optimal solution). Before an optimal solution can be implemented, it will require getting the ‘buy-in’ from 354 

the decision makers and all the stakeholders, e.g., frontline staff such as nurses, hospital managers, etc., to 355 

ensure that the numerical ‘optimal’ solution found can be operationalized in a ‘real’ clinical setting. It is 356 

important to have the involvement of decision makers throughout the whole optimization process to 357 

ensure that it does not become a purely numerical exercise, but rather something that is implemented in 358 

real life. After the decision is made, data should still be collected to assess the efficiency and demonstrate 359 

the benefits of the implementation of the optimal solution.   360 

 361 

If decision makers are not directly involved in model development they may choose not to implement the 362 

“optimal” solution as it comes from the model.  This is because the model may fail to capture key aspects 363 

of the problem (for example, the model may maximize aggregate health benefits but the decision maker 364 

may have a specific concern for health benefits for some disadvantaged subgroup).  This does not 365 

(necessarily) mean that the optimization modeling has not been useful – enabling a decision maker to see 366 

how much health benefit must be sacrificed to satisfy her equity objective may prove to be beneficial 367 

towards the overall objective.  After the decision is made the story does not come to an end: data should 368 

continue to be collected to demonstrate the benefits of whatever solution is implemented, as well as 369 

guiding future decision making.   370 

 371 

Table 3 presents the two different stages in optimization i.e. the modeling stage and optimization stage, 372 

highlighting that model development is necessary before optimization can be performed.  The goal of 373 

constrained optimization is to identify an optimal solution that maximizes or minimizes a particular 374 

objective subject to existing constraints. 375 

Table 3. Steps in an Optimization Process 376 

 377 

6. Relationship of Constrained Optimization to Related Fields 378 

 379 

The use of constrained optimization can be classified into two categories. The first category is the use of 380 

constrained optimization as a decision-making tool. The simple illustration in section 3 and all the 381 

examples in section 4 are considered to fall under this category. The second category is the use of 382 

constrained optimization as an auxiliary analysis tool. In this category, optimization is an embedded tool 383 

and the results of which are often not the end results of a decision problem, but rather they are used as 384 

inputs for other analysis/modeling methods (e.g. optimization used in the multiple criteria decision 385 

making; in calibrating the inputs for health economic or dynamic simulation models; in machine learning 386 

and other statistical analysis methods like solving regression models or propensity score matching).  387 

As a decision-making tool, optimization is complementary to other modeling methods such as health 388 

economic modeling, simulation modeling and descriptive, predictive (e.g. machine learning) and 389 



ISPOR Optimization Methods Emerging Good Practices Task Force Report 
 

11 

 

prescriptive analytics. Most modeling methods typically only evaluate a few different scenarios and 390 

determine a good scenario within the available options. In contrast, the aim of optimization methods is to 391 

efficiently identify the best solution overall, given the constraints. In the absence of using optimization 392 

methods, a brute force approach, in which all possible options are sequentially evaluated and the best 393 

solution is identified among them, might be possible for some problems. However, for most problems, it is 394 

too complex and too time consuming to identify and evaluate all possible options. Optimization methods 395 

and heuristic approaches might use efficient algorithms to identify the optimal solution quickly, which 396 

would otherwise be very difficult and time consuming.  397 

Also, model development using these other methods might be necessary before optimization, especially in 398 

situations where the objective function or constraints cannot be represented in a simple functional form. 399 

Thus, all models currently used in health care such as health economic models, dynamic simulation 400 

models and predictive analytics (including machine learning) can be used in conjunction with 401 

optimization methods. 402 

a) Constrained Optimization Methods Compared with Traditional Health Economic 403 

Modeling in Health Technology Assessments 404 

  405 

Constrained optimization methods differ substantially from health economic modeling methods 406 

traditionally used in health technology assessment processes [41]. The main difference between the two 407 

approaches is that traditional health economic modeling approaches, such as Markov models, are built to 408 

estimate the costs and effects of different diagnostic and treatment options.  If decision makers are basing 409 

their judgements on modeling results, they may not formally consider the constraints and resource 410 

implications in the system. Constrained optimization methods provide a structured approach to optimize 411 

the decision problem and to present the best alternatives given an optimization criterion, such as 412 

constrained budget or availability of resources.  413 

These differences have major implications.  There is an opportunity to learn from optimization methods to 414 

improve Health Technology Assessment (HTA) processes  [42-46]. Optimization is a valuable means of 415 

capturing the dynamics and complexity of the health system to inform decision making for several 416 

reasons.  Constrained optimization methods can:  417 

i. Explicitly take budget constraints into account - Informed decision making about resource 418 

allocation requires an external estimate of the decision-maker’s willingness to pay for a unit of 419 

health outcome – the threshold. Decision making based on traditional health economic models 420 

then relies on the principle that by repeatedly applying the threshold to individual HTA decisions, 421 

optimization of the allocation of health resources will be achieved.  422 

 423 

However, the focus of health economics (HE) is usually about relative efficiency without explicit 424 

consideration of budget because many jurisdictions do not explicitly implement a constrained 425 

budget nor do they employ mechanisms to evaluate retrospectively cost-effectiveness of medical 426 

technologies currently in use. 427 

ii. Address multiple resource constraints in the health system, such as resource capacity: Constrained 428 

optimization methods also allow consideration of the effect of other constraints in the health 429 

system, such as capacity or short-term inefficiencies. Capacity constraints are usually neglected in 430 

health economic models.  In HE models, the outcomes are central to decision makers while the 431 

process to arrive at these outcomes is most of the time ignored.  432 

 433 

For health policy makers and health care planners, such capacity considerations are critical and 434 

cannot be neglected. Likewise, some technologies are known for short-term inefficiencies, e.g., 435 

large equipment such as PET-MR imaging, are usually not taken into consideration.  It takes a 436 
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certain amount of time before a new device operates efficiently, and such short-term inefficiencies 437 

do influence implementation [47]. 438 

iii.  Account for system behavior and decisions over time: Traditional health economic models are 439 

often limited to informing a decision of a single technology at a single point in time. Health 440 

economic models with a clinical perspective, such as a whole disease model [48, 49], or a 441 

treatment sequencing model, may allow the full clinical pathway to be framed as a constrained 442 

optimization problem that accounts for both intended and unintended consequences of health 443 

system interventions over time with feedback mechanisms in the system.  444 

 445 

Each combination of decisions within the pathway can be a potential solution, constrained by the 446 

feasibility of each decision, e.g., the licensed indication for various treatments within a clinical 447 

pathway.  These whole disease and treatment sequencing models can evaluate alternative guidance 448 

configurations and report the performance in terms of an objective function (cost per QALY, net 449 

monetary benefit) [50, 51]. 450 

iv. Inform decision makers about implementability of solutions that are recommended:  Health 451 

economic models are not typically constrained – it is assumed that resources are available as 452 

required and are thus affordable, similarly the evidence used in the models come from controlled 453 

clinical settings, which are idealized settings compared to real clinical setting.  An advantage of 454 

constrained optimization is the ability to obtain optimal solutions to decision problems and have 455 

sensitivity analyses performed.  Such analyses inform decision makers about alternate realistic 456 

solutions that are feasible and close to the optimal solution. 457 

Thus, in some sense, classic health economics models are ‘hypothetical’ to illustrate the potential value as 458 

measured by a specific outcome with respect to cost, whereas optimization is focused on what can be 459 

achieved in an operational context. This suggests constrained optimization methods have great value for 460 

informing decisions about the ability to implement a clinical intervention, program, or policy as they 461 

actually consider these constraints in the modeling approach. 462 

 463 

b) Constrained Optimization Methods Compared with Dynamic Simulation Models 464 

 465 

Dynamic simulation modeling methods (DSMs), such as system dynamics, discrete event simulation and 466 

agent based modeling are used to design and develop mathematical representations, i.e., formal models, of 467 

the operation of processes and systems. They are used to experiment with and test interventions and 468 

scenarios and their consequences over time in order to advance the understanding of the system or 469 

process, communicate findings, and inform management and policy design [30-32, 52-54].  These 470 

methods have been broadly used in health applications [55-57].  471 

Unlike constrained optimization methods, DSMs do not produce a specific solution. Rather they allow for 472 

the evaluation of a range of possible or feasible scenarios or intervention options that may or may not 473 

improve the system’s performance. Constrained optimization methods, in general, seek to provide the 474 

answer to which of those options is the “best”.  Hence, the types of problems and questions that can be 475 

addressed with DSMs [30-32] are different from those that are addressed with optimization methods. 476 

However, both types of methods can be complementary to each other in helping us to better understand 477 

systems.  478 

Traditionally, constrained optimization methods have served two distinct purposes in DSM development. 479 

1) model calibration – fitting suitable model variables to past time series is discussed elsewhere [30-32]; 480 

2) evaluating a policy’s performance/effect relative to a criterion or set of criteria.  However, the 481 

complexity of DSMs compared to simple analytic models may render exact constrained optimization 482 

approaches cumbersome, inappropriate and potentially infeasible due to the large search space e.g., using 483 

methods of optimal control.    484 
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Due to this complexity, alternatives to exact approaches such as heuristic search strategies are available. 485 

Historically, these types of methods have been used in system dynamics and other DSMs. Due to their 486 

heuristic nature, there is no certainty of finding the “best” or optimal parameter set rather “good enough” 487 

solutions. Hence, the ranges assigned need careful consideration in order to get “good” solutions, i.e., 488 

prior knowledge of sensible ranges both from knowledge about the system and knowledge gained from 489 

model building.  490 

Optimization is used as part of system dynamics to gain insight about policy design and strategy design, 491 

particularly when the traditional analysis of feedback mechanisms becomes risky due to the large numbers 492 

of loops in a model [58]. Similar procedures to evaluate policies and strategies can be can be utilized in 493 

discrete event simulation (DES) and agent based modeling (ABM), e.g., simulated annealing algorithms 494 

and genetic algorithms. 495 

c) Constrained Optimization Methods as Part of Analytics 496 

Constrained optimization methods fall within the area of analytics as defined by the Institute for 497 

Operations Research and the Management Sciences (INFORMS, https://www.informs.org/Sites/Getting-498 

Started-With-Analytics). Analytics can be classified into: descriptive, predictive and prescriptive analytics 499 

(Figure 2), and discussed below. Constrained optimization methods are a special form of prescriptive 500 

analytics.   501 

i. Descriptive analytics concern the use of historical data to describe a phenomenon of interest—502 

with a particular focus on visual displays of patterns in the data. Descriptive analytics is 503 

differentiated from descriptive analysis which uses statistical methods to test hypotheses about 504 

relationships among variables in the data. Health services research typically uses theory and 505 

concepts to identify hypotheses, and historical data are used to test these hypotheses using 506 

statistical methods. Examples may include natural history of aging, disease progression, 507 

evaluation of clinical interventions, policy interventions, and many others. Traditional health 508 

services for the most part falls within the area of descriptive analytics. 509 

ii. Predictive analytics and machine learning focus on forecasting the future states of disease or 510 

states of systems. With the increased volume and dimensions of health care data, especially 511 

medical claims and electronic medical record data, and the ability to link to other information 512 

such as feeds from personal devices and socio demographic data, big data methods such as 513 

machine learning are garnering increased attention [59].  514 

Machine learning methods, such as predictive modeling and clustering, have an important 515 

intersection with constrained optimization methods.  Machine learning methods are valuable 516 

for addressing problems involving classification, as well as data dimension reduction issues. 517 

And maybe most importantly, optimization often needs forecasts and estimates as inputs, 518 

which can be obtained from the results of machine learning algorithms. A discussion of 519 

machine learning methods is beyond the scope of this paper.   520 

However, the interested reader will find a detailed introduction elsewhere [60, 61]. Machine 521 

learning has the ability to “mine” data sets and discover trends or patterns. These are often 522 

valuable to establish thresholds or parameter values in optimization models, where it is 523 

otherwise difficult to determine the values. Constrained optimization can also leverage the 524 

ability of machine learning to reduce high dimensionality of data, say with thousands or 525 

millions of variables to key variables. 526 

iii. Prescriptive analytics uses the understanding of systems, both the historical and future based 527 

on historical (descriptive) and predictive analytics respectively to determine future course of 528 

action/decisions. Traditional (without optimization) clinical trials and interventions fall under 529 

the category of prescriptive analytics (“Change what will happen” in figure). Constrained 530 

optimization is a specialized form of prescriptive analytics, since it helps with determining the 531 

optimal decision or course of action in the presence of constraints 532 

(https://www.informs.org/Sites/Getting-Started-With-Analytics/Analytics-Success-Stories).  533 

 534 

https://www.informs.org/Sites/Getting-Started-With-Analytics
https://www.informs.org/Sites/Getting-Started-With-Analytics
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Figure 2. Descriptive, Predictive, and Prescriptive Analytics. 535 

 536 

7. Summary and Conclusions   537 

 538 

This is the first report of the ISPOR Constrained Optimization Methods Emerging Good Practices Task 539 

Force.  It introduces readers to the application of constrained optimization methods to health care systems 540 

and patient outcomes research problems.  Such methods provide a means of identifying the best policy 541 

choice or clinical intervention given a specific goal and given a specified set of constraints.  Constrained 542 

optimization methods are already widely used in health care in areas such as choosing the optimal location 543 

for new facilities, making the most efficient use of operating room capacity, etc.   544 

However, they have been less widely used for decision making about clinical interventions for patients.  545 

Constrained optimization methods are highly complementary to traditional health economic modeling 546 

methods and dynamic simulation modeling—providing a systematic and efficient method for selecting the 547 

best policy or clinical alternative in the face of large numbers of decision variables, constraints, and 548 

potential solutions.  As health care data continues to rapidly evolve in terms of volume, velocity, and 549 

complexity, we expect that machine learning techniques will also be increasingly used for the development 550 

of models that can subsequently be optimized. 551 

In this report, we introduce readers to the vocabulary of constrained optimization models and outline a 552 

broad set of models available to analysts for a range of health care problems.   We illustrate the 553 

formulation of a linear program to maximize the health benefit generated in treating a mix of “regular” 554 

and “severe” patients subject to time and budget constraints and solve the problem graphically.  Although 555 

simple, this example illustrates many of the key features of constrained optimization problems that would 556 

commonly be encountered in health care.   557 

In the second task force report, we describe several case studies that illustrate the formulation, estimation, 558 

evaluation, and use of constrained optimization models.  The purpose is to illustrate actual applications of 559 

constrained optimization problems in health care that are more complex than the simple example 560 

described in the current paper and make recommendations on emerging good practices for the use of 561 

optimization methods in health care research. 562 

  563 
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Figure 1. Graphical Representation of Solving a Simple Integer Programming Problem 685 
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Figure 2. Descriptive, Predictive, and Prescriptive Analytics. 690 
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Table 1.  Model Summary and Extensions   694 

 695 

 696 
 Hypothetical problem Real-life Health Services Terminology 

Aim  Maximize health/health 

care benefits 

Maximize health/health care 

benefits 

Objective 

function 

Options 

available 

Regular or severe patients Service lines, case mix, service 

mix, etc. 

Decision 

variables 

Constraints Total cost < $15 

Total time < 1 hour 

Budget constraint 

Time constraint 

Resource constraint (e.g. staff, 

beds, etc.) 

Constraints 

Evidence 

base  

Cost of each patient, 

health benefits of each 

patient and the time taken 

for consultation 

Costs, health benefits, and 

other relevant data associated 

with each intervention to be 

selected  

Model (to 

determine the 

objective 

function and 

constraints) 

Complexity Static 

The problem does not 

have a time component; 

decision made in one time 

period does not affect 

decisions made in another 

 

 

 

 

Deterministic 

All the information is 

assumed to be certain (e.g  

Cost of each patients, 

health benefits of each 

patient and the time taken 

for consultation) 

 

Linear (i.e. each 

additional patient costs 

the same and achieves 

same health benefits) 

 

 

 

Integer/discrete 

The decision variables 

(number of patients) can 

only take discrete and 

integer values 

Dynamic  

The optimization problem and 

parameters may change in 

different time points, and the 

decision made at any point in 

time can affect decisions at 

later time points (e.g. there can 

be a capacity constraint defined 

on 2 months, whereas the 

planning cycle is 1 month) 

 

Stochastic 

Know that the information is 

uncertain (i.e. uncertainty in 

the costs and benefits of the 

interventions) 

 

 

Non-linear (objective function 
or constraints may have a non-
linear relationship with the 
model parameters, e.g. total 
costs and QALYs typically have 
a non-linear relationship with 
the model parameters) 
 
Continuous 

The decision variables can take 

fractional values (e.g. number 

of hours) 

Optimization 

method 
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Table 2.  Examples of Health Care Decisions for which Constrained Optimization is 697 

Applicable 698 

Type of health 
care problem 

Typical 
decision 
makers 

Typical decisions Typical 
objectives 

Typical 
constraints 

Resource 
allocation within 
and across disease 
programs 

Health 
authorities, 
insurance funds 

List of interventions 
to be funded 

Maximize 
population health 

Overall health 
budget, other legal 
constraints for 
equity 

Resource 
allocation for 
infectious disease 
management 

Public health 
agencies, health 
protection 
agencies 

Optimal vaccination 
coverage level 

Minimize disease 
outbreaks and total 
costs  

Availability of 
medicines, disease 
dynamics of the 
epidemic 

Allocation of 
donated organs 

Organ banks, 
transplant 
service centers 

Matching of organs 
and recipients 

Maximize 
matching of organ 
donors with 
potential recipients 

Every organ can be 
received by at most 
one person 

Radiation 
treatment 
planning 

Radiation 
therapy 
providers 

Positioning and 
intensity of radiation 
beams 

Minimizing the 
radiation on 
healthy anatomy 

Tumor coverage 
and restriction on 
total average 
dosage 

Disease 
management  
models 

Leads for a 
given disease 
management 
plan  

Best interventions to 
be funded, best timing 
for the initiation of a 
medication, best 
screening policies 

Identify the best 
plan using a whole 
disease model, 
maximizing QALYs 

Budget for a given 
disease or capacity 
constraints for 
healthcare 
providers 

Workforce 
planning/ Staffing 
/ Shift template 
optimization 
 

Hospital 
managers, 
all medical 
departments 
(e.g., ED, 
nursing) 

Number of staff at 
different hours of the 
day, shift times 

Increase efficiency 
and maximize 
utilization of 
healthcare staff 

Availability of staff, 
human factors, 
state laws (e.g., 
nurse-to-patient 
ratios), budget 

Inpatient 
scheduling 

Operation 
room/ ICU 
planners 

Detailed schedules Minimize waiting 
time 

Availability of 
beds, staff 

Outpatient 
scheduling 

Clinical 
department 
managers 

Detailed schedules Minimize over- and 
under-utilization of 
health care  staff 

Availability of 
appointment slots 

Hospital facility 
location 
 

Strategic health 
planners 

Set of physical sites 
for hospitals 

Ensure equitable 
access to hospitals 

Maximum 
acceptable travel 
time to reach a 
hospital 
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Table 3. Steps in an Optimization Process 701 

Stage Step Description 

Modeling 

Problem structuring Specify the objective and constraints, identify decision 
variables and parameters, and list and appraise model 
assumptions 

Mathematical formulation Present the objective function and constraints in 
mathematical notation using decision variables and 
parameters 

Model development Develop the model; representing the objective function 
and constraints in mathematical notation using 
decision variables and parameters 

Model validation Ensure the model is appropriate for evaluating all 
possible scenarios (i.e. different combinations of 
decision variables and parameters) 

Optimization 

Select optimization method 
 

Choose an appropriate optimization method and 
algorithm based on the characteristics of the problem 

Perform 
optimization/sensitivity 
analysis 

Use the optimization algorithm to search for the 
optimal solution and examine performance of optimal 
solution for reasonable values of parameters 

 Report results Report the results of optimal solution and sensitivity 
analyses 

Decision making 
 

Interpret the optimal solution and use it for decision 
making 
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