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a  b  s  t  r a  c t

Artificial photosynthesis  driven by  inorganic photocatalysts  offers  a  promising  route  to renewable  solar

fuels,  however efficient  CO2 photoreduction  remains  a challenge.  A  family  of hierarchical nanocompos-

ites,  comprising  P25 nanoparticles  encapsulated  within  microporous CoAl-layered double hydroxides

(CoAl-LDHs)  were  prepared via  a one-pot  hydrothermal synthesis.  Heterojunction  formation  between

the  visible  light  absorbing  CoAl-LDH  and UV light  absorbing P25 semiconductors  extends  utilisation  of

the  solar spectrum,  while  the  solid basicity  of the  CoAl-LDH  increases CO2 availability  at  photocatalytic

surfaces.  Matching  of the  semiconductor  band  structures  and  strong donor–acceptor coupling  improves

photoinduced  charge  carrier  separation  and  transfer  via  the  heterojunction.  Hierarchical  P25@CoAl-LDH

nanocomposites exhibit good activity  and  selectivity  (>90%) for  aqueous CO2 photoreduction  to CO, with-

out  a  sacrificial  hole  acceptor. This  represents a facile  and cost-effective  strategy  for  the  design  and

development  of LDH-based  nanomaterials  for  efficient photocatalysis  for  renewable  solar fuel  production

from particularly  CO2 and  water.

© 2017  The Authors.  Published by  Elsevier  B.V.  This is an open  access article  under  the  CC  BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Solar fuels production from CO2 and water via  artificial photo-

synthesis is considered a high risk/high reward strategy to deliver

hydrogen and hydrocarbons as sustainable feedstocks to support

global energy needs and security and mitigate anthropogenic cli-

mate change [1–3].  Semiconductor nanostructures are promising

inorganic mimics of biological photocatalysts in this regard, offer-

ing diverse and tunable electronic, optical and physical properties

[4–6]. Titania is the best known and most widely studied inorganic

photocatalyst due to its abundance, long term photostability, estab-

lished redox chemistry, UV absorption, and low toxicity [7].  The low

cost and commercial availability of P25 titania from Evonik (previ-

ously Degussa) has resulted in  its informal adoption by  the scientific

community as the prototypical photocatalyst against which to

benchmark a wide range of light-driven reactions [8]. However,

P25, a mixture of anatase and rutile nanocrystals, is  a wide bandgap

semiconductor and hence on its own offers limited potential for

∗ Corresponding author.
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solar driven photocatalysis for which only 4% of incident radiation

is UV light [8,9]. A range of approaches have been adopted to impart

visible light absorption by titania, including band gap modifica-

tion through doping or changing nanocrystal dimensions [9–12].

Alternatively, titania can be combined with narrow band gap semi-

conductors to extend light absorption into the visible region and

hence improve photocatalytic efficiency [13,14] for e.g. photocat-

alytic H2 evolution from water [15] or alcoholic solution [16] and

organic pollutant degradation [14,17] through heterojunction for-

mation.

CO2 photoreduction presents additional challenges due to  its

weak adsorption over many inorganic photocatalysts, poor sol-

ubility in  aqueous systems, common requirement for sacrificial

hole acceptors to  drive water oxidation, and slow multi-electron

transfer kinetics necessary to yield CO, oxygenate (HCOOH or

CH3OH)  or hydrocarbon (CH4, CxH2x-2.) products [6,13,18].  A wide

variety of porous, low dimensional, layered and/or hybrid inor-

ganic nanomaterials have been investigated as photocatalysts for

CO2 reduction [19,20].  Layered double hydroxides (LDHs) are

nanostructured, two  dimensional layered solids of general for-

mula [M2+
1-xM3+

x(OH)2]y+(Az−)·nH2O where M2+ is commonly

Ca2+,  Mg2+,  Ni2+,  Zn2+ or Co2+ and M3+ is Al3+ or Fe3+,  y =  x, and

http://dx.doi.org/10.1016/j.apcatb.2017.03.006

0926-3373/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the  CC  BY license (http://creativecommons.org/licenses/by/4.0/).

dx.doi.org/10.1016/j.apcatb.2017.03.006
http://www.sciencedirect.com/science/journal/09263373
http://www.elsevier.com/locate/apcatb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apcatb.2017.03.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:a.f.lee@aston.ac.uk
dx.doi.org/10.1016/j.apcatb.2017.03.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


S. Kumar et al. / Applied Catalysis B:  Environmental 209 (2017) 394–404 395

A is a charge-balancing anion, typically a  carbonate [21,22].  Their

nanoporous architecture, earth abundant components, (relative)

ease of scale-up, and tunable, narrow band gap semiconduc-

tor properties makes them attractive visible light photocatalysts

[23–25].  However, pristine LDHs generally exhibit poor quantum

efficiency under solar irradiation due to slow charge carrier mobil-

ity and high rates of electron-hole recombination [23,26].  Recent

theoretical and experimental observations of conventional MgAl-,

CoAl-, and ZnAl-LDHs suggest CoAl-LDH as an efficient photocat-

alyst for the oxygen evolution reaction due to the strong driving

force for its photogenerated holes to overcome the overpoten-

tial for water splitting [27].  Considering that TiO2 nanoparticles

are good acceptors of photoinduced electrons [28,29], the con-

struction of a heterojunction between P25 and CoAl-LDH would

provide an effective way to drive both oxidation and reduction

reactions without recourse to sacrificial agent, while the intrin-

sic basicity of the CoAl-LDH would enhance CO2 adsorption at the

composite photocatalyst surface. Dou et al. reported the construc-

tion of one such heterojunction arrangement, comprising large

(250 nm)  hollow TiO2 nanospheres encapsulated by  a  CoAl-LDH

shell, for photocatalytic water oxidation employing a sacrificial

AgNO3 electron acceptor [30]. Unfortunately, this material failed to

drive both reduction and oxidation reactions without the sacrificial

agent, and the heterojunction interfacial contact area was  rather

limited due to the core-shell morphology. There are a few other

reports on TiO2/LDHs heterostructures for photocatalysis, and

those mostly for organic pollutant degradation (TiO2/MgAl-LDH

[31], TiO2/ZnAl-LDH [32],  TiO2/CuMgAl-LDH [33], TiO2/NiAl-LDH

[34]) and O2 evolution (TiO2@ZnCr-LDH [24]) via water oxidation

in the presence of sacrificial agent. The homogeneous dispersion

of commercially available UV light-responsive P25 nanoparticles

throughout a visible-light-responsive CoAl-LDH could significantly

enhance the hetero/nanojunction contact area between semicon-

ductor components, and thereby offer a low cost and efficient

strategy to CO2 photoreduction without recourse to a  sacrificial

agent.

Herein we report the one-pot hydrothermal synthesis of

P25@CoAl-LDH nanocomposites for the aqueous phase photore-

duction of CO2 in the absence of sacrificial agents. A strong synergy

is observed between semiconductor components, conferring high

selectivity for CO, extended light absorption, suppressed electron-

hole recombination, and a  good quantum efficiency compared with

P25 or CoAl-LDH. This synthetic strategy could be extended to

a variety of photocatalytic applications for LDH nanocomposites

including water splitting and depollution to address energy con-

version and environmental issues.

2. Experimental

2.1. Material synthesis

Reagents Co(NO3)2·6H2O (Sigma, 99%), Al(NO3)3·9H2O  (Sigma,

99%), P25 (Sigma), NH4F  (Sigma, 99%) and urea (Sigma, 99.9%) were

used as received. All other chemical reagents used in  this work were

analytical grade and used without further purification. Hierarchi-

cal P25@CoAl-LDH nanocomposites were prepared by a modified

one-pot hydrothermal method (employing a urea decomposition

method previously used to prepare Au/NiAl-LDH oxidation cat-

alysts [35]), with NH4F as a  structure-directing agent. Briefly, a

known mass of P25 was dispersed in  deionized water by ultrasoni-

cation (Elmasonic S100H, 5 min/550 W/50 Hz), to which 0.006 mols

Co(NO3)2·6H2O, 0.002 mols Al(NO3)3·9H2O, 0.04 mols urea and

0.01 mols NH4F were dissolved. The resulting suspension was aged

in a 100 ml  Teflon-lined autoclave at 120 ◦C  for 24 h. The precipi-

tate obtained was washed with deionized water until the washings

were pH neutral, then dried overnight at 60 ◦C in vacuum to  yield

the final P25@CoAl-LDH material. The mass of P25 in  the initial

suspension was varied to  produce P25@CoAl-LDH nanocompos-

ites containing between 0 and 40 wt%  titania. A similar method,

omitting P25, was  adopted to prepare a  pure CoAl-LDH reference.

2.2. Characterization

Powder X-ray diffraction (XRD) patterns were recorded on a

Bruker-AXS D8  ADVANCE diffractometer operated at 40 kV and

40 mA  using Cu K� radiation (0.15418 nm) between 10–80◦ in

0.02◦ steps. X-ray photoelectron spectroscopy was  performed on

a  Kratos Axis HSi spectrometer with a  monochromated Al K�

X-ray source operated at 90 W and magnetic charge neutral-

izer. Spectral processing was performed using CasaXPS version

2.3.16, with energy referencing to adventitious carbon at 284.6 eV,

and surface compositions and peak fitting derived using appro-

priate instrumental response factors and common line shapes

for each element. Bulk elemental analysis was performed by

energy-dispersive X-ray spectroscopy (EDX) using an Oxford INCA

EDX detector installed on a  JEOL JSM-7000F field-emission SEM

microscope operating at 20 kV accelerating voltage, which was

used to image catalyst morphology. Nanostructure details were

visualized on a JEOL JEM-2100 TEM microscope operating at

200 kV accelerating voltage. Porosimetry was performed through

N2 physisorption at 77 K using a  Quantachrome NOVA 4000e

porosimeter. Brunauer–Emmett–Teller (BET) surface areas were

calculated over the relative pressure range 0.01–0.2. Pore size

distributions were calculated by applying the BJH method to  des-

orption isotherms for relative pressures >0.35. CO2 chemisorption

was performed on samples degassed at 120 ◦C  using a  He carrier gas

on a  Quantachrome ChemBET PULSARTMTPR/TPD instrument. Dif-

fuse reflectance infra-red Fourier transform (DRIFT) spectra were

obtained on samples diluted in KBr using a  Thermo Scientific Nico-

let iS50 FT-IR spectrometer. Diffuse reflectance UV–vis spectra

(DRUVS) were measured on a  Thermo Scientific Evo220 spectrom-

eter using an integrating sphere and KBr as standard and samples

diluted in KBr. Band gaps were calculated from Eq.  (1) [36,37].

�h� =  A
(

h� − Eg

)

�

2 (1)

where, �,  Eg and A  are  the absorption coefficient, optical band gap

energy and a proportionality constant respectively, while the vari-

able � depends on the nature of the optical transition (direct or

indirect) during photon absorption. The absorption coefficient �

was calculated from the Kubelka–Munk function given in  Eq. (2):

� =
(1  −  R)2

2R
(2)

while Eg was estimated from a  Tauc plot of (�h�)
1
2 versus h � from

a tangent to  the band edge, the exponent reflecting anatase TiO2

and CoAl-LDH are  indirect band gap semiconductors. Steady state

photoluminescence (PL)  spectra of samples were recorded on a  F-

4500FL spectrometer at an excitation wavelength of 380 nm. PL

lifetime data were collected on an Edinburgh Photonics FLS 980

spectrometer using a  picosecond pulsed LED light with an excita-

tion wavelength of 380 nm.

2.3. Photocatalysis measurements

Photocatalytic CO2 reduction was  carried out at room temper-

ature in a sealed 320 ml stainless steel photoreactor with a quartz

window and a  300 W Xe  light source. 50 mg of sample was dis-

persed in 5 ml of water by ultrasonication for 5 min  and charged

in the photoreactor. Prior to  irradiation, the reaction mixture was

purged with bubbling CO2 at 1 bar for 2 h at 6 ml min−1 in  the dark
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Scheme 1. Preparation route to P25 encapsulated hierarchical CoAl-LDH hetero/nanostructures.

to degas air from the solution and saturate with CO2. The reaction

mixture was subsequently continuously irradiated with UV–vis

light using a 300 W Xe Toption Group. Ltd TOP-X300 lamp (spec-

tral output shown in  Fig. S1), and aliquots of the reaction mixture

periodically withdrawn with a  1 ml air-tight gas syringe for analy-

sis on a Shimadzu Tracera GC-2010 Plus chromatograph fitted with

a Carboxen1010 (30  m × 0.53 mm  × 0.1 �m)  column with a  He car-

rier gas and Barrier Ionization Detector. Liquid products were also

analysed periodically from separate aliquots on an Agilent 1260

HPLC fitted with a  Hi Plex column, however no carbon-containing

liquid products were detected in this study. P25 was  pre-dried in

air at 200 ◦C for 4  h prior to use in  reference experiments to remove

trace carbonaceous residues, which resulted in small quantities of

evolved CO and CH4 during control experiments under nitrogen

in the absence of CO2. Selectivity for reactively-formed CO was

calculated from Eq. (3) below:

COselectivity/% =
2NCO

2NCO +  2NH2

x100 (3)

where NCO and NH2 are the yields of reactively-formed CO and

H2 respectively. Apparent quantum yields (AQYs) were calculated

from Eq. (4) as follows [37]:

AQY/% =
Number of reacted electrons

Number of incident photons
× 100 (4)

at 365 and 475 nm employing band pass filters, as detailed in the

supporting information.

3. Results and discussion

The one-pot synthesis of the P25@CoAl-LDH nanocomposites is

summarized in Scheme 1, and analogous to the report of Du et al. for

Au@NiAl-LDH, is proposed to occur through the rapid precipitation

of Al3+ cations accompanying urea hydrolysis resulting in Al(OH)3

nucleation around P25 nanoparticles, and parallel complexation of

Co2+ and F− ions which regulates the availability of Co2+ ions in

solution resulting in the subsequent slow dissolution of Al(OH)3

and growth of CoAl-LDH platelets around titania.

The morphology of P25, CoAl-LDH and 20 wt% P25@CoAl-

LDH were investigated by SEM and TEM. Fig. 1a  and b shows

that the 20 wt% P25@CoAl-LDH nanocomposite exhibits the sand

rose structure typical of layered double hydroxides, comprising

∼4–5 �m spherical agglomerates of two dimensional CoAl-LDH

nanoplatelets approximately 20 nm thick and several hundred

nanometers across (Fig. S2a). TEM revealed additional struc-

tural features, namely irregular nanoparticles spanning 20–50 nm

indicative of P25 (Fig. S2b), uniformly dispersed throughout, and

decorating, the nanoplatelets (Fig. 1c–e). Elemental EDX mapping

confirmed a relatively high and uniform distribution of titania

throughout the CoAl-LDH matrix (Fig. S2). High resolution imaging

confirms existence of a well-defined titania- CoAl-LDH heterojunc-

tion interface, with lattice fringes consistent with the CoAl-LDH

layer (0.55 nm)  [24] and (001) plane of anatase TiO2 nanoparticles

(0.24 nm)  [38].

Powder XRD confirmed that the nanocomposites contained both

crystalline CoAl-LDH and P25 components for all titania loadings

(Fig. S3).  The CoAl-LDH was  evidenced by reflections consistent

with (003), (006), (009), (012), (018), (110), and (113), characteristic

of the pure CoAl-LDH reference (PDF-#38-0487) with an interlayer

spacing of 0.748 nm (d003), indicating the presence of  interlayer

CO3
2− and water [39],  with additional reflections characteristic of

anatase (PDF-#21-1272) and rutile (PDF-#21-1276) titania. Dimen-

sions of both titania and CoAl-LDH crystallites were independent of

titania loading (Table 1), confirming that the nanocomposite com-

position could be varied over a wide range (10–40 wt%) without

altering the phase or morphology of either component. The mea-

sured TEM thickness of a  cation layer in the reference CoAl-LDH was

0.55 nm;  combining this with the theoretical ionic radius of  CO3
2−

of 0.18 nm yields a predicted basal spacing (sum of a CoAl sheet and

the interlayer gap) of 0.74 nm,  consistent with that experimentally

obtained by XRD of 0.75 nm for both the reference CoAl-LDH and the

20 wt% P25@CoAl-LDH nanocomposite. A physical mixture of P25

and CoAl-LDH reference materials in  a  1:4 mass ratio (i.e. 20 wt%

P25) exhibited an almost identical diffraction pattern to  the equiv-

alent nanocomposite, highlighting that P25 encapsulation did not

affect the crystallinity of either component.

Surface properties of the P25@CoAl-LDH nanocomposites were

subsequently explored by DRIFTS (Fig. S4),  which confirmed the

presence of vibrational bands at 3490 and 1560 cm−1, identical

to  those observed for the CoAl-LDH reference, and consequently

assigned to the O  H  stretch and bending modes of interlayer water

molecules, respectively, and additional bands at 1355 and 770 cm−1

likewise attributed to respective stretch and bending modes of

interlayer CO3
2− anions [39–41]. The P25 reference exhibited a

strong band around 700 cm−1 associated with Ti O stretches and

bending modes, and a  weak feature at 3300 cm−1 corresponding

to the O H stretch of physisorbed water [42]. Surface function-

alities on the physical mixture mirrored those of the equivalent

nanocomposite.

Nitrogen porosimetry of P25@CoAl-LDH revealed type II

adsorption-desorption isotherms characteristic of macroporous

materials (or non-porous materials possessing large interparticle

voids) with H3-type hysteresis loops (Fig. S5). The magnitude of the

hysteresis was  inversely proportional to the P25 content, reflecting

its primary origin in  the CoAl-LDH component; according to IUPAC

classification, H3 hysteresis loops arise from non-rigid aggregates

of plate-like particles such as microporous clays [43].  Despite their

evolving porosity, all nanocomposites exhibited similar BET sur-

face areas around 55 m2 g−1 (Table 1),  with negligible difference

between the 20 wt% P25@CoAl-LDH nanocomposite and a  simple

physical mixture of the two components in  the same mass ratio.

Optical properties of DRUVS of the 20 wt% P25@CoAl-LDH

nanocomposite and P25 and CoAl-LDH reference materials are

compared in  Fig. 2. P25 showed the expected strong absorption

band in the UV centered around 300 nm and subsequent sharp

cut-off >385 nm reflecting its extremely poor visible photoactiv-

ity,  corresponding to  an optical band gap of 3.20 eV (Fig. S6a). In

contrast, the CoAl-LDH reference displayed two distinct absorp-

tion features, including a broad band in  the visible region centered

around 500 nm attributable to d–d transitions of octahedral Co2+

within the CoAl-LDH layer [44]. The d  states of Co2+ are split into t2g
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Fig. 1. Low resolution (a,  c)  SEM and (b, d) TEM, and (e)  high resolution SEM, and (f) TEM images of pure CoAl-LDH and 20 wt% P25@CoAl-LDH, respectively.

Table 1

Physicochemical properties of P25@CoAl-LDH nanocomposites.

Material Co:Al ratioa P25b/wt% Crystallite sizeb /nm Surface areac/m2 g-1 CO2 capacityd/�mol g-1

LDH P25

CoAl-LDH 2.94:1 – 20 – 66 13

10wt%P25@CoAl-LDH 2.89:1 9 21 26(A), 37(R) 63 11

20wt%P25@CoAl-LDH 2.91:1 21 22 22(A), 34(R) 57 10

20wt%P25 + CoAl-LDH phy.mix 2.93:1 20 20 22 (A)34 (R) 60 8

30wt%P25@CoAl-LDH 2.87:1 29 22 24(A), 35(R) 53 8

40wt%P25@LDH 2.92:1 41 24 24(A), 38(R) 53 7

P25  – – – 22(A), 33(R) 54 5

a ICP.
b XRD (A = anatase, R  =  rutile).
c Porosimetry.
d Chemisorption.
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Fig. 2. DRUV spectra of 20 wt% P25@CoAl-LDH and P25 and CoAl-LDH reference

materials. Spectrum of a  physical mixture of 20 wt%  P25 + CoAl-LDH shown for

comparison.

and eg orbitals in an octahedral environment, with further splitting

of t2g and eg orbitals due to spin–spin exchange interactions [45,46].

In  ligand field theory, the ground state of Co2+ d7 is 4T1g (4F) and the

first excited state is 4T1g (4P). However there are three spin-allowed

transitions, 4T2g →  4T1g (F), 4A2g → 4T1g (F) and 4T1g (P) → 4T1g (F)

which give rise to the broad visible absorption band for CoAl-LDH in

Fig. 2. The associated optical band gap for CoAl-LDH was  2.1 eV (Fig.

S6b). The 20 wt% P25@CoAl-LDH nanocomposite exhibits features

intermediate between its constituent components, with a promi-

nent UV absorption due to P25 nanoparticles superimposed on the

visible light responsive CoAl-LDH aggregates. Heterojunction for-

mation is indicated by a  shift to higher wavelength in the absorption

cut off edge between the UV and visible regions relative to  a  20 wt%

P25 + CoAl-LDH physical mixture.

The electronic structure of the 20 wt% P25@CoAl-LDH nanocom-

posite was further investigated by XPS. Fig. 3 shows the resulting

Co 2p and Ti 2p  XP  core level spectra, and those of the CoAl-LDH

and P25 reference materials. The Co 2p spectra of the CoAl-LDH

reference exhibited the expected spin-orbit split doublet (Fig. 3a),

with 2p3/2 and 2p1/2 components at 780.68 and 796.93 eV  binding

energy respectively and satellites at 786.47 and 802.23 eV indica-

tive of high-spin divalent Co2+ species within the CoAl-LDH layers

[30,47]. Fig. 3b  shows that the corresponding Ti 2p  spin-orbit split

doublet for the P25 reference, with 2p3/2 and 2p1/2 components at

458.37 and 464.20 eV respectively consistent with a  Ti4+ oxidation

state [48]. Similar electronic environments were observed for Co

and Ti within the 20 wt% P25@ CoAl-LDH heterostructure, but with

a small increase in the Co 2p3/2 binding energy (to 781.04 eV) and

concomitant decrease in the Ti 2p3/2 binding energy (to 458.15 eV)

relative to the two references. Quantitatively similar shifts were

reported following the formation of core–shell nanocomposites

between hollow TiO2 nanospheres and an encapsulating CoAl-

LDH shell [30], and are consistent with initial state binding energy

changes arising from electron transfer from the CoAl-LDH to P25.

Neither shift was evident in  the Co or  Ti 2p XP  spectra for a  physical

mixture of P25 and CoAl-LDH, highlighting the unique nanocom-

posite electronic structure.

Valence band maximum (VBM) edge potentials for the CoAl-

LDH and P25 references were also determined by valence band

XPS (Fig. 3c and d) from the intercept of the tangent to the den-

sity of states at the Fermi edge as 1.35 eV and 2.83 eV respectively,

in agreement with the literature [30,49].  These values can be used

in conjunction with the preceding optical band gap energies to cal-

culate corresponding conduction band maximum (CBM) potentials

of  −0.75 eV (CoAl-LDH) and −0.37 (P25) respectively. Band bend-

ing and charge transfer associated with heterojunction formation

within 20 wt% P25@CoAl-LDH was explored by determining the

valence band offset �EVBM of  the CoAl-LDH relative to P25 com-

ponent, according to Eq. (5) [50,51]:

�EVBM =

(

ECo
CL − ECo

V

)

−

(

ETi
CL −  ETi

V

)

+ �ECL (5)

where
(

ECo
CL − ECo

V

)

is the energy difference between the Co 2p3/2

and VBM in the pure CoAl-LDH reference,
(

ETi
CL − ETi

V

)

is the energy

difference between the Ti 2p3/2 and the VBM in the P25 reference,

and �ECL =

(

ECo
CL − ETi

CL

)

is the energy difference between the Co

2p3/2 and Ti 2p3/2 core levels (CLs) at the P25@ CoAl-LDH hetero-

junction. The resulting �EVBM was  0.95 eV,  indicating significant

band bending due to  heterojunction formation. The correspond-

ing conduction band offset �ECBM of the CoAl-LDH relative to  P25

component was  determined according to  Eq. (6):

�ECBM =

(

ECoAl−LDH
g − EP25

g

)

− �EVBM (6)

where Eg
CoAl−LDH and Eg

P25 are the band gaps of the references,

2.1 eV and 3.2 eV respectively, resulting in a  �ECBM of 0.15 eV. These

energy levels and band offsets are depicted in Fig.  4a, and indica-

tive of a type-II (staggered) band alignment at the P25@CoAl-LDH

heterojunction, and the associated band bending before and after

contact between the titania and CoAl-LDH components illustrated

in  Fig.  4b. This band alignment is  considered advantageous for the

transport of photogenerated charge carriers, which in this instance

is expected to results in  hole-rich CoAl-LDH layers and electron-rich

P25 nanoparticles, i.e. a heterojunction promoting electron-hole

separation.

Charge transport within the 20 wt%  P25@CoAl-LDH was further

probed through steady state and time-resolved photoluminescence

(PL) spectroscopy following 380 nm excitation. P25 exhibited a

single weak emission peak around 470 nm (Fig. 5a) arising from

charge recombination on oxygen vacancies within titania [49,52],

whereas the CoAl-LDH reference exhibited two  emission peaks at

470 nm (strong) and 525 nm (medium) associated with ligand field

transitions 4T2g → 4T1 g (F) and 4T1 g (P) → 4 T1 g (F) observed

commonly in octahedral cobalt(II) compounds [46,53], similar to

previous reports for Co-Al-LDHs [30,49]. The PL  spectra of the

nanocomposite was  intermediate between the references, with

the 470 nm peak intensity significantly lower than that of pure

CoAl-LDH, while the 520 nm peak was  extremely weak relative

to a  simple 20 wt% P25 + CoAl-LDH physical mixture, evidencing

supressed electron–hole recombination [30,36]

Time-resolved PL  spectroscopy provided additional insight into

photogenerated charge carrier dynamics (Fig. 5b)  from the result-

ing  decay curves which were fitted with a  biexponential function

according to Eq.  (7) below [46,54].

Fit =  A +  B1e
(

−t
�1

)

+ B2e
(

−t
�2

)

(7)

where A is  a  constant employed in the baseline correction, B1 and B2

are  constants corresponding to non-radiative and radiative relax-

ation processes originating from the direct formation of free charge

carrier and the indirect formation of self-trapped excitons respec-

tively [55],  �1 and �2 the corresponding decay lifetimes associated

with the recombination of photogenerated holes and electrons, and

t is time. The average charge carrier lifetime (�) was calculated from

Eq. (8) [54]:

� =
B1�2

1
+ B2�2

2

B1�1 + B2�2
(8)

Fitted parameters are  summarized in  Table 2 for the P25 and

CoAl-LDH references and 20 wt%  P25@CoAl-LDH, with �2 a  measure

of the goodness of fit and close to unity for all three samples indicat-

ing excellent agreement with experimental data (typical literature
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Table 2

Fitted parameters from time-resolved PL spectroscopy of 20 wt% P25@CoAl-LDH

nanocomposite for a 380 nm excitation wavelength.

Material �1  /ns �2 /ns B1 B2 �/ns �2

P25 0.98 2.58 3190.45 609.52 1.50 1.17

CoAl-LDH 1.59 7.90 643.89 58.09 3.54 1.06

20wt%P25@CoAl-LDH 1.85 11.10 222.49 55.26 7.03 1.05

CoAl-LDH+P25 1.74 8.43 215.29 16.40 3.99 1.08

fits are 1.0–1.25 [46,54]). For 20 wt% P25@ CoAl-LDH, � =  7.03 ns,

almost double that of CoAl-LDH (3.54 ns), five times longer than

that of P25 (1.5 ns), and also much higher than that of a physi-

cal mixture of P25 and CoAl-LDH (3.99 ns), revealing significantly

slower electron-hole pair recombination in  the nanocomposite

than any reference material, a  synergy we attribute to  the asso-

ciated heterojunction between and charge trapping on the P25 and

CoAl-LDH components. The values in  Table 2 are comparable to  lit-

erature reports of �1 and �2 of 0.3  and 4.5 ns for P25 [56] (� =  1.16 ns)

and �1 and �2 of 0.4 and 1.5 ns for pure anatase [57],  and �1 and �2 of

3.2 and 4.0 ns for a  related NiFe-LDH [58] (� = 5.5 ns); it is interesting

to note that composite formation between the latter NiFe-LDH and

an amorphous layered g-C3N4 also prolonged the photogenerated

charge lifetime � to  8.6 ns [58].

The photocatalytic performance was determined of P25@CoAl-

LDH nanocomposite for the aqueous phase CO2 reduction under

UV–vis irradiation in  the absence of a  sacrificial hole acceptor,

which was compared with that of P25 and CoAl-LDH references

(Fig.  6). In order to  discount possible artefacts arising from car-

bon contamination and confirm water as the proton source [59],

a number of control experiments were first performed in the

absence of CO2,  H2O, catalyst or light, which confirmed that all

four elements were required to observe any reaction products

(Fig. S7). Only three products were observed in all cases, CO,

H2 and O2,  with no hydrocarbons detected in either the gas or

liquid phase. P25 exhibited the poorest photoactivity for CO2

reduction or water oxidation, presumably reflecting fast charge

carrier recombination, low CO2 absorptivity and its conduction

band maximum potential of −0.37 eV (Fig. 4), which is too low to

drive CO2 + 2H + 2e−
→ CO +  H2O (E00 = −0.53 eV at pH 7) but suf-

ficient to drive significant proton reduction to hydrogen (Fig. 6b).

The CoAl-LDH reference by comparison produced appreciable CO

and oxygen (Fig.  6a and c), reflecting its higher conduction band

maximum of −0.75 eV and longer average charge carrier life-

time �. All P25@CoAl-LDH nanocomposites evidenced a  synergy

between constituent semiconductor components, with superior

CO and oxygen productivity to either reference material alone, or

a 20 wt%  P25 +  CoAl-LDH physical mixture which exhibited only

0.84 �mol  h−1 g−1 CO. Since the physicochemical properties of each

component (phase, crystallite size, surface area, CO2 chemisorp-

tion capacity and formal oxidation state) in  the nanocomposites

are identical to  (or a  simple average) of the reference materials, this

synergy is attributable directly to heterojunction formation and the
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Fig. 4. (a) Band alignment and (b)  band bending before contact and after heterojunction junction formation in 20 wt% P25@CoAl-LDH nanocomposite.
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associated spatial separation of electrons and holes and attendant

slow recombination rate.

The P25@CoAl-LDH materials displayed a volcano dependence

of CO2 photoreduction performance on P25 content, with maxi-

mum CO and O2 productivity, and a  CO selectivity of 94% (Fig.

S8) for 20 wt%  P25@CoAl-LDH; this equated to  a 2.5 and 5.5  fold

increase in  CO productivity relative to CoAl-LDH and P25 refer-

ences. The CO:O2 product stoichiometry was  between 1.78:1 and

1.96:1 for all nanocomposites and CoAl-LDH reference, very close

to  the 2:1 stoichiometry expected if CO2 photoreduction was the
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only catalytic process operating: CO2 reduction to CO is  a 2e− pro-

cess, in contrast to water oxidation which is a  four electron process,

2H2O → O2 + 4H+ + 4e−, hence two CO molecules are formed for

each O2 molecule from water splitting. The exception is the P25

reference, for which significantly more oxygen was evolved than

anticipated, reflecting a higher propensity for water oxidation con-

sistent with the observed highest rate of H2 production in Fig. 6b.

Synergy between the two semiconductors was  further demon-

strated by comparing CO productivity for the 20 wt%  P25@CoAl-

LDH under UV–vis versus visible light irradiation which yielded

values of 2.21 versus 0.714 �mol  h−1 g−1 respectively, highlighting

the importance of hole generation on the P25 component through

UV excitation (and subsequent transport to  the LDH  component

hindering recombination with photoexcited electrons). Our CO

productivities are significantly higher than literature reports for

diverse inorganic heterostructure photocatalysts (Table S1), which

span 0.25-1.74 �mol  h−1 g−1 [60–69]. Apparent quantum efficien-

cies for CO production over the 20 wt% P25@CoAl-LDH estimated

around 0.10% under 365 nm irradiation (using a  UV band pass fil-

ter), orders of magnitude higher than the few values reported for

CO2 photoreduction over ‘high performance’ heterogeneous pho-

tocatalysts such as ZrOCo/IrOx inorganic polynuclear oxide clusters

(0.001% [60]), reduced graphene oxide–amine–titanium dioxide

nanocomposites (0.0094% [70]) and SrNb2O6 nanoplates (0.065%

[71]). The apparent quantum efficiency for 20 wt%  P25@CoAl-LDH

of 0.03% at 475 nm (visible band pass filter) is  also much higher

than recent reports for Fe (0.0013%, [72])  and Ni  (0.01% [73])

homogeneous photocatalysts, which also require organic sensitiz-

ers or electron donors. Future studies will investigate the impact

of titania morphology on nanocomposite physicochemical prop-

erties and photocatalytic performance, however preliminary tests

show that substituting anatase nanorods [74], for P25 in  the syn-

thesis improves CO productivity (Fig. S10) presumably due to their

superior charge transport properties and suppressed charge recom-

bination.

Photocatalytic stability of the 20 wt%  P25@CoAl-LDH nanocom-

posite was subsequently explored over three consecutive reactions,

in  between each of which the catalyst was filtered and washed with

water, then replaced in  the photoreactor which in  turn was  charged

with fresh deionized water and purged again with CO2.  Around 90%

of the original photocatalytic activity was  retained after two recy-

cles (Fig. 6d), a  key requirement for any practical catalyst, and a

common limitation for new photocatalysts [75].

Photocatalytic studies of solar fuel production often utilize a

hole scavenger, typically an organic alcohol [76–78],  to improve

productivity, however such organic scavengers are a potential

source of carbon containing products, and hence artefacts, dur-

ing CO2 photoreduction. We therefore examined the impact of

2-propanol addition as a  hole scavenger during the irradiation

of the P25 reference in the absence of CO2. Significant yields of

both gas and liquid phase hydrocarbons (CH4, C2H6, CH3OH and

C2H5OH) were observed following 2-propanol addition (Fig. S9)



402 S. Kumar et al. / Applied Catalysis B: Environmental 209 (2017) 394–404

Scheme 2. Proposed mechanism of CO2 photoreduction due to  heterojunction for-

mation within over P25@CoAl-LDH nanocomposite.

which must therefore have arisen from the scavenger. This high-

lights the importance of adequate control experiments and the

exercise of due care in  conducting CO2 photoreduction to  eliminate

possible contributions from both deliberate organic contaminants

(such as scavengers) and accidental organic residues arising from

e.g. catalyst precursors and/or solvents used for photoreactor clean-

ing.

Photocatalytic CO2 reduction over P25@CoAl-LDH nanocompos-

ites is proposed to  occur as follows. Upon visible light irradiation,

electrons photoexcited into the conduction band of the CoAl-LDH

component (band gap of 2.1 eV) pass across the heterojunction into

the conduction band of P25, where CO2,  either weakly chemisorbed

directly at the titania surface or spilled over onto titania facets prox-

imate to the basic CoAl-LDH support, undergoes reduction (likely

via the CO2
•− anion radical in  a proton-coupled process) as illus-

trated in Scheme 2. In parallel, holes photogenerated in the P25

component (band gap of 3.2 eV) by  UV light transfer across the het-

erojunction into the valence band of CoAl-LDH, where they oxidize

chemisorbed water at the LDH surface to liberate dioxygen, with the

concomitant protons migrating across the nanojunction interface

to P25 and the activated CO2
•− to liberate CO and water.

4. Conclusions

A facile one-pot hydrothermal synthesis of P25@CoAl-LDH

nanocomposites is  reported, which affords a  uniform dispersion

of UV photoactive titania nanoparticles throughout a visible light

photoactive CoAl-LDH matrix. Attendant formation of a  type-II

heterojunction between the visible and UV semiconductor com-

ponents confers enhanced photoinduced charge carrier lifetimes,

presumably through spatial separation of photoexcited charge

carriers, with electron transfer from the CoAl-LDH to P25 and con-

comitant reverse hole transfer from P25 to the CoAl-LDH. The

resulting P25@CoAl-LDH nanocomposites exhibit a  strong synergy

between semiconductor components, resulting in excellent activity

and selectivity (>90%) under full spectrum irradiation for the aque-

ous phase photoreduction of CO2 to CO, with water as the proton

source; optimal photoactivity and selectivity occurs for 20 wt%  P25

incorporation which likely maximizes the heterojunction interface.

These low cost P25@CoAl-LDH nanocomposites also exhibit a good

apparent quantum efficiency for CO production, and excellent sta-

bility over multiple recycles.
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ZnO/AlN heterojunction determined by x-ray photoemission spectroscopy,
Appl. Phys. Lett. 93 (2008) 202108.

[51] Y.S. Lee, D. Chua, R.E. Brandt, S.C. Siah, J.V. Li,  J.P. Mailoa, S.W. Lee, R.G. Gordon,
T.  Buonassisi, Atomic layer deposited gallium oxide buffer layer enables 1.2 V
open-circuit voltage in cuprous oxide solar cells, Adv. Mater. 26  (2014)
4704–4710.

[52] K. Selvam, M.  Swaminathan, Nano N-TiO2 mediated selective photocatalytic
synthesis of quinaldines from nitrobenzenes, RSC Adv. 2 (2012) 2848–2855.

[53] S. Kumar, K. Asokan, R.K. Singh, S.  Chatterjee, D. Kanjilal, A.K. Ghosh,
Investigations on structural and optical properties of ZnO and ZnO:Co
nanoparticles under dense electronic excitations, RSC Adv. 4 (2014)
62123–62131.

[54] R.C. Pawar, S. Kang, J.H. Park, J. -h. Kim, S. Ahn, C.S. Lee, Room-temperature
synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4)
with highly enhanced photocatalytic activity and stability, Sci. Rep. 6  (2016)
31147.

[55] D. k. Padhi, K. Parida, S.K. Singh, Facile fabrication of RGO/N-GZ mixed oxide
nanocomposite for efficient hydrogen production under visible light, J. Phys.
Chem. C 119 (2015) 6634–6646.

[56] J. Sun, H. Zhang, L.-H. Guo, L. Zhao, Two-Dimensional interface engineering of
a titania–graphene nanosheet composite for improved photocatalytic activity,
ACS  Appl. Mater. Interfaces 5 (2013) 13035–13041.

[57] Y. Yu, Y.  Tang, J.  Yuan, Q.  Wu,  W.  Zheng, Y. Cao, Fabrication of N-TiO2/InBO3
heterostructures with enhanced visible photocatalytic performance, J. Phys.
Chem. C 118 (2014) 13545–13551.

[58] S. Nayak, L. Mohapatra, K. Parida, Visible light-driven novel g-C3N4/NiFe-LDH
composite photocatalyst with enhanced photocatalytic activity towards water
oxidation and reduction reaction, J.  Mat. Chem. A 3 (2015) 18622–18635.

[59] C.-C. Yang, Y.-H. Yu, B. van der Linden, J.C.S. Wu,  G. Mul, Artificial
photosynthesis over crystalline tiO2-based catalysts: fact or fiction? J.  Am.
Chem. Soc. 132 (2010) 8398–8406.

[60] W.  Kim, G. Yuan, B.A. McClure, H. Frei, Light induced carbon dioxide reduction
by  water at binuclear ZrOCoII unit coupled to Ir oxide nanocluster catalyst, J.
Am.  Chem. Soc. 136 (2014) 11034–11042.

[61] E. Pastor, F.M. Pesci, A.  Reynal, A.D. Handoko, M.  Guo, X. An, A.J. Cowan, D.R.
Klug, J.R. Durrant, J.  Tang, Interfacial charge separation in Cu2O/RuOx as a
visible light driven CO2 reduction catalyst, PCCP 16  (2014) 5922–5926.

[62] G. Yin, M. Nishikawa, Y. Nosaka, N.  Srinivasan, D. Atarashi, E. Sakai, M.
Miyauchi, Photocatalytic carbon dioxide reduction by  copper oxide
nanocluster-grafted niobate nanosheets, ACS Nano 9  (2015) 2111–2119.

[63] S. Shoji, G. Yin, M.  Nishikawa, D. Atarashi, E. Sakai, M. Miyauchi,
Photocatalytic reduction of CO2 by CuxO nanocluster loaded SrTiO3 nanorod
thin film, Chem. Phys. Lett. 658 (2016) 309–314.

[64] C. Zhao, L. Liu, Q. Zhang, J. Wang, Y. Li, Photocatalytic conversion of CO2 and
H2O  to fuels by nanostructured Ce-TiO2/SBA-15 composites, Catal. Sci.
Technol. 2  (2012) 2558–2568.

[65] H. Zhou, J. Guo, P. Li, T.  Fan, D.  Zhang, J.  Ye, Leaf-architectured 3D hierarchical
artificial photosynthetic system of perovskite titanates towards CO2
photoreduction into hydrocarbon fuels, Sci. Rep. 3 (2013) 1667.

[66] C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C.  Matranga, Size-dependent
photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2
heterostructured photocatalysts, J. Mat. Chem. 21 (2011) 13452–13457.

[67] C. Zhao, L. Liu, G. Rao, H. Zhao, L. Wang, J. Xu, Y. Li,  Synthesis of novel MgAl
layered double oxide grafted TiO2 cuboids and their photocatalytic activity on
CO2 reduction with water vapor, Catal. Sci. Technol. 5 (2015) 3288–3295.

[68] H. Zhou, P. Li, J.  Guo, R. Yan, T. Fan, D.  Zhang, J. Ye,  Artificial photosynthesis on
tree  trunk derived alkaline tantalates with hierarchical anatomy: towards
CO2 photo-fixation into CO and CH4, Nanoscale 7 (2015) 113–120.

[69] L. He, T.E. Wood, B.  Wu,  Y. Dong, L.B.  Hoch, L.M. Reyes, D. Wang, C. Kübel, C.
Qian, J.  Jia, K. Liao, P.G. O’Brien, A.  Sandhel, J.Y.Y. Loh, P.  Szymanski, N.P.
Kherani, T.C. Sum, C.A. Mims,  G.A. Ozin, Spatial separation of charge carriers
in  In2O3–x(OH)y nanocrystal superstructures for enhanced gas-phase
photocatalytic activity, ACS Nano. 10 (2016) 5578–5586.

[70] Y. Nie, W.-N. Wang, Y. Jiang, J. Fortner, P. Biswas, Crumpled reduced graphene
oxide-amine-titanium dioxide nanocomposites for simultaneous carbon
dioxide adsorption and photoreduction, Catal. Sci. Technol. 6 (2016)
6187–6196.

[71] S. Xie, Y. Wang, Q.  Zhang, W. Deng, Y. Wang, SrNb2O6 nanoplates as efficient
photocatalysts for the preferential reduction of CO2 in the presence of H2O,
Chem. Commun. 51 (2015) 3430–3433.

[72] J. Bonin, M.  Robert, M.  Routier, Selective and efficient photocatalytic CO2
reduction to  CO  using visible light and an  iron-based homogeneous catalyst, J.
Am.  Chem. Soc. 136 (2014) 16768–16771.

[73] V.S. Thoi, N. Kornienko, C.G. Margarit, P. Yang, C.J.  Chang, Visible-light
photoredox catalysis: selective reduction of carbon dioxide to carbon
monoxide by a nickel N-heterocyclic carbene–isoquinoline complex, J.  Am.
Chem. Soc. 135 (2013) 14413–14424.

[74] J. Chen, H.B. Yang, J.  Miao, H.-Y. Wang, B.  Liu, Thermodynamically driven
one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal



404 S. Kumar et al. / Applied Catalysis B: Environmental 209 (2017) 394–404

synthesis for emerging intrinsic superiority of dimensionality, J. Am.  Chem.
Soc. 136 (2014) 15310–15318.

[75] S. Kumar, T. Surendar, A.  Baruah, V. Shanker, Synthesis of a  novel and stable
g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the
photocatalytic activity under visible light irradiation, J. Mater. Chem. A 1
(2013) 5333–5340.

[76] G.R. Dey, A.D. Belapurkar, K.  Kishore, Photo-catalytic reduction of carbon
dioxide to methane using TiO2 as suspension in water, J. Photochem.
Photobiol. A 163 (2004) 503–508.

[77] W.  Tu,  Y.  Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M.  Xiao, Z.  Zou, An in situ
simultaneous reduction-hydrolysis technique for fabrication of
tiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted
selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into
methane and ethane, Adv. Funct. Mater. 23  (2013) 1743–1749.

[78] H. Park, H.-H. Ou, U. Kang, J.  Choi, M.R. Hoffmann, Photocatalytic conversion
of carbon dioxide to  methane on TiO2/CdS in aqueous isopropanol solution,
Catal. Today 266 (2016) 153–159.


	P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction
	1 Introduction
	2 Experimental
	2.1 Material synthesis
	2.2 Characterization
	2.3 Photocatalysis measurements

	3 Results and discussion
	4 Conclusions
	Acknowledgement
	Appendix A Supplementary data
	References


