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How to fold a spin chain:

Integrable boundaries of the Heisenberg XXX and Inozemtsev hyperbolic models

Alejandro De La Rosa Gomez, Niall MacKay, Vidas Regelskis

Department of Mathematics, University of York

York, YO10 5DD, United Kingdom

Abstract

We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain,

defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg

XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they

exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a “bottom-up”

approach for constructing integrable boundaries and can be applied to any spin chain model.

Keywords: Heisenberg spin chain, Inozemtsev spin chain, Yangian, boundary symmetries

1. Introduction

The standard picture of boundary integrability of 1+1D

spin chains and quantum field theories in the quantum in-

verse scattering method, due to Sklyanin [1], contains an im-

plicit idea of “folding”. It begins with bulk and boundary Yang-

Baxter equations, and their associated R- and K -matrices, and

uses the latter to construct a boundary transfer matrix from its

bulk parent. This process contains an implied folding of the

infinite line (or chain) back on itself to create a half-line, and

thereby a boundary-integrable model on this half-line. This

folding is only rarely made explicit in the physics literature

[2] but has been studied in the context of Temperley-Lieb and

blob algebras [3, 4, 5].

However, this process can be difficult to implement in ex-

plicit cases. It does not begin with the Hamiltonian but rather

extracts it, together with other conserved quantities and sym-

metries, from the transfer matrix. If we instead begin with a

bulk Hamiltonian and wish to discover integrable boundaries

and their symmetries, a different, “bottom-up” procedure is

needed. This procedure, which we refer to as “folding”, is a

map denoted by f (and f in the double-row case – see be-

low) which sends the spin operators and conserved charges

of a model defined on an infinite chain to those defined on

a semi-infinite chain. The purpose of this letter is to detail

this procedure and apply it first to a classic and then to an

overarching new case.

We begin with the elementary examples of the classic Heisen-

berg XXX spin chain and a “double-row” model of two XXX

chains uncoupled except by the boundary. The latter is mo-

tivated by a similar structure which emerges in gauge/string
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(“AdS/CFT”) duality [6] and also serves as a toy model for the

open Hubbard chain with an achiral boundary [7, 8]. We then

go on to construct integrable boundaries for the Inozemtsev

long-range infinite spin chain [9] and its doubling. In each

case we emphasize the Yangian symmetry of the bulk model,

and from it derive a twisted Yangian symmetry of the model

with an integrable boundary.

The XXX and Inozemtsev spin chains are the natural choices

to work with. The former is the most famous, prototypical spin

chain in the physics literature. It allows us to check that the re-

sults obtained in this paper are in agreement with well-known

ones, and also introduces the reader to our procedure through

a relatively simple example.

The Inozemtsev chain, by contrast, is less well-known, but

may be the more fundamental. All famous sl2 spin chains

are limiting cases of it (see Section 4). It also possesses strik-

ing thermodynamic properties of its own [10]. But most im-

portantly for modern fundamental physics, it appears in the

context of AdS/CFT – in particular, the expression for the di-

latation operator of N = 4 SYM in the planar limit coincides

with its conserved charges up to three loops [11, 12].

The main motivation for our folding procedure is that, to

construct integrable boundaries for long range spin chains

like Inozemtsev’s, one cannot use the boundary Yang Baxter

equation in the usual way and must instead rely on Dunkl

operators [13, 14]. This is where our bottom-up approach be-

comes useful: starting with a long range Hamiltonian defined

on the infinite line, our folding procedure allows us to system-

atically construct integrable boundaries without the use of a

monodromy matrix.

This letter is organized as follows. In Section 2 we set up

the chain and explain its folding. In Section 3 we study folding

of the infinite XXX spin chain. The methods obtained are then

used in Section 4 to fold an Inozemtsev hyperbolic spin chain.
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Section 5 contains concluding remarks and a discussion of

relevant open questions. The appendix contains details of the

Yangian algebras studied in this letter.

Most of the results presented were computed using the

Wolfram Mathematica computer algebra system. For read-

ers’ convenience we have detailed explicitly some of the com-

putations that explain the folding of the Hamiltonian and Yan-

gian operators.

2. Setting up the spin chain

Lattice. Fix L ∈N and consider a one-dimensional lattice with

2L sites that can be occupied by spin-1 particles. Each lattice

site is identified with a two-dimensional vector space Vi
∼=C

2

spanned by vectors

Vi = spanC{ |↑〉i , |↓〉i }, (2.1)

where −L < i ≤ L is the index of the site in the lattice. The

entire lattice is the 2L-fold tensor product V :=
⊗

−L<i≤L Vi .

To describe dynamics of such a lattice, we employ Pauli

matrices σx
i

, σ
y

i
, σz

i
and the identity matrix σ0

i
that satisfy the

usual (anti-)commutation relations

{σa
i ,σb

j } = 2δi jδabσ
0
i , [σa

i ,σb
j ] = 2ıδi jεabcσ

c
i (2.2)

where ı =
p
−1 denotes the imaginary unit, a,b,c ∈ {x, y, z}

and εabc is the Levi-Civita symbol normalized so that εx y z = 1

and we have used the Einstein summation rule of the repeated

indices. Then, upon introducing σ±
i
= 1

2
(σx

i
± ıσ

y

i
), we require

that, for i 6= j ,

σ+
i |↓〉i = |↑〉i , σz

i |↑〉i = |↑〉i , σa
i |↑〉 j = |↑〉 j σ

a
i ,

σ−
i |↑〉i = |↓〉i , σz

i |↓〉i =−|↓〉i , σa
i |↓〉 j = |↓〉 j σ

a
i .

(2.3)

Matrices σa
i

provide a unitary representation of the univer-

sal envelope U (sl2) of the sl2 Lie algebra

ρL : x± 7→
∑

−L<i≤L

σ±
i , h 7→

∑

−L<i≤L

σz
i , (2.4)

where x±, h are the standard generators of the sl2 Lie alge-

bra satisfying [x+, x−] = h and [h, x±] =±2x±. The map (2.4)

together with (2.3) turns the vector space V into a left U (sl2)-

module.

Folding. We fold the lattice by identifying sites labelled by

indices 1 ≤ i ≤ L with those labelled by 1−i as shown in Figure

1 (a). We say that the lattice is folded over a link.

Let us explain how the folding acts on the matrices σa
i

.

Recall that

σ±
i σ

z
i =∓σ±

i , σz
i σ

±
i =±σ±

i , σz
i σ

z
i =σ0

i ,

σ±
i σ

±
i = 0, σ±

i σ
∓
i = 1

2
(σ0

i ±σz
i ),

which imply that any polynomial in σa
i

can be written as a

linear combinations of monomials

∏

−L<i≤L

σ
ai

i
with ai ∈ {±, z,0}, (2.5)

(a)
−L+1 −L+2 −1 0 1 2 L−1 L

−L+1−L+2 −1 0

f

(b)

−L+1 −L+2 −1 0 1 2 L−1 L

−L+1 −L+2 −1 0

f

Figure 1: Folding: (a) Single-row lattice, (b) Double-row lattice.

or in other words the monomials (2.5) provide a vector space

basis of ΣL = 〈σa
i

: a ∈ {±, z}, −L < i ≤ L 〉 over the field of com-

plex numbers C. Note that elements of Σ are also elements of

EndV ; the element
∏

−L<i≤L σ
0
i

is the identity map.

Set Σ−
L = 〈σa

i
: a ∈ {±, z}, −L < i ≤ 0〉. We define the multi-

plicative folding f : ΣL →Σ
−
L acting on monomials (2.5) by

f :
∏

−L<i≤L

σ
ai

i
7→

∏

−L<i≤0

kai a1−i σ
ai

i
σ

a1−i

i
, (2.6)

where kai a1−i ∈C are model-depending folding constants that

will be specified in the examples studied below.

Double-row lattice. We will also consider folding of a double-

row lattice, shown in Figure 1 (b), which is a 2L-fold tensor

product of two copies of spaces Vi additionally decorated by

◦ and •, that is V =
⊗

−L<i≤L(Vi ,◦⊗Vi ,•). The dynamics of such

a lattice is described by decorated Pauli matrices (c.f. (2.2))

[σa
iα,σb

jβ] = 2ıδi jδαβεabcσ
c
iα, {σa

iα,σb
jβ} = 2δi jδabδαβσ

0
iα,

where α,β ∈ {◦,•}.

Any polynomial in matrices σa
iα

can be written as a linear

combinations of monomials (c.f. (2.5))

∏

−L<i≤L

σ
ai

i ,◦σ
bi

i ,• with ai ,bi ∈ {±, z,0}, (2.7)

that provide a vector space basis of the double-row analogue

of ΣL , namely ΣL = 〈σa
iα

: a ∈ {±, z}, 1 ≤ i ≤ L, α ∈ {◦,•}〉.
Let Σ−

L be a double-row analogue of Σ−
L . We define the

multiplicative folding f : ΣL →Σ
−
L acting on monomials (2.7)

by (c.f. (2.6))

f :
∏

−L<i≤L

σ
ai

i ,◦σ
bi

i ,• 7→
∏

−L<i≤0

kai b1−i kbi a1−i σ
ai

i ,◦σ
b1−i

i ,◦ σ
bi

i ,•σ
a1−i

i ,•

(2.8)

where kai b1−i ,kbi a1−i ∈ C are model-depending folding con-

stants that will be specified in the examples studied below.

Note that folding constants are labelled by indices ±, z,0 only.

We treat both rows, labelled by ◦ and •, on an equal footing.

3. Heisenberg XXX spin chain

Infinite chain. It is well known that the Hamiltonian of the

Heisenberg XXX spin chain

HX X X =−λ
∑

−L<i≤L

(
σ+

i σ
−
i+1 +σ−

i σ
+
i+1 +

1
2
σz

i σ
z
i+1

)
(3.1)

2



commutes with the Lie operators E±
0 = ρL(x±) and Ez

0 = ρL(h).

We say that the HamiltonianHX X X exhibits a U (sl2) Lie algebra

symmetry.

When the chain is infinitely long, i.e. L →∞, the Hamil-

tonian HX X X additionally exhibits a Yangian symmetry. More

precisely, it commutes, up to the terms at infinity, with the

operators

E′±
1 =±λ

2

∑

i< j

σ±
i σ

z
j , E′z

1 =λ
∑

i< j

σ+
i σ

−
j ,

E′′±
1 =∓λ

2

∑

i< j

σz
i σ

±
j , E′′z

1 =−λ
∑

i< j

σ−
i σ

+
j ,

(3.2)

which, combined to

E±
1 =E′±

1 +E′′±
1 , Ez

1 =E′z
1 +E′′z

1 , (3.3)

satisfy the defining relations of the Yangian Y (sl2) [15], see

Appendix A.1. We will say thatE±
1 andEz

1 are Yangian operators.

Note that the sum
∑

i< j in (3.2) is understood as
∑

−∞<i< j<∞.

We will use a similar notation in further sections; for example,∑
i≤0 will be understood as

∑
−∞<i≤0.

Magnetic boundary. Let us now focus on a semi-infinite spin

chain with a boundary magnetic field described by [16]

H
µ
X X X =HX X X +µσz

0, (3.4)

where HX X X denotes the XXX spin chain Hamiltonian with

sites labelled from −∞ to 0 (we will use the notation ( ) for

all operators restricted to a semi-infinite chain) and µσz
0 is the

boundary term with µ ∈ C being the strength of a boundary

magnetic field.

The presence of the boundary term in (3.4) breaks the

Y (sl2) Yangian symmetry down to the Y
+(sl2) twisted Yan-

gian. In particular, the Hamiltonian H
µ
X X X commutes with

(Ez
0) and, up to the terms at infinity, with Yangian operators

X± defined by [17, 18]

X± = (E±
1 ) ± λ

2
(E±

0 ) (Ez
0) + λ

2

(
1∓ λ

µ

)
(E±

0 ) , (3.5)

that are elements in Σ∞ and satisfy the defining relations of

Y
+(sl2), see Appendix A.2. It is worth noting that operators

X′± = (E′±
1 ) ∓ λ2

4µ (E±
0 ) ,

X′′± = (E′′±
1 ) ± λ

2
(E±

0 ) (Ez
0) + λ

2

(
1∓ λ

2µ

)
(E±

0 ) ,
(3.6)

satisfying X± =X′±+X′′±, are also symmetries of H
µ
X X X . They

can be views as analogues of the symmetries (3.2) of HX X X .

Our goal is to demonstrate the method of obtaining the

Hamiltonian H
µ
X X X from HX X X and Yangian operators (3.5)

from those in (3.3) by employing the folding (2.6). The first

step is to impose the following constraints on the folding con-

stants:

k±0 =−k0± = kz0 = k0z = 1, k±z = kz±, (3.7)

which ensure that Lie symmetries of HX X X are projected to

those of H
µ
X X X . Recall that U (sl2), as a vector space, is linearly

spanned by the monomials f l hmen with l ,m,n ∈Z≥0. Thus

we must make sure that any monomial (E−
0 )l (Ez

0)m(E+
0 )n for

any l ,m,n ∈ Z≥0, each being a symmetry of HX X X , is folded

into a symmetry of H
µ
X X X , which exhibits a U (gl1) ⊂ U (sl2)

symmetry only. The first constraint in (3.7) yields

f (E±
0 ) = f (

∑

i

σ±
i ) = (k±0 +k0±)

∑

i≤0

σ±
i = 0,

f (Ez
0) = f (

∑

i

σ±
i ) = (kz0 +k0z )

∑

i≤0

σz
i = 2

∑

i≤0

σz
i = 2(Ez

0) ,

while second constraint in (3.7) additionally ensures that any

monomial (E−
0 )l (Ez

0)m(E+
0 )n is folded into a symmetry of H

µ
X X X .

In particular, for any l ,m,n ∈Z≥0, we have that

f ((E−
0 )l (Ez

0)m(E+
0 )n) = δln

∑

0≤r≤l+m

cr ((Ez
0) )r

for some cr ∈ C. Note that k±± do not play a role in the fold-

ing, since σ±
i
σ±

i
= 0. We also set kzz = 1, so that f (ρL(hl )) =

f (ρL(hm)) f (ρL(hn)) for any l ,m,n ∈ Z+ satisfying l = m +n.

(We will comment on this property in Section 5.)

Next, using (3.7) and splitting the sum
∑

i into three terms

as
∑

i =
∑

i<0+δi 0+
∑

i>0, we fold the Hamiltonian HX X X of the

infinite chain:

f (HX X X ) =

=−λ
( ∑

i<0

(
k+0k−0(σ+

i σ
−
i+1 +σ−

i σ
+
i+1)+ 1

2
(kz0)2σz

i σ
z
i+1

)

+k+−σ+
0 σ

−
0 +k−+σ−

0 σ
+
0 + 1

2
kzzσz

0σ
z
0

+
∑

i>0

(
k0+k0−(σ+

1−iσ
−
−i +σ−

1−iσ
+
−i )+ 1

2
(k0z )2σz

1−iσ
z
−i

))

= 2HX X X − λ
2

(
(k+−−k−+)σz

0 + (1+k+−+k−+)
)

. (3.8)

Choosing k−+−k+− = 4µ
λ we have that f (HX X X ) = 2H

µ
X X X up

to a constant term.

In order to fold the Yangian operators (3.3) we first split

the sum
∑

i< j into four terms

∑
i< j≤0+δi+ j 6=1

∑
i≤0< j +δi+ j=1

∑
i≤0< j +

∑
0<i< j . (3.9)

By doing so for (3.3) and folding each sum individually we find

f (Ez
1) =λ

( ∑

i< j≤0

(
k+0k−0σ+

i σ
−
j −k−0k+0σ−

i σ
+
j

)

+k0−(
(E+

0 ) (E−
0 ) −

∑

i≤0

σ+
i σ

−
i

)

−k0+(
(E−

0 ) (E+
0 ) −

∑

i≤0

σ−
i σ

+
i

)

+
∑

i≤0

(
k+−σ+

i σ
−
i −k−+σ−

i σ
+
i

)

+
∑

0<i< j

(
k0+k0−σ+

1−iσ
−
1− j −k0−k0+σ−

1−iσ
+
1− j

))

= λ
2

L(k−+−k+−)− λ
2

(k+−+k−+)(Ez
0) (3.10)

3



which commutes with f (HX X X ), and

f (E±
1 ) =±λ

2

( ∑

i< j≤0

(
k±0kz0σ±

i σ
z
j −kz0k±0σz

i σ
±
j

)

+k0z
(
(E±

0 ) (Ez
0) −

∑

i≤0

σ±
i σ

z
i

)

−k0±(
(Ez

0) (E±
0 ) −

∑

i≤0

σz
i σ

±
i

)

+
∑

i≤0

(
k±zσ±

i σ
z
i −kz±σz

i σ
±
i

)

+
∑

0<i< j

(
k0±k0zσ±

1−iσ
z
1− j −k0z k0±σz

1−iσ
±
1− j

))

= 2
(
(E±

1 ) ± λ
2

(E±
0 ) (Ez

0) + λ
2

(1−kz±)(E±
0 )

)
, (3.11)

which commute with f (HX X X ), up to the terms at infinity,

only if

kz± =∓
4

k+−−k−+ =±
λ

µ
, (3.12)

in which case we obtain f (E±
1 ) = 2X±, as expected. We also

have that f (E′±
1 ) = 2X′± and f (E′′±

1 ) = 2X′′±, so that the sum-

metries (3.2) of HX X X are folded into the symmetries (3.6) of

HX X X . Thus we have demonstrated that with a suitable choice

of the folding constants, which were deduced from the sym-

metry arguments, the Hamiltonian HX X X of the infinite spin

chain and its symmetries can be folded into the Hamiltonian

H
µ
X X X of a semi-infinite spin chain with a magnetic boundary

and its symmetries.

In the remaining parts of this section we will demonstrate

how to obtain the semi-infinite spin chain with an open bound-

ary and a semi-infinite double-row spin chain with a diagonal

boundary. The obtained results will then be used in Section

4 to obtain the corresponding boundary models for the In-

ozemtsev hyperbolic spin chain.

Open boundary. Setting the boundary magnetic field strength

to µ= 0 in (3.4) we obtain a semi-infinite spin chain with an

open boundary, namely

H0
X X X =HX X X . (3.13)

This Hamiltonian exhibits a U (sl2) symmetry by commuting

with operators (E±
0 ) and (Ez

0) , but does not commute with

those in (3.3) viewed as elements in Σ∞. However, upon defin-

ing higher-order Yangian operators

E±
2 =± 1

2
[Ez

1,E±
1 ], Ez

2 = [E+
1 ,E−

1 ] (3.14)

the Hamiltonian H0
X X X commutes, up to the terms at infinity,

with the operators 1

Gz = (Ez
2) −λ

(
(E+

1 ) (E−
0 ) − (E+

0 ) (E−
1 )

)
− λ2

4
(Ez

0) ,

G± = (E±
2 ) ∓ λ

2

(
(Ez

1) (E±
0 ) − (Ez

0) (E±
1 )

)
− λ2

4
(E±

0 ) ,
(3.15)

1It seems likely that these symmetries were observed before; however, we

have been unable to locate them in the literature available to us.

instead, that, together with (E±
0 ) and (Ez

0) , satisfy the defin-

ing relations of the Y
−(sl2) twisted Yangian, see Appendix

A.3.

We now use the folding to obtain the Hamiltonian H0
X X X

and its symmetries (Ea
0 ) and Ga with a ∈ {±, z}. Since the

model exhibits a U (sl2) symmetry it is natural to choose kab =
1 for all a,b ∈ {±, z,0}. This gives

f (E±
0 ) = f (

∑

i

σ±
i ) = (k±0 +k0±)

∑

i≤0

σ±
i = 2

∑

i≤0

σ±
i = 2(E±

0 ) ,

f (Ez
0) = f (

∑

i

σ±
i ) = (kz0 +k0z )

∑

i≤0

σz
i = 2

∑

i≤0

σz
i = 2(Ez

0) .

In a similar way one can check that with this choice of folding

constants any monomial (E−
0 )l (Ez

0)m(E+
0 )n for any l ,m,n ∈Z≥0

is folded into a symmetry of H0
X X X .

By folding the Hamiltonian HX X X we get (c.f. (3.8))

f (HX X X ) = 2HX X X −λ
(
σ+

0 σ
−
0 +σ−

0 σ
+
0 + 1

2
σz

0σ
z
0

)
, (3.16)

which equals to 2HX X X − 3
2
λ and thus agrees with (3.13) up to

the constant term.

Folding Yangian operators (3.3) we find f (Ea
1 ) =−λ(Ea

0 ) ,

which can be easily deduced from (3.10) and (3.11), and is

in agreement with the fact that Y
−(sl2) twisted Yangian has

elements of even grading only. Finally, we want to obtain

the operators (3.15) using the folding. By folding the higher-

order Yangian operators (3.14) we obtain symmetries of H0
X X X :

folded operators f (E±
2 ) and f (Ez

2) commute with H0
X X X , up to

the terms at infinity. However, the obtained operators do not

coincide to those in (3.15). It turns out that we need to fold

the following operators

Ẽ+
2 =E+

2 + 1
3

(
[E′z

1 ,E′′+
1 ]+ [E′′z

1 ,E′+
1 ]

)
+ λ2

3

(
E+

0 E
−
0 E

+
0 − 9

4
E+

0

)
,

Ẽ−
2 =E−

2 − 1
3

(
[E′z

1 ,E′−
1 ]+ [E′′z

1 ,E′′−
1 ]

)
+ λ2

3

(
E−

0 E
+
0 E

−
0 − 9

4
E−

0

)
,

Ẽz
2 =Ez

2 + 2
3

(
[E′+

1 ,E′−
1 ]+ [E′′+

1 ,E′′−
1 ]

)
+ λ2

6

(
(Ez

0)3 − 7
2
Ez

0

)
, (3.17)

instead. The additional terms in the expressions above are

symmetries of HX X X and are tailored in such a way that the

operators Ẽ±
2 and Ẽz

2 fold precisely to those in (3.15), up to an

overall scalar factor,

f (Ẽ±
2 ) = 8

3
G±, f (Ẽz

2) = 8
3
Gz . (3.18)

The explicit form of computations in (3.18) is very similar to

those presented in (3.10) and (3.11), only the expressions are

much more lengthy, thus we have not written them out explic-

itly. It will be shown in Section 4 that long-range analogues

of Ẽ±
2 and Ẽz

2 fold into Yangian symmetries of the long-range

open boundary model.

As the final remark, we note that the open boundary model

also exhibits a number of additional symmetries that are ob-

tained by folding quadratic combinations of the operators in

(3.2).

Double-row chain with a diagonal boundary. Our third exam-

ple of an integrable boundary model arises in the context of
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the double-row model consisting of two uncoupled XXX spin

chains. The Hamiltonian of the latter is given by

H◦•
X X X =−λ

∑

α=◦,•

∑

L<i≤L

(
σ+

iασ
−
i+1,α+σ−

iασ
+
i+1,α+

1
2
σz

iασ
z
i+1,α

)
.

(3.19)

In the L →∞ limit it exhibits a Y◦(sl2)⊗Y•(sl2) ∼=Y (so4) sym-

metry expressed in terms of the Lie operators Ea
0α and Ea

1α

with a ∈ {±, z} and α ∈ {◦,•} that are the natural analogues of

Ea
0 and Ea

1 for the double-row model.

Introduce linear combinations of Lie operators

Aa
n =Ea

n,◦+Ea
n,•, Ba

n =Ea
n,◦−Ea

n,• (3.20)

for all a ∈ {±, z} and n ∈ {0,1}. Then the semi-infinite double-

row Hamiltonian with a diagonal boundary

H∆

X X X = (H◦•
X X X ) −λ

(
σ+

0,◦σ
−
0,•+σ−

0,◦σ
+
0,•+ 1

2
σz

0,◦σ
z
0,•

)
(3.21)

exhibits a diagonal U (sl∆2 ) ⊂U (sl◦2)⊗U (sl•2) symmetry; it com-

mutes with operators (Aa
0 ) only. The boundary term couples

the two, otherwise uncoupled, spin-chains and can be viewed

as a permutation operator; a similar boundary in the context of

the Hubbard model was studied in [8]. Moreover, the double-

row model with a diagonal boundary can also be viewed as an

infinite spin-chain with a defect located at the middle of the

chain.

In the infinite limit, when L →∞, the Hamiltonian H∆

X X X

additionally commutes, up to the terms at infinity, with the

Yangian operators

Y± = (B±
1 ) ± λ

4
((B±

0 ) (Az
0) − (A±

0 ) (Bz
0) ),

Yz = (Bz
1) − λ

2
((B+

0 ) (A−
0 ) − (A+

0 ) (B−
0 ) )

(3.22)

that, together with (Aa
0 ) , satisfy the defining relations of the

Y
∆(sl2) twisted Yangian, see Appendix A.4.

As for the open boundary case, we set kab = 1 for all a,b ∈
{±, z,0}. Then a straightforward computation shows that the

folding f acts on the operators defined in (3.20) by

f (Aa
0 ) = 2(Aa

0 ) , f (Ba
0 ) = 0,

and on the Hamiltonian (3.19) by

f (H◦•
X X X ) =

=−λ
∑

α=◦,•

∑

i<0

(
σ+

i ,ασ
−
i+1,α+σ−

i ,ασ
+
i+1,α+

1
2
σz

i ,ασ
z
i+1,α

)

−2λ
(
σ+

0,◦σ
−
0,•+σ−

0,◦σ
+
0,•+ 1

2
σz

0,◦σ
z
0,•

)

−λ
∑

α=◦,•

∑

i<0

(
σ+

1−i ,ασ
−
−i ,α+σ−

1−i ,ασ
+
−i ,α+

1
2
σz

1−i ,ασ
z
−i ,α

)

= 2(H◦•
X X X ) −2λ

(
σ+

0,◦σ
−
0,•+σ−

0,◦σ
+
0,•+ 1

2
σz

0,◦σ
z
0,•

)

thus exactly reproducing (3.21).

Applying the folding to the operators Ba
1 we recover the

ones defined in (3.22). In particular

f (B±
1 ) =±λ

2

( ∑

i< j≤0

(σ±
i ,◦σ

z
j ,◦−σz

i ,◦σ
±
j ,◦−σ±

i ,•σ
z
j ,•+σz

i ,•σ
±
j ,•)

+2
(
(E±

0,◦) (Ez
0,•) − (E±

0,•) (Ez
0,◦)

−
∑

i≤0

(σz
i ,•σ

±
i ,◦−σz

i ,◦σ
±
i ,•)

)

+2
∑

i≤0

(σ±
i ,◦σ

z
i ,•−σ±

i ,•σ
z
i ,◦)

+
∑

α=◦,•

∑

0<i< j

(σ±
1−i ,ασ

z
1− j ,α−σz

1−i ,ασ
±
1− j ,α)

)

= 2B±
1 ±λ

(
(E±

0,◦) (Ez
0,•) − (E±

0,•) (Ez
0,◦)

)
= 2Y±

and

f (Bz
1) =λ

( ∑

i< j≤0

(σ+
i ,◦σ

−
j ,◦−σ−

i ,◦σ
+
j ,◦−σ+

i ,•σ
−
j ,•+σ−

i ,•σ
+
j ,•)

+2
(
(E+

0,◦) (E−
0,•) − (E+

0,•) (E−
0,◦)

−
∑

i≤0

(σ−
i ,•σ

+
i ,◦−σ−

i ,◦σ
+
i ,•)

)

+2
∑

i≤0

(σ+
i ,◦σ

−
i ,•−σ+

i ,•σ
−
i ,◦)

+
∑

α=◦,•

∑

0<i< j

(σ+
1−i ,ασ

−
1− j ,α−σ−

1−i ,ασ
+
1− j ,α)

)

= 2Bz
1 −2λ

(
(E+

0,◦) (E−
0,•) − (E+

0,•) (E−
0,◦)

)
= 2Yz .

Repeating the same steps for Aa
1 we find

f (A±
1 ) = f (Az

1) = 0, (3.23)

as expected. We conclude this section with a remark that the

double-row model also exhibits additional symmetries that

are natural analogues of those in (3.2).

4. Inozemtsev hyperbolic spin chain

Infinite chain. The Inozemtsev elliptic spin chain is the long-

range analogue of the XXX spin chain with Hamiltonian de-

fined by

Hκ =−λ
2

∑

−L<i , j≤L
i 6= j

℘L(i − j )
(
σ+

i σ
−
j +σ−

i σ
+
j +

1
2
σz

i σ
z
j

)
, (4.1)

where ℘L is the Weierstraß elliptic function with periods L

and ıπ/κ for κ ∈R≥0. This model exhibits a U (sl2) symmetry

identical to its nearest neighbour counterpart. By taking an

appropriate limit of the parameter κ and the length L this

model specializes to the Haldane-Shastry, XXX and Inozemtsev

hyperbolic (also called “infinite”) spin chain. To see this, we

need to rescale the hopping matrix of (4.1)

℘̂L(z) :=
sinh2(κ)

κ2

(
℘L(z)+

2κ

ıπ
ζL

(
ıπ

2κ

))
, (4.2)

where ζL is the Weierstraß ζ-function with quasiperiods L and

ıπ/κ. In the κ→∞ limit one has

lim
κ→∞

℘̂L(z) = δz mod L,1, (4.3)
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which recovers the XXX spin chain [19]. One can also take the

κ→ 0 limit to obtain the Haldane-Shastry hopping matrix [20]:

lim
κ→0

℘̂L(z) =
π2

L2 sin2(πz/L)
. (4.4)

The limit we are interested in is when the length of the chain

becomes infinite. In this case,

pz := lim
L→∞

℘̂L(z) =
sinh2(κ)

sinh2(κz)
(4.5)

and the U (sl2) symmetry can be enhanced to the Y (sl2) Yan-

gian by introducing the operators

E±
κ,1 =±

λ

2

∑

i , j

wi− jσ
±
i σ

z
j , Ez

κ,1 =λ
∑

i , j

wi− jσ
−
i σ

+
j , (4.6)

where wz =−coth(κz) when z 6= 0 and w0 = 0. These opera-

tors commute with the Hamiltonian, up to the terms at infinity,

and satisfy the defining relations of the Y (sl2) Yangian.

The Hamiltonian also commutes, up to the terms at infin-

ity, with operators E′a
κ,1 and E′′a

κ,1 defined analogously to Ea
κ,1,

w ′
z =

e−κz

e−κz −eκz
and w ′′

z =
eκz

e−κz −eκz

respectively. We also set w ′
0 = w ′′

0 = 0, so that wz = w ′
z +w ′′

z .

These operators are the long-range analogues of those in (3.2).

In particular,

lim
κ→∞

w ′
z = δz<0, lim

κ→∞
w ′′

z =−δz>0.

In the remaining part of this section we will use foldings

f and f studied in Section 3 to obtain integrable long-range

boundary Hamiltonians and operators that commute with

them. From now on, Hκ will denote

Hκ =−λ
2

∑

i 6= j

pi− j

(
σ+

i σ
−
j +σ−

i σ
+
j +

1
2
σz

i σ
z
j

)
, (4.7)

so that lim
κ→∞

Hκ =HX X X when L →∞ . It is worth noting that

the Haldane-Shastry model on the circle also exhibits a Y (sl2)

Yangian symmetry [21] and thus the folding could be applied

to its Hamiltonian to obtain integrable boundary long-range

Hamiltonians on a segment. Symmetries of the latter model

using the transfer matrix techniques were studied in [13].

Magnetic boundary. Our goal is to construct a long-range

analogue of the Hamiltonian (3.4), which exhibits a Y
+(sl2)

twisted Yangian symmetry. We will achieve this by applying

the folding f to Hκ and setting folding constants to the same

values as for the semi-infinite XXX spin chain with magnetic

boundary, i.e. those given by (3.7) and

kzz = 1, k−+−k+− = 4µ
λ , k±z = kz± =±λ

µ . (4.8)

Introduce the operators

Hκ =λ
2

∑

i 6= j
i , j≤0

pi+ j−1

(
σ+

i σ
−
j +σ−

i σ
+
j +

1
2
σz

i σ
z
j

)
, (4.9)

M
µ
κ =− λ

2

∑

i 6= j
i , j≤0

pi+ j−1σ
z
i σ

z
j +µ

∑

i≤0

p2i−1σ
z
i , (4.10)

satisfying lim
κ→∞

Hκ = 0 and lim
κ→∞

M
µ
κ =µσz

0. Then similar com-

putations to those in (3.8) yield

f (Hκ) = 2(Hκ+Hκ +M
µ
κ)+ λ

2
(1+k+−+k−+)

∑

i≤0

p2i−1. (4.11)

Let us explain the meaning of operators listed above: Hκ

is the Hamiltonian (4.7) restricted to a half-line, Hκ is the

open boundary operator describing the long-range interac-

tion between the sites labelled i and j via the boundary, i.e.

at the distance i + j −1, and M
µ
κ is the the long-range mag-

netic boundary operator; for both Hκ and M
µ
κ their numerical

values decay exponentially moving away from the boundary.

Hence, by neglecting the constant term in (4.11), we conclude

that

H
µ
κ :=Hκ +Hκ +M

µ
κ (4.12)

is the Hamiltonian of the open Inozemtsev hyperbolic spin

chain with a magnetic boundary. It will be shown below that it

is integrable, i.e. exhibits a Yangian symmetry, only if µ=±λ.

We already know that f (Ea
0 ) = 2δaz (Ea

0 ) , which remains

the only Lie symmetry of H
µ
κ . Under f , the operators (4.6) are

mapped to

f (E±
κ,1) =

=±λ
2

( ∑

i , j≤0

k±0kz0wi− jσ
±
i σ

z
j +

∑

i , j>0

k0z k0±wi− jσ
±
1−iσ

z
1− j

+
∑

i≤0, j>0
i 6=1− j

k0z wi− jσ
±
i σ

z
1− j +

∑

j≤0,i>0
j 6=1−i

k0±wi− jσ
±
1−iσ

z
j

+
∑

i≤0

k±z w2i−1σ
±
i σ

z
i +

∑

i≤0

kz±w1−2iσ
z
i σ

±
i

)

= 2E±
1 ±λ

∑

i 6= j
i , j≤0

wi+ j−1σ
±
i σ

z
j −

λ
2

(kz±+k±z )
∑

i≤0

w2i−1σ
±
i

and

f (Ez
κ,1) =

=λ

( ∑

i , j≤0

k+0k−0wi− jσ
+
i σ

−
j +

∑

i , j>0

k0−k0+wi− jσ
+
1−iσ

−
1− j

+
∑

i≤0, j>0
i 6=1− j

k0−wi− jσ
+
i σ

−
1− j +

∑

j≤0,i>0
j 6=1−i

k0+wi− jσ
+
1−iσ

−
j

+
∑

i≤0

k+−w2i−1σ
+
i σ

−
i +

∑

i≤0

k−+w1−2iσ
−
i σ

+
i

)

=−λ
2

(k+−+k−+)
∑

i≤0

w2i−1σ
z
i −

λ
2

(k+−−k−+)
∑

i≤0

w2i−1.

The folded operators f (E±
κ,1) satisfy the defining relations of

the Y
+(sl2) twisted Yangian for any L > 0 provided (4.8) holds.

It remains to verify if they are symmetries of H
µ
κ . It is straight-

forward to see that [H
µ
κ , f (Ez

κ,1)] = 0 . By computing the com-

mutator [H
µ
κ , f (E±

κ,1)] we find that it equals to zero in the

L → ∞ limit only and provided (3.7) and the following con-

straints hold

k+− =−k−+ =±2, kz− =−kz+ =∓ 1
2

. (4.13)

6



In other words, f (Ea
κ,1) are symmetries of H

µ
κ only if µ = ±λ

thus implying the aforementioned integrability condition for

the long-range Hamiltonian H
µ
κ . In particular, its Yangian

symmetries are

X±
κ = (E±

κ,1) ± λ
2

∑

i 6= j
i , j≤0

wi+ j−1σ
±
i σ

z
j ±

λ2

2µ

∑

i≤0

w2i−1σ
±
i , (4.14)

with µ=λ or µ=−λ the two cases being related to each other

via the Lie algebra automorphism θ : σ± 7→ σ∓, σz 7→ −σz .

This automorphism leaves the Hamiltonian Hκ (and Hκ , Hκ )

invariant, but maps Hλ
κ to H−λ

κ and X±
κ to X∓

κ .

We conclude this section with two remarks. First, by ap-

plying the same folding procedure to the symmetries E′±
κ,1

and E′′±
κ,1 of Hκ we obtain operators X′±

κ = f (E′±
κ,1) and X′′±

κ =
f (E′′±

κ,1) that are symmetries of H
µ
κ provided (4.13) holds. They

are long-range analogues of the operators (3.6). Second, as-

suming that µ ∈C is arbitrary and taking the κ→∞ limit, op-

erators X±
κ and X′±

κ , X′′±
κ specialize to their nearest-neighbour

counterparts given in (3.5) and (3.6).

Open boundary. We want to construct a long-range analogue

of the Hamiltonian (3.13), which exhibits a Y
−(sl2) twisted

Yangian symmetry. We will achieve this by applying the folding

f with kab = 1 to Hκ. In particular, we find that

f (Hκ) = 2(Hκ +Hκ )− 3
2
λ

∑

i≤0

p2i−1, (4.15)

which, after dropping the constant term, is the open boundary

Hamiltonian as expected from (4.11).

To obtain Yangian symmetries of the long-range open

boundary model we need to fold the long-range analogues

of the operators (3.17):

Ẽ+
κ,2 =E+

κ,2 + 1
3

(
[E′z

κ,2,E′′+
κ,2]+ [E′′z

κ,2,E′+
κ,2]

)
+ λ2

3

(
E+

0 E
−
0 E

+
0 − 9

4
E+

0

)
,

Ẽ−
κ,2 =E−

κ,2 − 1
3

(
[E′z

κ,2,E′−
κ,2]+ [E′′z

κ,2,E′′−
κ,2]

)
+ λ2

3

(
E−

0 E
+
0 E

−
0 − 9

4
E−

0

)
,

Ẽz
κ,2 =Ez

κ,2 + 2
3

(
[E′+

κ,2,E′−
κ,2]+ [E′′+

κ,2,E′′−
κ,2]

)
+ λ2

6

(
(Ez

0)3 − 7
2
Ez

0

)
.

By doing so we find

f (Ẽ+
κ,2) = 16

3
(E±

κ,2)

+ λ2

3

∑

i , j ,k

ai j k

(
σz

i σ
z
jσ

±
k
+4σ+

i σ
−
j σ

±
k

)
+ 2λ2

3

∑

i , j

bi jσ
±
i ,

f (Ẽz
κ,2) = 16

3
(Ez

κ,2)

+ λ2

3

∑

i , j ,k

ai j k

(
σz

i σ
z
jσ

z
k +4σ+

i σ
−
j σ

z
k

)
+ 2λ2

3

∑

i , j

bi jσ
z
i ,

where

ai j k = 2−wi− j (w j−k +wi+k−1 −wi−k −w j+k−1)

−wi+ j−1(wi−k +w j−k +wi+k−1 +w j+k−1),

bi j = 5+w2
i− j −

1

4
w2

1−2i −wi+ j−1(wi+ j−1 −4w1−2 j )

−2wi− j (wi+ j−1 +2w1−2 j ).

The operators Ga
κ = 3

8
f (Ẽa

κ,2) together with (Ea
0 ) satisfy the

defining relations of the Y
−(sl2) twisted Yangian and com-

mute with the Hamiltonian H0
κ =Hκ +Hκ , up to the terms at

infinity.

We also have that lim
κ→∞

Ga
κ = Ga and there are a number

of additional symmetries of H0
κ that are obtained by folding

quadratic combinations of the symmetries E′a
κ,1 and E′′a

κ,1 of

Hκ.

Double-row chain with a diagonal boundary. Let us now fo-

cus on the model consisting of two uncoupled Inozemtsev

hyperbolic spin chains described by the Hamiltonian

H◦•
κ =−λ

2

∑

α=◦,•

∑

i 6= j

pi− j

(
σ+

iασ
−
j ,α+σ−

iασ
+
jα+

1
2
σz

iασ
z
jα

)
. (4.16)

As the double-row XXX model this model exhibits a Y (so4)

Yangian symmetry generated by the Lie operators Ea
0α and the

double-row analogues Ea
κ1α of the ones defined in (4.6).

We use the folding f with kab = 1 to obtain an integrable

long-range analogue of the Hamiltonian (3.19) exhibiting a

Y
∆(sl2) twisted Yangian symmetry.

Introduce the operator

Dκ =−λ
2

∑

α6=β
α,β=◦,•

∑

i , j≤0

pi+ j−1

(
σ+

iασ
−
jβ+σ−

iασ
+
jβ+

1
2
σz

iασ
z
jβ

)
. (4.17)

Proceeding in a similar way as for the double-row XXX model

we have that

f (H◦•
κ ) = 2

(
(H◦•

κ ) +Dκ

)
.

The operatorDκ is the long-range diagonal boundary operator

for the semi-infinite long-range double-row model; it can also

be viewed as a double-row analogue of the open boundary

operator Hκ . In the κ→∞ limit Dκ specializes to boundary

term in (3.21).

Next we fold the the long-range analogues of the operators

(3.20). Similarly as before we have that f (Aa
κ,1) = 0 and

f (B±
κ,1) = 2(B±

κ,1) ±λ
∑

i , j≤0

wi+ j−1(σ±
i ,◦σ

z
j ,•−σ±

j ,•σ
z
i ,◦),

f (Bz
κ,1) = 2(Bz

κ,1) −2λ
∑

i , j≤0

wi+ j−1(σ+
i ,◦σ

−
j ,•−σ+

j ,•σ
−
i ,◦).

The operators Ya
κ,1 = 1

2
f (Ba

κ,1) together with Aa
0 satisfy the

defining relations of the Y
∆(sl2) twisted Yangian and com-

mute with the Hamiltonian H∆

κ = (H◦•
X X X ) +Dκ up to the

terms at infinity. In the κ→∞ limit Ya
κ,1 specialize to those

given in (3.22).

We also remark that there exists a number of symmetries

of H∆

κ that are obtained by folding the double-row analogues

of the operators E′a
κ,1 and E′′a

κ,1. These additional symmetries

also specialize to those of the double-row XXX model.

5. Conclusions and Outlook

In this letter we have presented a method for constructing

integrable boundaries for sl2-symmetric spin chains and their
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doublings without relying on the boundary Yang Baxter equa-

tion. This method, which we refer to as “folding”, consists in

a map denoted by f (and f in the doubled case) which sends

the operators of a model defined on the infinite line to those

on the half-line.

More precisely, given a Hamiltonian H of an infinite spin

chain and a family of operators {Qα}α∈I indexed by a set I and

commuting with the Hamiltonian, [H,Qα] = 0 for all α ∈ I , the

folding identifies the positive half-line with the negative half-

line in such a way that, for a suitable choice of the “folding con-

stants”, the folded Hamiltonian f (H), which now describes a

semi-infinite spin chain, commutes with the folded operators,

namely [ f (H), f (Qα)] = 0 for all α ∈ I .

The choice of the folding constants is dictated by the sym-

metry properties of the Hamiltonian H and the would-be sym-

metries of the folded Hamiltonian f (H). Integrability is then

ensured by the existence of an infinite number of conserved

quantities, i.e. operators commuting with the Hamiltonian

and satisfying the defining relations of an infinite-dimensional

algebra [22]. In the case when the Hamiltonian exhibits a

Y (sl2) Yangian symmetry there are three non-equivalent bound-

ary integrable models that can be obtained: a spin chain with

a magnetic boundary, a spin chain with an open boundary,

and a double-row model with a diagonal boundary. These

models exhibit Y
+(sl2), Y

−(sl2) and Y
∆(sl2) twisted Yangian

symmetries, respectively. For the Heisenberg XXX spin chain

the corresponding models are well-studied. However, this is

not the case for the Inozemtsev hyperbolic spin chain. Inte-

grable boundary Hamiltonians for the latter were constructed

in [13, 14] using the Dunkl operators and, although similar

in form, the results obtained in loc. cit. differ from ours. It

remains to be shown whether folding can yield those bound-

ary Hamiltonians and if they exhibit any Yangian symmetries.

This is natural to expect, since Hamiltonians of such type were

shown to obey infinite dimensional symmetries [23, 24].

The method presented in this letter can be easily applied

to any integrable spin chains. Let g be any simple Lie algebra

of rank(g) ≥ 2 and let Hg be a spin chain Hamiltonian exhibit-

ing Y (g) Yangian symmetry. Let θ : g → g be an involutive

automorphism of g. Denote by h= gθ the θ-fixed subalgebra,

so that (g,h) is a symmetric pair. For such a pair there exists

an infinite dimensional algebra, the Y (g,h) twisted Yangian,

which is a coideal subalgebra of Y (g) [25, 26], and there exists

a boundary-integrable spin chain exhibiting such a symmetry,

which can be constructed using the folding method presented

in this letter. While this might be rather straightforward for

spin chains with nearest neighbor interactions only, since the

boundary term for such models in many cases is a symmetry

breaking term exhibiting h-symmetry only, this is no longer

true for the long-range spin chains, as we have shown in this

letter. Moreover, obtaining long-range Hamiltonians using the

techniques of the inverse scattering method is a rather chal-

lenging task, as it was shown in [13, 14], thus the “bottom-up”

approach provides a short-cut for constructing such models.

It is important to note that the folding f is generally not

an algebra homomorphism. It can only be so if h is a commu-

tative subalgebra of g. The only symmetric pair satisfying this

requirement is (g,h) = (sl2,gl1), which we have studied in this

letter. In all other cases the map f is effectively a projector.

Another important thing to note is that folding is only a

good method of constructing boundary-integrable models if

it is defined over a link. If we instead fold at a site, symmetry

arguments force the folding constants associated with that

site to be zero, thus effectively turning folding over a site into

folding over a link.

We finish by noting that a very interesting subject for our

folding method would be the Hubbard model [27] and its long-

range analogue [28]. It would be interesting to see if one can

gain further insight into the unusual structure of the Hubbard

model’s known integrable boundaries [8, 29, 30] and perhaps

obtain new ones.
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Appendix A.

We briefly recall the necessary details of the Yangian Y (sl2)

and twisted Yangians Y
+(sl2) and Y

−(sl2) (adhering to [31,

Sec. 5.1]; see also [32]), and the diagonal twisted Yangian

Y
∆(sl2) (called “achiral” in [6]). All the representations de-

scribed below are related to the Heisenberg XXX spin chain. In

case of the Inozemtsev hyperbolicspin chain the operators Ea
1 ,

X±, etc. are with their long-range counterparts; that is, Ea
κ,1,

X±
κ , etc.

A.1. Let λ ∈ C
×. The Yangian Y (sl2) is generated by the ele-

ments x±, h and J (x±), J (h) satisfying

[h, x±] =±2x±, [x+, x−] = h,

[J (h), x±] = [h, J (x±)] =±2J (x±), [J (x±), x∓] =±J (h),

[J (h), [J (x+), J (x−)]] =λ2
(

J (x−)x+−x− J (x+)
)
h.

(A.1)

The representation on the infinite spin chain is given by the

map ρ∞ : Y (sl2) →Σ∞ defined by

x± 7→E±
0 , h 7→Ez

0, J (x±) 7→E±
1 , J (h) 7→Ez

0. (A.2)

A.2. Let c ∈ C. The one-parameter twisted Yangian Y
+(sl2)

for the symmetric pair (sl2,gl1) is generated by the elements k

and B(x±) satisfying

[k,B(x±)] =±2B(x±), (A.3)

[B(x±), [B(x±), [B(x∓),B(x±)]]] = 12λ2B(x±)(k + c)B(x±).

Let α± ∈ C be such that α+ − α− = 2c. The embedding

ϕ+ : Y +(sl2) ,→Y (sl2) of algebras is given by

k 7→ h, B(x±) 7→ J (x±)± λ
2

x±h +λα±x±. (A.4)

Set c = −λ/µ. The representation on the half-infinite spin

chain is given by the map ρ+
∞ : Y +(sl2) →Σ∞ defined by

h 7→ (Ez
0) , B(x±) 7→X±. (A.5)
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A.3. The twisted Yangian Y
−(sl2) for the trivial symmetric

pair (sl2,sl2) is generated by the elements x±, h and G(x±),

G(h) satisfying

[h, x±] =±2x±, [x+, x−] = h,

[G(h), x±] = [h,G(x±)] =±2J (x±), [G(x±), x∓] =±G(h),

[G(h), [G(x+),G(x−)]] = 4λ2
(
{x+,G(x−),G(h)}

− {x−,G(x+),G(h)}
)
, (A.6)

where {x1, x2, x3} = 1
6

∑
p∈S3

xp(1)xp(2)xi (3) is the normalized to-

tal symmetrizer. The embedding ϕ− : Y
−(sl2) ,→ Y (sl2) of

algebras is given by

x 7→ x, G(x) 7→ [J (x ′), J (x ′′)]+ λ
4

[J (x),C ]− λ2

4
x (A.7)

for all triples (x, x ′, x ′′) ∈ {(h, x+, x−), (e, 1
2

h, x+), ( f , x−, 1
2

h)} and

all x ∈ {x±,h}; here C = x+x− + x−x+ + 1
2

h2 is the quadratic

Casimir. The representation on the half-infinite spin chain is

given by the map ρ−
∞ : Y −(sl2) →Σ∞ defined by

x± 7→ (E±
0 ) , h 7→ (Ez

0) , G(x±) 7→G±, G(h) 7→Gz . (A.8)

A.4. The diagonal twisted Yangian Y
∆(sl2) the symmetric pair

(sl2 ⊕sl2,sl2) is generated by the elements h, x± satisfying the

usual sl2 Lie algebra relations and D(h), D(x±) satisfying

[D(h), x±] = [h,D(x±)] =±2D(x±), [D(x±), x∓] =±D(h),

[D(h), [D(x+),D(x−)]] =λ2(D(x−)x+−x−D(x+))h. (A.9)

The embedding ϕ∆ : Y ∆(sl2) ,→Y
◦(sl2)⊗Y

•(sl2) of algebras,

where ◦ and • are used to distinguish two copies of Y (sl2), is

given by

h 7→ h◦+h•, x± 7→ x+
◦ +x+

• ,

D(h) 7→ J (h◦)− J (h•)−λ
(
(x+

◦ −x+
• )(x−

◦ +x−
• )

− (x+
◦ +x+

• )(x−
◦ −x−

• )
)
,

D(x±) 7→ J (x±
◦ )− J (x±

• )± λ
2

(
(x±

◦ −x±
• )(h◦+h•)

− (x±
◦ +x±

• )(h◦−h•)
)
.

(A.10)

The representation on the double-row half-infinite spin chain

is given by the map ρ∆

∞ : Y ∆(sl2) →Σ∞ defined by

h 7→ (Az
0) , x± 7→ (A±

0 ) , D(h) 7→Yz , D(x±) 7→Y±. (A.11)
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