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SUMMARY

Liquid-liquid phase separation (LLPS) of RNA-binding
proteins plays an important role in the formation of
multiple membrane-less organelles involved in RNA
metabolism, including stress granules. Defects in
stress granule homeostasis constitute a cornerstone
of ALS/FTLD pathogenesis. Polar residues (tyrosine
and glutamine) have been previously demonstrated
to be critical for phase separation of ALS-linked
stress granule proteins. We now identify an active
role for arginine-rich domains in these phase sep-
arations. Moreover, arginine-rich dipeptide repeats
(DPRs) derived from C9orf72 hexanucleotide repeat
expansions similarly undergo LLPS and induce phase
separation of a large set of proteins involved in RNA
and stress granule metabolism. Expression of argi-
nine-rich DPRs in cells induced spontaneous stress
granule assembly that required both eIF2a phos-
phorylation and G3BP. Together with recent reports
showing that DPRs affect nucleocytoplasmic trans-
port, our results point to an important role for argi-
1044 Molecular Cell 65, 1044–1055, March 16, 2017 ª 2017 The Auth
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nine-rich DPRs in the pathogenesis of C9orf72
ALS/FTLD.

INTRODUCTION

Stress granules (SGs) are large cytoplasmic RNA-protein

assemblies that form during cellular stress, and play a pivotal

role in the integrated stress response (Kedersha et al., 2013).

Following translational arrest, polysomes disassemble leading

to a sudden increase in free mRNA levels in the cytoplasm. It is

believed that this free mRNA subsequently nucleates the forma-

tion of SGs by binding of a large set of RNA-binding proteins

(RBPs) (Jain et al., 2016). Interestingly, several of these SG pro-

teins have been linked to the neurodegenerative disorders

amyotrophic lateral sclerosis (ALS) and frontotemporal lobar

degeneration (FTLD), in which neuronal cytoplasmic fibrillar ag-

gregates of RBPs, e.g., TDP-43 and FUS, appear (Boeynaems

et al., 2016b; Ramaswami et al., 2013). It is thought that these in-

clusion bodies play a key role in the disease pathogenesis (Ram-

aswami et al., 2013). Moreover, mutations in several of these

SG proteins are also the genetic cause of the disease in a subset

of familial cases (Renton et al., 2014). Hence, SGs have been
ors. Published by Elsevier Inc.
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suggested as a stepping stone towards pathological aggrega-

tion in ALS and FTLD (Aguzzi and Altmeyer, 2016; King et al.,

2012; Ramaswami et al., 2013).

Based on previous observations from other RNA granules and

nucleoli (Brangwynne et al., 2009, 2011), recent studies have

shown that the physical basis of SG formation is liquid-liquid

phase separation (LLPS) (Burke et al., 2015; Conicella et al.,

2016; Lin et al., 2015; Molliex et al., 2015; Murakami et al.,

2015; Patel et al., 2015). Depending on in vitro conditions, re-

combinant TDP-43, FUS, and other hnRNPs spontaneously

demix from an aqueous solution and form liquid-like protein-

rich droplets. It was shown that the intrinsically disordered

prion-like domains (PrLDs) of these proteins by themselves are

sufficient in inducing LLPS. Interestingly, these liquid-like drop-

lets canmature over time tomore fibrillar states, and this process

is accelerated by disease-causing mutations (Conicella et al.,

2016; Molliex et al., 2015; Murakami et al., 2015; Patel et al.,

2015). Other reports have shown that these PrLDs can also

form reversible hydrogels, which have a high b sheet content

(Kato et al., 2012). It was recently suggested that cellular SGs

consist of a stable core surrounded by a liquid-like shell, and

ATP-dependent remodeling seems necessary for maintaining

SG fluidity (Jain et al., 2016; Kedersha et al., 2016). These data

point at the importance of a tight control of SG dynamics in pre-

venting pathological aggregation.

As mentioned above, PrLDs can undergo LLPS or form hydro-

gels in vitro (Burke et al., 2015; Kato et al., 2012; Lin et al., 2015;

Molliex et al., 2015; Murakami et al., 2015; Patel et al., 2015). This

type of low complexity domain (LCD) shows a strong sequence

similarity to yeast prions in that they are enriched in polar un-

charged amino acids (usually glutamine/asparagine) and glycine

(King et al., 2012). Degenerate tyrosine-containing repeats in the

PrLDs of FUS and other hnRNPs, which can mediate hydropho-

bic and p interactions, seem to be crucial in promoting hydrogel

formation (Kato et al., 2012). The LLPS of these PrLDs indeed is

inhibited by aliphatic alcohols, which interfere with hydrophobic

interactions (Molliex et al., 2015). Phase separation based on hy-

drophobic interactions is also likely to underlie nuclear speckle

and nuclear pore mesh formation (Frey et al., 2006; Hennig

et al., 2015).

In this study, we investigate whether other protein domains

may also contribute to RBP LLPS. We identify arginine-rich do-

mains as regions prone to phase separation. Moreover, we

find that pathogenic arginine-rich dipeptide repeats in C9orf72

ALS/FTLD also undergo LLPS in vitro and in cells, hereby uncov-

ering a potential new toxic pathway in the disease.

RESULTS

Arginine-Rich Peptides Phase Separate In Vitro
SGproteins also contain other domains thatmight be non-redun-

dant in phase separation. Besides canonical RNA-binding do-

mains, e.g., RRM, these proteins are also enriched in disordered

arginine-rich sequences, e.g., RGG boxes (Aguzzi and Altmeyer,

2016) (Figure 1A), which can bind RNA or poly(ADP-ribose) and

seed LLPS or aggregation of PrLDs (Altmeyer et al., 2015; Burke

et al., 2015; Lin et al., 2015; Molliex et al., 2015; Patel et al., 2015;

Schwartz et al., 2013). While globular RRMs have a clear RNA-
binding function, these disordered arginine-rich motifs are more

promiscuous and also serve as protein binding modules (Dor-

mann et al., 2012; Thandapani et al., 2013). Given the strong con-

servation of both disorder and arginine content in RBPs (Varadi

et al., 2015), we hypothesize that arginine-rich domains could

play a role in LLPS in physiological and pathological processes.

In fact, 40 amino-acid-long Arg/Gly-rich peptides from the RGG

boxes of FUS, hnRNPA1, and FMRP spontaneously phase sepa-

rate in the presence of amolecular crowder (Figures 1B–1D, S1A,

and S1B). This emerging basic mechanism of LLPS puts partic-

ular emphasis on recent observations fromC9orf72 hexanucleo-

tide repeat expansions, which are the most common genetic

cause of ALSandFTLD (DeJesus-Hernandez et al., 2011; Renton

et al., 2011). A potential toxic mechanism is the generation of five

species of dipeptide repeats (DPRs) through aberrant translation

of the repeat RNA (Ash et al., 2013; Mori et al., 2013). Several

groups have shown that two of them, namely, glycine-arginine

(GR) and proline-arginine (PR) repeats, are highly toxic (Boey-

naems et al., 2016a; Freibaum et al., 2015; Jovi�ci�c et al., 2015;

Kwon et al., 2014; Lee et al., 2016; Mizielinska et al., 2014; Wen

et al., 2014). We wondered whether these peptides exhibit a

behavior similar to the RGG peptides in vitro. Synthetic GR20

and PR20, but not GP20, strongly phase separated following the

addition of a molecular crowder (Figures 1C and 1D). Interest-

ingly, the extent of phase separation for all examined peptides

is significantly correlated with arginine content (Figures 1C and

S2A), which indicates that arginines are likely to be themediators

of phase separation for these peptides.

To further investigate such arginine-mediated phase separa-

tions, we used the PR DPR as a model. As shown for other pro-

teins (Molliex et al., 2015; Nott et al., 2015; Patel et al., 2015),

phase separation of PR20 is temperature dependent and revers-

ible (Figures 2A, 2B, and S1A–S1C). PR20 droplets are highly cir-

cular (Figure 2C), suggesting that they minimize surface tension.

When we applied shear stress to these droplets, we indeed

observed plastic deformation with minimization of their surface

area after relaxation (Figure 2D). There was also a conservation

of volume after the fusion of two droplets (Figure 2E). All these

observations indicate that PR20 droplets behave as a liquid.

PR LLPS Is Dependent on Counterions
Besides temperature, LLPS of PR was also sensitive to protein

concentration, molecular crowding, and the length of the pep-

tide (Figures 3A and 3B). In agreement with the polar nature of

the peptide, we found that LLPS was not perturbed by an

aliphatic alcohol, but was hindered by increasing the salt con-

centration (Figures 3C, 3D, and S1D). Additionally, the fluores-

cence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic

acid (ANS) showed maximum intensity at 495 nm and was

reduced following LLPS of PR20 (Figure S1F) (Hawe et al.,

2008). These observations argue against hydrophobic interac-

tions and indicate the importance of electrostatic forces via

arginines in LLPS. Phase separation of like-charged inorganic

polyelectrolytes has been reported before, and due to charge

repulsion, this process is only conceivable in the presence of

counteranions in solution (Brangwynne et al., 2015; Tiraferri

et al., 2015). We reasoned that phosphate ions in our buffer

could be a likely candidate in stabilizing PR-PR interactions. In
Molecular Cell 65, 1044–1055, March 16, 2017 1045



Figure 1. Arginine-Rich Motifs Are Enriched in Cellular Liquid-like Compartments and Can Phase Separate In Vitro

(A) Proteins in ribonucleoprotein complexes (Castello et al., 2012; Topisirovic et al., 2009), liquid compartments (Andersen et al., 2005; Jain et al., 2016; Liu et al.,

2010), or proteins with prion-like domains (Kato et al., 2012; March et al., 2016) are enriched for both tri-RGG/di-RGG (Thandapani et al., 2013) and R motifs

(Mitrea et al., 2016). Binomial test.

(B) Balloon plot indicating sequence redundancy of RGG boxes.

(C) Synthetic RGG boxes and arginine-rich C9orf72 DPRs phase separate following the addition of a molecular crowder. Measured at room temperature (RT),

mean ± SD is depicted. The extent of phase separation is correlated with arginine content (Spearman).

(D) Examples of RGG and DPR phase separation. Pictures taken at 4�C. Scale bar represents 10 mm.

See also Figure S1.
accordance, when we incubated PR in pure water with the mo-

lecular crowder and added different salts, the extent of phase

separation depended on the charge of the anions (Figure 3E).

This raised the idea that biological anions could support PR

LLPS as well. Indeed, addition of polyU RNA promoted LLPS

in a dose-dependent manner even without molecular crowders

being present (Figures 3F, 4A, and S1E); and this was also the

case for other arginine-rich peptides (Figure S2A). Similar to

the PEG-induced LLPS, PR20-RNA droplets were highly circular

(Figure 4A). They also continuously increased in size over time,

as measured by dynamic light scattering (DLS) (Figure 4B),

mimicking observations for cellular SGs (Wheeler et al., 2016).

Due to its polyvalent nature, polyU was much more effective

than phosphate and crowding agent PEG in promoting LLPS.

Besides purely electrostatic interactions, arginines can also

engage in p interactions with aromatic side chains (Brangwynne

et al., 2015). In support of the contribution of this mechanism,

incubating PR20 with poly-tyrosine induced clustering of the

insoluble poly-tyrosine polymers (Figures 3G and S1H).

PR Droplets Are Dynamic Structures
Disordered linear binding motifs often undergo induced folding

following ligand binding (Tompa, 2016), but they can also remain

predominantly disordered when bound in so-called ‘‘fuzzy’’
1046 Molecular Cell 65, 1044–1055, March 16, 2017
complexes (Tompa and Fuxreiter, 2008) and when phase sepa-

rated, as already observed in the case of FUS LCD droplets

(Burke et al., 2015). CD spectroscopy clearly illustrated the

random coil nature of the dispersed PR20 peptide, and this

was also the case for other arginine-rich peptides (Figures

S2B–S2G). However, after titration with polyU RNA, the PR20

CD spectrum was lost, i.e., there is no signal for the peptide

within droplets (Figure S2G). Therefore, we applied two other ap-

proaches to monitor the structural state of PR20 in droplets, both

supporting its largely disordered (fuzzy) state. Fluorescence

anisotropy of peptide tagged with a fluorophore (Figure S2H) is

very low (0.02), and even after the addition of polyU RNA it

only increases to about 0.2, far from the value measured in the

highly viscous glycerol (0.38), the latter being close to the theo-

retical upper limit (0.4) for an immobile fluorophore. Global

hydrogen-deuterium exchange (HDX) experiments (Figures S2I

and S2J) show full accessibility of the free peptide, which is

compatible with its disordered state. Following the addition of

polyU RNA, accessibility drops only slightly (to 80% of its initial

value), indicating that the peptide is still largely accessible, and

suggesting that it stays disordered after LLPS. To check whether

the PR-RNA droplets could have any internal fibrillar structure,

we performed cryo-transmission electron microscopy (TEM),

and could not discern any visible structures in the droplets



Figure 2. PR20 Peptide Undergoes Liquid-Liquid Phase Separation
(A) A solution of 1 mM PR20 with 20% PEG is clear at room temperature, but phase separates after cooling.

(B) Demixed PR20 droplets dissolve following a temperature increase.

(C) PR20 droplets are highly circular suggesting surface tension minimization (250 mM PR20, 30% PEG, RT).

(D) Large PR droplets deform when shear stress is applied (arrows), but take up a circular shape after stress relief as indicated by an aspect ratio approximating

one (250 mM PR20, 30% PEG, RT).

(E) Volume is conserved following the fusion of two PR20 droplets (250 mM PR20, 30% PEG, RT). Scale bars represent 10 mm.
(Figure 4C). Further, we performed fluorescence recovery after

photobleaching (FRAP) analyses with the fluorescently tagged

PR20 (Figures 4D and 4E), and found in full-droplet bleaching

experiments that demixed PR readily interchanges with PR in

the dispersed phase (Figure 4D). Bleaching within droplets al-

lowed us to probe intradroplet dynamics. Aging of the PR-RNA

droplets had no effect on intradroplet fluorescence recovery

(Figure 4E). This result is in contrast to findings for PrLD LLPS,

which undergo a liquid-to-solid transition likely through b sheet

formation (Conicella et al., 2016; Molliex et al., 2015; Patel

et al., 2015).

PR LLPS Recruits Specific Proteins Involved in RNA
Metabolism
We wondered which cellular proteins could interact with PR. We

took soluble HeLa cell lysate, to which we added increasing con-

centrations of PR30. The PR30 peptide spontaneously demixed,
and could be separated from the solution by gentle centri-

fugation. The resultant pellet was subsequently washed and

analyzed by gel electrophoresis (Figure 5A). Unexpectedly, this

pellet was largely resistant to washing steps, suggesting that

PR induced the precipitation of different cellular proteins to the

insoluble fraction. The demixing of PR was also largely indepen-

dent of the presence of RNA in the lysate, as addition of RNase

only had a modest effect on the extent of protein precipitation

(Figure S3). To see whether weak interactions could still be

involved in the process, we performed mild crosslinking with

paraformaldehyde as recently used to identify both the stable

core and liquid-like shell of cellular SGs (Jain et al., 2016). The

PR fraction seemed to be enriched for a specific set of proteins

as was evident from the band pattern. Mass spectroscopy (MS)

analysis on both crosslinked and uncrosslinked samples identi-

fied 874 proteins that were detected and quantified in both

conditions.
Molecular Cell 65, 1044–1055, March 16, 2017 1047



Figure 3. Molecular Determinants of PR20 Phase Separation

(A) PR20 LLPS is dependent on molecular crowding.

(B) PR LLPS is length dependent.

(C) Addition of 1,6-hexanediol does not affect PR20 LLPS.

(D) Addition of NaCl inhibits PR20 LLPS.

(E and E’) PR-PEG LLPS is dependent on inorganic counteranions and correlated to anionic charge.

(F and F’) RNA dose dependently induces PR20 LLPS in the absence of molecular crowder.

(G and G’) Addition of PR20 clusters poly-tyrosine polymers in the absence of molecular crowder.

Depict schemes of molecular interactions and phase contrast images of solutions (E’, F’, and G’). Mean ± SD, n = 3 (A–G). All measurements at RT. Scale bars

represent 20 mm.

See also Figures S1 and S2.
We performed gene ontology (GO) enrichment analyses to

identify overrepresented biological processes and cellular com-

partments in our hit list. Significantly overrepresented terms

centered on RNA and protein metabolism (GO biological pro-

cess; Figure 5B) and different cellular liquid-like compartments

(GO cellular compartment; Figure S3). Indeed, when comparing

the protein content of the PR30 precipitate with those of stress

granules and nucleoli, we found a strong overlap with both

cellular liquid compartments (Figure 5C), while this was not the
1048 Molecular Cell 65, 1044–1055, March 16, 2017
case for an unrelated organelle (Figure S4). The PR30 precipitate

was also enriched for metastable aggregation-prone proteins

(Figure 5D). Given that �60% of identified proteins have been

implicated inRNAmetabolism (Figure S4),we evaluated overrep-

resentation of RNA binding domains. Several RNA binding do-

mainswerehighly significantly enriched inour list. These included

globular RRM or DEAD/H box domains and disordered RGG

boxes (Figure 5E). Besides RGGboxes, Rmotifs were also highly

abundant (Figure 5F), once more illustrating the importance of



Figure 4. PR-RNA Droplets Are Dynamic Liquid Compartments

(A) Fluorescently tagged PR20 and polyU RNA colocalize in phase separated droplets. Scale represents 10 mm.

(B) Spontaneous fusion behavior of PR20-polyU RNA droplets over time, as expressed by changes in hydrodynamic radius over time as measured by DLS.

Successive additions of polyU RNA indicated by red arrows. Final RNA concentration (green). The radius of polyU is 22nm (green line).

(C) Cryo-TEM of two PR20-polyU droplets (green) wetting carbon support (brown). No obvious structures can be observed within the droplets.

(D) Full droplet bleach of PR20 fluorescence indicates exchange between droplet and solution. Scale represents 5 mm.

(E) Within-droplet bleach on old versus young droplets indicates that PR20-polyU droplets do not mature or age. Mean ± SD, n = 12 droplets.

See also Figure S2.
arginine-rich binding modules in LLPS. Lastly, we found that

the PR30 precipitate is enriched for disordered (Figure 5G) and

aggregation-prone supersaturated proteins (Figure 5H) (Ciryam

et al., 2013).

Quantitative analysis revealed that 190 proteins were more

abundant after crosslinking (Figure S5), which suggests that

weak interactions between these proteins and the PR30-induced

insoluble fraction could be stabilized by our mild crosslinking

protocol. Interestingly, this set of cross-linking-sensitive proteins

was enriched for different protein families involved in stress

granule biology, such as hnRNPs (Molliex et al., 2015) and ami-

noacyl transferases (David et al., 2011) (Figure S5). Although

both 40S and 60S ribosomal proteins were highly abundant in

our protein set identified by MS, only 40S, but not 60S, constit-

uents were overrepresented in the crosslinking-sensitive frac-

tion. Cellular SGs also contain 40S, but exclude 60S subunits

(Kedersha et al., 2002).

PR Induces Stress Granule Assembly in Human Cells
To investigate the biological relevance of our in vitro cell-free

findings, we overexpressed a codon-optimized PR100 construct

in HeLa cells (Figure 6A). As previously reported, PR100 predom-

inantly localized to the nucleolus (Kwon et al., 2014; Tao et al.,

2015; Wen et al., 2014; Yamakawa et al., 2015). Yet, the evi-

dence whether arginine-rich DPRs affect SGs has remained

ambiguous (Tao et al., 2015; Wen et al., 2014; Yamakawa

et al., 2015). We found cytoplasmic PR100 granules positive for

SG markers after overexpression of PR100 (Figure 6A), and this
process was dose and length dependent (Figure S6). PR100

expression was more efficient at inducing SGs than PA100

expression, showing that these SGs do not just originate from

the transfection protocol (Figure 6B). PR100-induced SGs

were also responsive to known SG modifying compounds, i.e.,

arsenite and puromycin treatment enhanced SG formation,

whereas cyclohexamide reduced their number (Figure 6C). By

using a mutant MEF cell line carrying a non-phosphorylatable

form of eIF2a, we found that PR100 requires the integrated

stress response for SG induction (Figure 6D). Also the presence

of G3BP1/2 seemed to be required for this, based on the use of

knockout cell lines (Figure 6E) (Kedersha et al., 2016). When

studying these PR100-induced SGs in more detail, we observed

that they are slightly less dynamic than arsenite-induced SGs,

based on FRAP analysis of a G3BP1-GFP fusion protein (Fig-

ure 6F). Moreover, the protein content of PR100 SGswas strongly

altered compared to arsenite SGs. While there was no difference

in the SG enrichment of a general SG marker (YB-1), both a late

SG marker (DDX6) and ALS-related proteins carrying a PrLD

(ataxin-2 and TDP-43) were significantly enriched in PR100 SGs

compared to arsenite SGs (Figure 6G).

PR Affects Properties of PrLD Droplets
The current hypothesis for the formation of aggregates in ALS/

FTLD patients is a liquid-to-solid phase transition or perturbed

clearance of SGs. Although not observed in a living system so

far, in vitro droplets of FUS and hnRNPs have been shown to

mature to a solid state over the course of hours (Molliex et al.,
Molecular Cell 65, 1044–1055, March 16, 2017 1049



Figure 5. PR30 Initiates Phase Separation of RNA Granule Components and Metastable Proteins In Vitro

(A) Addition of PR30 to cleared cell lysate induces LLPS with the formation of an insoluble fraction. Background from pre-cleared lysate not treated with PR was

effectively zero. Weak interactions can be stabilized by mild PFA crosslinking.

(B) The PR30 interactome (n = 874) is enriched for GO biological processes centered on RNA and protein metabolism. Benjamini-Hochberg.

(C and D) The PR30 interactome significantly overlaps with cellular liquid compartments (Andersen et al., 2005; Jain et al., 2016) (C) andmetastable proteins (Kato

et al., 2012; Olzscha et al., 2011) (D). Binomial test.

(E and F) The PR30 interactome is enriched for RNA binding domains (E) and arginine-rich motifs (Mitrea et al., 2016) (F). Binomial test.

(G and H) The PR30 interactome is enriched for disordered (G) and supersaturated proteins (Ciryam et al., 2013) (H). Boxplots, whiskers indicate range. Mann-

Whitney.

See also Figures S3–S5 and Table S1.
2015; Patel et al., 2015). This likely corresponds to a transition of

their PrLDs from a disordered fuzzy state to a rigid b sheet struc-

ture (Burke et al., 2015; Molliex et al., 2015; Patel et al., 2015).

Since we found that (1) PR repeats could engage in p interac-

tions with tyrosines, (2) PR induced the precipitation of several

of these proteins in vitro, and (3) such proteins were enriched

in PR100 SGs, we wondered whether PR could affect the dy-

namics and maturation of PrLD droplets. Addition of PR30, but

not GP30, to FUS LCD droplets interfered with their spontaneous

fusion dynamics (Figure 7A). Additionally, FUS LCD phase sepa-

ration was also enhanced by addition of PR30 (Figures 7A and

7B). In agreement with the reduced dynamics of the droplets, ki-

netic thioflavin-T fluorescence analysis of FUS LCD droplets
1050 Molecular Cell 65, 1044–1055, March 16, 2017
supplemented with PR30, indicated an increase in b sheet con-

tent over time (Figures 7C and S7).

DISCUSSION

In this study, we have investigated whether highly repetitive and

disordered arginine-rich peptides generated from expanded

C9orf72 repeats in ALS/FTLD could play a role in LLPS. This phe-

nomenon is of intense interest since it could explain the biogen-

esis and physical underpinnings of SGs, which are the prime

suspect of seeding for pathological protein aggregation in ALS

and FTLD (King et al., 2012; Ramaswami et al., 2013). Until

now, LLPS of PrLD containing RBPs has been mostly attributed



Figure 6. PR100 Expression Alters Stress Granule Dynamics in Cells

(A) Expression of PR100 in HeLa cells induces cytoplasmic SGs assembly positive for PR.

(B) PR100 is more efficient at inducing SGs than PA100.

(C) Arsenite and puromycin increase number of SGs in PR100 transfected cells, whereas cyclohexamide decreases them.

(D) Non-phosphorylatable form (AA) of eIF2a prevents PR100-induced SG assembly in MEFs.

(E) G3BP1/2 knockout prevents PR100 induced SG assembly in U2OS cells.

(F) PR100-induced SGs have a mildly reduced FRAP recovery for G3BP1 compared to arsenite-induced ones. Repeated-measures ANOVA. Mean ± SEM,

n = 17 SGs.

(G) SG enrichment of several RNA binding proteins is altered in PR100-induced SGs compared to arsenite-induced ones. Boxplots, whiskers indicate range.

Mann-Whitney. n > 60 SGs, from three independent experiments.

Fischer’s exact test. n R 100 cells, from three independent experiments (A–E).

See also Figure S6.
to hydrophobic interactions. However, arginine-rich domains

are highly enriched in cellular liquid-like compartments, such

as stress granules and the nucleolus, and both protein disor-

der and arginine-content are highly conserved in RBPs (Varadi

et al., 2015). This conservation suggests that these arginine-

rich domains must be under selective pressure, highlighting

their functionality and suggesting that a similar gain-of-function

may underlie the pathological role of C9orf72 DPRs in ALS. In

fact, RGG boxes have been shown to affect PrLD aggregation

and LLPS by nucleating on RNA or poly(ADP-ribose) (Altmeyer

et al., 2015; Lin et al., 2015; Molliex et al., 2015; Patel et al.,

2015; Schwartz et al., 2013). We hence hypothesized that argi-

nine-rich DPRs could play a more direct role in phase separation

through their disorder (Zhang et al., 2015) and thus they could

also contribute to developing disease.
Indeed, we found that arginine-rich DPRs derived from the

C9orf72 repeat expansion undergo LLPS, a process mimicked

by short synthetic peptides corresponding to the RGG boxes

of three SG proteins, which also spontaneously phase sepa-

rated in vitro. This phase transition was directly correlated with

the arginine content of the peptides. As shown previously for

inorganic polymers, such like-charged phase separation was

dependent on counterions (Tiraferri et al., 2015). In accordance,

we found that RNA strongly induced LLPS of PR. Recently, two

other studies have also reported a similar behavior for artificial

arginine-rich peptides (Aumiller and Keating, 2016) or peptides

derived from nucleolar proteins (Mitrea et al., 2016).

Intriguingly,whenweaddedcellularproteins toPR, this resulted

in the formation of an insoluble pellet, rather than liquid droplets.

However, crosslinking experiments showed that specific weak
Molecular Cell 65, 1044–1055, March 16, 2017 1051



Figure 7. PR30 Affects Phase Transitions of PrLDs
(A) FUS LC droplets spontaneously fuse over time into larger droplets, as characterized by an increase in droplet size. This spontaneous fusion behavior is

prevented by addition of PR30, but not GP30. Boxplots, whiskers indicate range. Kruskal-Wallis. n = (318–3,349) droplets. 50 mM MES buffer, 200 mM NaCl.

(B) The FUS LC domain (amino acids [aa] 1–163) poorly phase separates, but addition of PR30 increases phase separation dose dependently.

(C) Kinetic analysis of ThT fluorescence over a 12-hr period for different FUS LC-PR30 combinations. Addition of PR increases ThT fluorescence. Of note, PR30 by

itself did not yield any increase in ThT fluorescence over time (data not shown). Mean ± SD (B and C).

See also Figure S7.
protein-protein interactions did occur in our test tube experiment.

This is consistent with recent reports indicating that cellular SGs

likely consist of a stable core surrounded by a liquid shell, rather

than a homogeneous liquid droplet (Jain et al., 2016; Kedersha

et al., 2016). Identifying the PR30 interactome using MS showed

that PR was able to interact with a large, yet specific, set of pro-

teins enriched for RNA-binding domains, arginine-rich motifs

and protein disorder. Numerous hits were known constituents of

endogenous liquid organelles, and, interestingly, several have

been directly implicated in ALS/FTLD. The PR30 interactome

was indeed significantly enriched for proteins associated with

‘‘neuromuscular disease’’ (p = 2.14 3 10�9, ingenuity pathway

analysis). Hence,we suggest that DPRsmayplay a role in disease

by upsetting the internal functional balance of membraneless or-

ganelles (Brangwynne et al., 2015). The data of our in vitro precip-

itation experiment are in agreement with three recent studies

showing that intracellular PR and GR peptides can bind with a

large set of proteins involved in RNA- and SG metabolism (Lee

et al., 2016; Lin et al., 2016; Lopez-Gonzalez et al., 2016).
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When overexpressed in cells, PR was indeed able to seed SG

assembly, and this SG induction was dependent on phosphory-

lation of eIF2a and the presence of G3BP proteins. Although

SG induction by PR was shown recently by others (Lee et al.,

2016; Yamakawa et al., 2015), the mechanism through which

this occurred remained unknown and of intense interest from

a therapeutic perspective. In this light, eIF2a modulation has

already been shown to ameliorate toxicity in different TDP-43

ALS models (Kim et al., 2014). G3BP proteins have been shown

to be essential in eIF2a-controlled SG assembly (Kedersha

et al., 2016), and the G3BP RGG domain plays a crucial role in

this process, once more highlighting the importance of argi-

nine-rich domains in SG metabolism.

PR-induced SGs displayed reduced dynamics and were en-

riched for ALS-related proteins. Moreover, PR was also able to

accelerate the liquid-to-solid maturation of PrLD droplets, a pro-

cess reminiscent of pathological aggregation (Conicella et al.,

2016; Molliex et al., 2015; Patel et al., 2015). In line with our find-

ings, two other reports also recently found that arginine-rich



DPRs can affect SGs and other higher order assemblies in similar

ways (Lee et al., 2016; Lin et al., 2016).

SGs are generally considered to be the stepping stone toward

pathological aggregation of RBPs in disease. Identifying the

mechanisms behind altered SG dynamics and a deeper appreci-

ationof their biology, hence,will provideuswith invaluableclues to

better understand the etiology of disease. Disease mutations are

known to target several SG proteins or proteins involved in SG

dynamics (Ramaswami et al., 2013). However, the reason why

wild-type proteins mislocalize to the cytoplasm and aggregate in

C9orf72 cases remained elusive. Recently, we and others have

shown that nucleocytoplasmic transport defects caused by argi-

nine-rich DPRs could explain the mislocalization of these RBPs

(Boeynaems et al., 2016a, 2016b; Freibaum et al., 2015; Jovi�ci�c

et al., 2015). By focusing now on the biophysical behavior of argi-

nine-rich DPRs, we and others have found that they could also be

directly implicated in the cytoplasmic aggregation of RBPs. These

data suggest that DPRs could initiate a pathogenic cascade in

C9orf72 ALS/FTLD, by targeting the nuclear transport-stress

granule axis (Boeynaemsetal., 2016b;EdbauerandHaass, 2016).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
U2OS cells stably expressing G3BP1-GFP were a kind gift of Dr. Paul Taylor (St. Jude, USA) (Figley et al., 2014). U2OS G3BP1/2 KO

cell line, and eIF2aSS and AAMEFswere a kind gift of Dr. Nancy Kedersha andDr. Paul Anderson (Harvard, USA) (Emara et al., 2012;

Kedersha et al., 2016). U2OS and HeLa cells (ATCC) were cultured in high glucose DMEM (Invitrogen) supplemented with 10% fetal

bovine serum (Greiner), 4 mMGlutamax (Invitrogen), penicillin (100 U/mL), streptomycin (100 mg/mL) and non-essencial amino acids

(1%). Cells were grown at 37�C in a humidified atmosphere with 5% CO2.

METHODS DETAILS

Plasmids, peptides and recombinant proteins
FLAG-tagged DPR50 expression constructs were synthesized by Genscript (Piscataway, USA). The DPR100 constructs were a kind

gift of Dr. Daisuke Ito (Department of Neurology, Keio University, Tokyo, Japan).

Peptides were chemically synthesized by Pepscan (Lelystad, Netherlands). Peptides were dissolved in milli-Q water and stored at

�80�C. Peptides were fluorescently labeled using Alexa Fluor Labeling Kits (Thermo Scientific).

FUS LC domain was expressed in E. coli and purified as described previously (Burke et al., 2015). hnRNPA2 LC domain (residues

190-341) was expressed with a TEV-cleavable N-terminal hexahistidine tag, purified from the inclusion body via HisTrap (GE Health-

care) in urea containing buffers, concentrated, diluted into native buffer for TEV cleavage of hexahistidine tag, resolublized by addi-

tion of solid urea, separated from his-tagged TEV protease and cleaved his-tag by HisTrap, and concentrated to 1-2 mM in 8M urea

20mMMES pH 5.5. hnRNPA2 was aliquoted and flash frozen. Experiments were conducted by dilution into native buffer conditions.

Droplet formation
Peptides were diluted to the indicated concentrations in 100mMK2HPO4/KH2PO4 buffer at pH 7, unless otherwise indicated. PEG300,

polyU RNA or poly-L-tyrosine (Sigma-Aldrich) were added at the indicated concentrations. All reactions were carried out at room

temperature, unless indicated otherwise.

For fluorescence microscopy and FRAP analyses, PR-Alexa 568 and polyU30-Alexa 488 were spiked in at 200nM and 100 nM

respectively.

FUS LC droplets were generated by diluting the stock solution to the desired concentration in 50mMMES buffer at pH 5, with the

indicated NaCl concentrations.

hnRNPA2 LC droplets were generated by diluting the stock solution to the desired concentration in 20mM NaPi buffer with 50mM

NaCl at pH 7.5.

Turbidity measurements
OD600 of 60ml samples was measured using trUView microcuvettes in a SmartSpec Plus Spectrophotometer (Bio-Rad). Turbidity of

100ml of FUS and hnRNPA2 LC droplets was measured on a Spectra Max M5 Microplate Reader (Molecular Devices).

Spontaneous fusion assays
FUS LC droplets were generated by diluting the stock solution to 250mM in 50mMMES buffer at pH 5, 200mMNaCl. 1mMof Alexa 488

tagged FUS LC was spiked into the solution.
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Fluorescent droplets were incubated in plastic Cell Counter slides (Bio-Rad) at room temperature. Chambers were sealed using

nail varnish to prevent evaporation during aging. Every two hours three arbitrary fields were imaged on a Zeiss LSM 510 Meta

NLO confocal microscope. Droplet sizes were quantified with FIJI and analyzed with Prism.

ThT assays
ThTwas added to 100ml PR30 + LC droplet mixtures at a concentration of 20mM. Fluorescence intensity over timewas followed using

a SpectraMaxM5Microplate Reader (Molecular Devices). Reactions were carried out in triplicate. Data was plotted using Prism soft-

ware. Lag time was estimated as the time point of a local minimum in the curve.

CD measurements
CD spectra of the peptides analyzed in this study were recorded in a Jasco 715 spectropolarimeter equipped with a PTC 423S peltier

element. Peptides were loaded into a 0.2mm quartz cuvette at 30mM concentration (50mM K2HPO4/KH2PO4 buffer at pH 7), and

spectra were recorded with 50nm/min scan speed at 25�C with 9 acquisitions averaged on the fly. Spectra were background cor-

rected with the buffer spectrum (50mM K2HPO4/KH2PO4 buffer at pH 7), and converted into molar ellipticity.

Cryo-TEM
PR droplet (250mM PR20 + 0.04mg/ml polyU RNA) sample (3.5 mL) was applied to a 300 mesh lacey Quantifoil grid and incubated for

30 s. Next, excess buffer was removed by blotting the grids for 3 s using aWhatman 1 filter paper and the sample was snap frozen by

plunging in liquid ethane at a temperature of �180�C and stored in liquid nitrogen until visualization. Next, the samples were trans-

ferred to a Gatan 914 cryoholder and imaged at low dose conditions at �177�C, using a JEOL JEM1400 TEM equipped with an

11 Mpxl Olympus SIS Quemesa camera.

FRAP analysis
Fluorescent droplets were incubated in plastic Cell Counter slides (Bio-Rad) at room temperature. Chambers were sealed using

nail varnish to prevent evaporation during aging. Fluorescence recovery after bleaching was monitored using Zen software on

a Zeiss LSM 510 Meta NLO confocal microscope. For intradroplet FRAP, a circular are of 1mM radius was bleached in droplets

with a radius between 5mM and 10mM. Raw data was background substracted and normalized using Excell, and plotted

using Prism software. FRAP curves were fitted with a one phase exponential curve. Images were formatted FIJI and ImageJ

software.

Fluorescence anisotropy measurements
Measurements were carried out in a LS55 Luminescence Spectrometer (PerkinElmer), with 200nMPR-Alexa568 N-terminally labeled

protein in 50mM K2HPO4/KH2PO4 buffer at pH 7. After the addition of 10mM of bulk PR30, fluorescence anisotropy was measured at

increasing RNA concentration at 578nm excitation and 603nm of emission wavelengths. Anisotropy was determined via following

intensity of polarized light at 0�, 90� angles.

Dynamic light scattering (DLS)
20mM PR30 was titrated with increasing concentration of polyU RNA starting at a 0.04mg/ml concentration in a DynaPro NanoStar

(Wyatt technologies) in 50mM K2HPO4/KH2PO4 buffer at pH 7. The size of particles was followed for one hour after every titration

step (each titration step represented a 0.5% dilution). To control sedimentation and droplet fusion sample was mixed thoroughly

with a pipet randomly between time points.

ANS titration
ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence was measured for 40mM PR20 or 40mM GR20 peptide in the presence and

absence of 0.05mg/ml polyU RNA in a BioTek MX Synergy plate reader in 50mM K2HPO4/KH2PO4 buffer at pH 7. Emission spectra

were recorded between 400nm and 600nm at 380nm excitation wavelength.

Hydrogen deuterium exchange (HDX)
Global HDX experiments were performed at 4�C. PR30 and polyU RNA were dissolved in miliQ grade water and added together to

make a final concentration of 400 mM PR and 4.8 mg/ml polyU RNA to induce LLPS. For experiments on the free peptide, PR was

diluted to a final concentration of 400mM. The samples were then, either immediately or after an incubation time of 1h for the LLPS

samples, diluted with a 20-fold excess of D2O. After the indicated time points the HDX reaction was quenched by bringing the pH of

the solution to 1 using formic acid, followed by snap freezing in liquid nitrogen. The samples were stored at �80�C prior to analysis.

Mass spectrometry analysis of deuterium incorporation was performed on a Synapt G2 HDMS mass spectrometer (Waters, Wilm-

slow, UK) by direct infusion of the undigested sample using nano-electrospray ionization with in-house prepared gold-coated boro-

silicate needles. All experiments were performed in triplicates.
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PR30 protein precipitation
HeLa cells were trypsinized, pelleted and washed three times with 1x PBS (Thermo Scientific). Cells were resuspended in K2HPO4/

KH2PO4 buffer with EDTA-free cOmplete protease inhibitor cocktail (Roche) and sonicated on ice. The lysate was cleared from the

insoluble fraction by centrifugation for 15min at 10,000 rpm at 4�C. The supernatans was retrieved and protein concentration was

measured using Micro BCA assay (Thermo Scientific).

1 mg of protein was added to 0.05 mmole of PR30 to a final concentration of 100mM, and left incubating for 10 min at RT. Parafor-

maldehyde (Sigma-Aldrich) was added to a final concentration of 0.5%, and crosslinking was left for 5 min. 500ml of 2M Glycine

(Sigma-Aldrich) was added to quench paraformaldehyde, and samples were left for 5 min. Uncrosslinked samples were treated simi-

larly, apart from paraformaldehyde addition. The volume of the samples was increased to 1.5ml with K2HPO4/KH2PO4 buffer, before

gently spinning down the PR droplets at 4,000 rpm for 5min. Pellets were subsequently washedwith 1ml PBSwith 0.4%Triton X-100

(Sigma-Aldrich) and vortexed before spinning down. Washing steps were repeated three times. The resulting pellets were processed

for LC-MS/MS. Samples for SDS-PAGE were generated identically, but procedure was downscaled four times.

SDS-PAGE
PR LLPS pellets were resuspended in 1x reducing Laemmli containing SDS (Thermo Scientific). 1/8th of pellet or input lysate were

loaded onto NuPAGE Novex 4%–12% Bis-Tris precast gels (Thermo Scientific). After running gels were stained using Coomassie

Brilliant blue R-250 according to manufacturer’s instructions (Bio-Rad).

Proteomics sample preparation and LC-MS/MS analysis
Uncrosslinked (2 replicates) and crosslinked pellets (3 replicates) were redissolved in 300 mM NaCl Tris buffer, sonicated and boiled

to remove crosslinks. Urea was added to a final concentration of 8M to solubilize insoluble proteins. The total sample volume

was 1.5 ml.

Proteins in each sample were reduced with 5 mM DTT and incubation for 30 min at 55�C and then alkylated by addition of 10 mM

iodoacetamide for 15 min at room temperature in the dark. Samples were further diluted to a final urea concentration of 2 M and pro-

teins were digested with trypsin (Promega) (1/100, w/w) overnight at 37�C. Peptides were then purified on Omix C18 tips (Agilent),

dried and re-dissolved in solvent A (25 ml 0.1%TFA in water/acetonitrile (98:2, v/v)) of which 10 ml was injected for LC-MS/MS analysis

on an Ultimate 3000 RSLCnano System (Dionex, Thermo Fisher Scientific) in line connected to a Q Exactive HF mass spectrometer

with a Nanospray Flex Ion source (Thermo Fisher Scientific). Trapping was performed at 10 ml/min for 4 min in solvent A (on a reverse-

phase columnproduced in-house, 100 mm I.D. x 20mm, 5 mmbeadsC18Reprosil-Pur, Dr.Maisch) followed by loading the sample on

a 40 cm column packed in the needle (produced in-house, 75 mm I.D.3 400 mm, 1.9 mm beads C18 Reprosil-HD, Dr. Maisch). Pep-

tides were eluted by an increase in solvent B (0.1% formic acid in water/acetonitrile (2:8, v/v)) in linear gradients from 2% to 30% in

100 min, then from 30% to 56% in 40 min and finally from 56% to 99% in 5 min, all at a constant flow rate of 250 nl/min. The mass

spectrometer was operated in data-dependent mode, automatically switching between MS and MS/MS acquisition for the 16 most

abundant ion peaks per MS spectrum. Full-scan MS spectra (375-1500 m/z) were acquired at a resolution of 60,000 after accumu-

lation to a target value of 3,000,000 with a maximum fill time of 60 ms. The 16 most intense ions above a threshold value of 22,000

were isolated (window of 1.5 Th) for fragmentation at a normalized collision energy of 32% after filling the trap at a target value of

100,000 for maximum 45 ms. The S-lens RF level was set at 55 and we excluded precursor ions with single and unassigned charge

states.

Protein identification and quantification
Data analysis was performed with MaxQuant (version 1.5.3.30) (Cox and Mann, 2008) using the Andromeda search engine with

default search settings including a false discovery rate set at 1% on both the peptide and protein level. Spectra were searched

against the human proteins in the Uniprot/Swiss-Prot database (database release version of April 2016 containing 20,103 human pro-

tein sequences, www.uniprot.org). The mass tolerance for precursor and fragment ions were set to 4.5 and 20 ppm, respectively,

during the main search. Enzyme specificity was set as C-terminal to arginine and lysine, also allowing cleavage at proline bonds

with a maximum of three missed cleavages. Variable modifications were set to oxidation of methionine residues and acetylation

of protein N-termini. Only proteins with at least one unique or razor peptide were retained leading to the identification of 1811 human

proteins. Proteins were quantified by the MaxLFQ algorithm integrated in the MaxQuant software (Cox et al., 2014). A minimum ratio

count of two unique or razor peptides was required for quantification. Further data analysis was performed with the Perseus software

(version 1.5.3.0) after loading the protein groups file from MaxQuant. Proteins only identified by site and reverse database hits were

removed and replicate samples of uncrosslinked and crosslinked were grouped. Proteins with less than three valid values in at least

one group were removed and missing values were imputed from a normal distribution around the detection limit. Then, a t test was

performed (FDR = 0.01 and S0 = 1) to compare samples uncrosslinked and crosslinked and calculate the fold change for each protein

between both samples. After removal of potential contaminants, 874 proteins were quantified in total (Table S1).

Cell transfection
Cells were grown at 37�C in a humidified atmosphere with 5% CO2 for 24h. Cells were transiently transfected using Lipofectamine

3000 (Invitrogen) according to manufacturer’s instructions.
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Immunohistochemistry and microscopy
Cells were fixed 24h after transfection in 4% formaldehyde in PBS and stained according standard protocols (including methanol

fixation and permeabilization by PBS-T 0.04%). Following antibodies were used: anti-FLAG (F3165, Sigma), rabbit anti-FLAG

(#2368S, Cell Signaling), mouse anti-G3BP1 (Ab56574, Abcam), rabbit anti-DDX6 (Ab40684, Abcam), rabbit anti-YB1 (Ab76149, Ab-

cam), rabbit anti-TDP-43 (12892-1-AP, Proteintech), mouse anti-ataxin-2 (611378, BD Biosciences), goat anti-TIA1 (sc-1751, Santa

Cruz). AlexaFluor 555 and AlexaFluor 488 secondary antibodies (Life Technologies) were used. Nuclei were visualized using NucBlue

counterstaining (Thermo Scientific). Slides were mounted using ProLong Gold antifade reagent (Life Technologies).

Confocal images were obtained using a Zeiss LSM 510 Meta NLO confocal microscope. Images were analyzed, formatted and

quantified with FIJI and ImageJ software. Statistics were carried out using Prism software.

Control stress granules were induced by incubating the cells for 1h with 0.5mM NaAsO2 (Sigma).

Stress granule analysis
Percentage of cells carrying stress granules was assessed by G3BP1 staining in all tested cell lines. Minimum 100 cells were counted

over three independent experiments. Percentages were compared using Fisher’s Exact test in Prism.

Stress granule enrichment was quantified as the ratio of fluorescence intensity in the stress granule over the intensity of the sur-

rounding cytoplasm. Two stress granules per cell were quantified, of at least 30 cells from 3 independent experiments. For stress

granule enrichment of PR100, one stress granule per cell was counted, of 40 cells from 2 independent experiments. PR100 stress gran-

ules were visualized for quantification with FLAG staining, arsenite stress granules were visualized by TIA1 staining.

For analysis of dose- and length dependency of PR cytoplasmic structures, cells were categorized as having diffuse cytoplasmic

PR, small stress granules, large stress granules or coarse/granular/heterogeneous cytoplasmic PR staining. Stress granules were

assessed based onG3BP1-GFP staining in theU2OS stable cell line. Representative images of each category are shown in Figure S8.

Cells were assigned to a category and plotted according to cytoplasmic PR100-FLAG intensity. Data was subsequently also plotted

as the percentage of cells displaying non-diffuse cytoplasmic PR staining aftermanual binning according to cytoplasmic PR100-FLAG

intensity. Percentages were fitted by a one-phase exponential curve, illustrating a strong dose-dependency of cytoplasmic structure

formation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters and distributions are reported in the Figures and corresponding Figure Legends. Statistical analysis was per-

formed in Excel or GraphPad Prism.

DATA AND SOFTWARE AVAILABILITY

Themass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository

with the dataset identifier PRIDE: PXD005509.
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