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Nonlinear unsteady streaks engendered by
the interaction of free-stream vorticity with
a compressible boundary layer
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3Department of Mathematics, Imperial College London, SW7 2AZ London, UK
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The nonlinear response of a compressible boundary layer to unsteady free-stream
vortical fluctuations of the convected-gust type is investigated theoretically and nu-
merically. The free-stream Mach number is assumed to be of O(1) and the effects of
compressibility, including aerodynamic heating and heat transfer at the wall, are taken
into account. Attention is focused on low-frequency perturbations, which induce strong
streamwise-elongated components of the boundary-layer disturbances, known as streaks
or Klebanoff modes. The amplitude of the disturbances is intense enough for nonlinear
interactions to occur within the boundary layer. The generation and nonlinear evolu-
tion of the streaks, which acquire an O(1) magnitude, are described on a self-consistent
and first-principle basis using the mathematical framework of the nonlinear unsteady
compressible boundary-region equations, which are derived herein for the first time. The
free-stream flow is studied by including the boundary-layer displacement effect and the
solution is matched asymptotically with the boundary-layer flow. The nonlinear inter-
actions inside the boundary layer drive an unsteady two-dimensional flow of acoustic
nature in the outer inviscid region through the displacement effect. A close analogy with
the flow over a thin oscillating airfoil is exploited to find analytical solutions. This anal-
ogy has been widely employed to investigate steady flows over boundary layers, but is
considered herein for the first time for unsteady boundary layers. In the subsonic regime
the perturbation is felt from the plate in all directions, while at supersonic speeds the
disturbance only propagates within the dihedron defined by the Mach line. Numerical
computations are performed for carefully chosen parameters that characterize three prac-
tical applications: turbomachinery systems, supersonic flight conditions and wind tunnel
experiments. The results show that nonlinearity plays a marked stabilizing role on the
velocity and temperature streaks, and this is found to be the case for low-disturbance
environment such as flight conditions. Increasing the free-stream Mach number inhibits
the kinematic fluctuations but enhances the thermal streaks, relative to the free-stream
velocity and temperature respectively, and the overall effect of nonlinearity becomes
weaker. An abrupt deviation of the nonlinear solution from the linear one is observed in
the case pertaining to a supersonic wind tunnel. Large-amplitude thermal streaks and the
strong abrupt stabilizing effect of nonlinearity are two new features of supersonic flows.
The present study provides an accurate signature of nonlinear streaks in compressible
boundary layers, which is indispensable for the secondary instability analysis of unsteady
streaky boundary-layer flows.
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1. Introduction

The transition from a laminar to a turbulent state in boundary layers, although studied
for over a century, still represents one of the outstanding unsolved problems in fluid
mechanics. A thorough understanding of the physics underlying this phenomenon is of
great importance from a fundamental as well as from a practical point of view. The wall
shear stress and heat transfer characteristics change dramatically depending on the flow
regime being laminar, transitional or turbulent. Therefore, quantitative prediction and
control of transition play a decisive role in determining the operating conditions and
performance of flows around high-speed airfoils in a variety of industrial applications.
Relevant examples are commercial and high-speed aircraft, space capsule re-entry into
the atmosphere and flows around turbine stator vanes or rotor blades.

Boundary-layer transition is known to be strongly influenced by disturbances present
in the oncoming stream, which penetrate into the boundary layer and eventually lead
to the breakdown of the laminar flow. Such perturbations consist of acoustic (pressure),
kinematic (vortical) and entropy (temperature) fluctuations, and may exist independently
of each other when they are of sufficiently small amplitude.

In this paper we are concerned with free-stream vortical perturbations whose intensi-
ties are high enough (Tu=1% or more, where Tu is the root-mean-square value of the
velocity fluctuations) for transition to occur rather early, bypassing the so-called orderly
route via viscous Tollmien-Schlichting (T-S) waves. In this scenario, referred to as by-
pass transition (Morkovin 1984), the laminar boundary-layer breakdown is preceded and
caused by unsteady streamwise-elongated regions of high and low streamwise velocity.
These structures have been referred to as breathing modes (Taylor 1939) because of their
resemblance to a thickening and thinning of the layer, Klebanoff modes (Kendall 1985)
after the experiments of Klebanoff (1971), or laminar streaks. The focus of our work is
on the generation and nonlinear evolution of streaks in the compressible regime because
in high-speed flows transition occurs more frequently through the bypass route than via
the T-S wave growth described by classical stability theory.

1.1. Ezperiments and direct numerical simulations

Experimental works (Arnal & Juillen 1978; Kendall 1985, 1990, 1991; Westin et al. 1994,
1998; Matsubara & Alfredsson 2001; Fransson et al. 2005) and direct numerical simula-
tions (DNS) using realistic free-stream disturbances (Nagarajan et al. 2007; Ovchinnikov
et al. 2008; Brinkerhoff & Yaras 2015) have provided an overall picture of bypass tran-
sition induced by free-stream turbulence in the incompressible regime. The reader is
also referred to DNS studies (e.g. Jacobs & Durbin 2001; Brandt et al. 2004; Zaki &
Durbin 2005) using inflow conditions synthesized through the continuous modes of the
Orr-Sommerfeld /Squire equations. Despite its importance in high-speed aircraft design
and turbomachinery applications, the literature available on bypass transition in com-
pressible flows is more limited than for incompressible flows. Supersonic wind tunnel
experiments (Laufer 1961; Pate & Schueler 1969; Kendall 1967; Schneider 2001) showed
that the transition behaviour is dominated by the noise radiated from the turbulent
boundary layers on the walls. Transition may occur earlier in laboratory experiments
than in flight conditions because of the high levels of tunnel noise (Schneider 2001). This
discrepancy prevents the direct use of laboratory data for high-speed vehicle design. Al-
though most of the experimental studies in the last few decades have focussed on acoustic
disturbances, it should be recognized that more attention needs to be devoted to vortical
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disturbances. As speculated by Kendall (1975), at low speeds the tunnel sound might be
less effective than other type of disturbances, such as the vortical fluctuations. In flight
conditions vortical disturbances are the main source of perturbation influencing transi-
tion, while acoustic modes are weak and only become relevant at locations affected by
the noise radiated by the engine.

Mayer et al. (2011) performed DNS of the downstream development of a pair of oblique
instability waves in a supersonic flat-plate boundary layer. They showed that transition
in supersonic two-dimensional boundary layers can be initiated by very low disturbance
levels (e.g. less than 0.01%), which explains the practical relevance of the oblique break-
down mechanism for quiet environment such as free flight. Joo & Durbin (2012) carried
out DNS of the transition initiated by discrete instability modes and continuous vor-
tical modes in a Mach 4.5 boundary layer. As in Jacobs & Durbin (2001) and Zaki &
Durbin (2005), their approach consisted of specifying the inflow conditions in terms of
a superposition of the continuous spectra of the Orr-Sommerfeld and Squire operators.
Such a practice has been questioned by Dong & Wu (2013) and Wu & Dong (2016),
who showed that continuous spectra exhibit non-physical features (i.e. entanglement of
Fourier components and abnormal size of the streamwise free-stream velocity) because
non-parallel flow effects in the boundary layer are neglected. Non-parallelism actually
plays a leading-order role in the entrainment of free-stream vortical disturbances into
the boundary layer.

1.2. Theoretical works

In order to include the interaction between free-stream disturbances and the bound-
ary layer, a rigorous mathematical formulation has been developed by Goldstein and
co-workers (Goldstein et al. 1992; Goldstein & Leib 1993; Goldstein 1997; Wundrow &
Goldstein 2001). Goldstein’s theory is based on the boundary-region equations (Kemp
1951), which are the rigorous asymptotic limit of the Navier-Stokes equations for low-
frequency and long-wavelength perturbations. For these disturbances, the streamwise
derivatives in the viscous and pressure gradient terms are negligible, while the span-
wise viscous diffusion is retained. In the limit of small-amplitude disturbances or short
downstream distance, the boundary-region equations can be linearized about the Bla-
sius solution. Leib et al. (1999) used the linearized unsteady boundary-region equations
(LUBR) to investigate the response of an incompressible laminar boundary layer to free-
stream unsteady vortical fluctuations of the convected-gust type. Wu & Luo (2003) and
Wu & Choudhari (2003) studied the instability of a Blasius boundary layer in the pres-
ence of steady and unsteady streaks, and showed that inviscid instability may occur when
the distortion of the Klebanoff modes reaches a certain threshold value.

The linear analysis of Leib et al. (1999) was extended by Ricco et al. (2011) to include
nonlinear effects. Nonlinearity was found to attenuate the amplification of the streaks
and to distort the mean-flow profile significantly. A secondary instability analysis was
carried out on the nonlinear streaks, proving that the streaky boundary layer may become
inviscidly unstable during certain phases of the time modulation.

Ricco & Wu (2007) extended the incompressible analysis by Leib et al. (1999) to the
compressible case and explained the formation and growth of thermal streaks, which are
thought to play a significant role in the secondary instability. Ricco et al. (2009) and Ricco
et al. (2013) further studied the influence of wall heat transfer and wall suction, respec-
tively, on the thermal streaks. The boundary-layer signature in the region relatively close
to the leading edge corresponds to the inhomogeneous solution forced by the free-stream
disturbance. However, Ricco & Wu (2007) also observed that sufficiently downstream
exponentially growing disturbances are formed. For high subsonic and supersonic Mach
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numbers, the appearance of the amplifying disturbances was in the streamwise region of
practical interest. Ricco & Wu (2007) showed that the growing disturbances evolved from
the so-called quasi-three-dimensional Lam-Rott eigensolutions, which are excited by the
free-stream disturbance and may be identified as highly oblique low-frequency T-S waves
in the so-called first-mode family (Mack 1975, 1984). Ricco et al. (2009) found that wall
cooling suppresses the streaks and enhances the growth of the instability waves.

The parabolized-stability equations (PSE) approach has been developed and used to
study the evolution of instability modes in compressible boundary layers (see e.g. Chang
et al. 1991). This methodology is based on the assumption that the base flow varies slowly
in the streamwise direction and thus a Wentzel-Kramers-Brillouin (WKB) type of analy-
sis is employed to parabolize the Navier-Stokes equations. The method requires, however,
an ad hoc iterative procedure to identify a local streamwise wavenumber, and, further-
more, the presence of the streamwise pressure gradient causes some numerical instability
due to a residual ellipticity in the equations (Li & Malik 1996). Neither of these problems
occurs in the boundary-region equation approach because the local streamwise wavenum-
ber tends to zero in the low-frequency asymptotic limit, and the equations are strictly
parabolic. It should be pointed out that what we referred to as the boundary-region equa-
tion approach consists of appropriate initial (upstream) and boundary conditions, which
correctly describe the entrainment of physically realizable free-stream disturbances. This
is in contrast to the so-called optimal perturbation theory (Andersson et al. 1999; Zuccher
et al. 2006), which uses the adjoint of the boundary-region equations or of the PSE to
find the initial (upstream) disturbances that undergo the maximum gain when evolving
to a pre-selected streamwise location. Free-stream disturbances, the very factor causing
bypass transition, are not taken into account in the latter formulation.

1.3. Objectives

As in the incompressible case, bypass transition in compressible boundary layers is of
relevance for engineering applications, but it is also challenging theoretically because of
both the difficult mathematics involved and the complex physical mechanisms at play.
As an essential step towards understanding and predicting compressible bypass transi-
tion, we formulate a rigorous description of the formation and nonlinear development
of the unsteady compressible streaks induced by free-stream vortical fluctuations. Such
a mathematical theory for compressible disturbances responsible for bypass transition
is still absent. A further goal is to explain the nonlinear interactions between the free-
stream flow and the viscous boundary-layer flow, which occur through the displacement
effect.

In §2, the mathematical formulation and the scalings adopted are presented. In §2.1
the free-stream perturbation is described and in §2.2 the nonlinear unsteady compressible
boundary-region equations are derived. In §2.3 the outer-flow solution is obtained and
matched with the inner solution in §2.4. The numerical procedure to solve the boundary-
region problem is outlined in §3. The outer-flow velocity and pressure fields are shown in
§4 for the subsonic and supersonic regimes. In §5.1 three different cases are considered,
i.e. a turbomachinery flow (§5.1.1), a free flight flow (§5.1.2) and a supersonic wind tunnel
flow (§5.1.3). The relevant results for the unsteady compressible streaks are presented in
§5.2 and §5.3. A summary and conclusions are given in §6.

2. Formulation: scalings and governing equations

An air flow with a mean uniform velocity UZ% and constant temperature T2 is consid-
ered; hereinafter the symbol * is used to indicate dimensional quantities. Superimposed
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on the mean flow are homogeneous, statistically stationary turbulent vortical fluctua-
tions, which are of the convected-gust type, i.e. they are passively advected by UZ . The
oncoming flow is considered isentropic and air is treated as a perfect gas. The speed of

sound in the free stream is:
at, = /YR*TL, (2.1)

where y=1.4 is the ratio of the specific heats and R* is the universal gas constant
(R*=287.05 Nmkg 1K~!). The Mach number is defined as

My = =22 = 0(1). (2.2)

In the Cartesian coordinate system employed to describe the flow, a point is repre-
sented by a position vector x*=x*1 4+ y*j + z2*k, where x*, y* and z* define the stream-
wise, wall-normal and spanwise directions, respectively. The spatial coordinates are non-
dimensionalized by a suitable reference length scale \*, which we shall specify below. The
velocity and temperature reference scales are UZ and T} . The fluid properties, such as
the density p* and the dynamic viscosity p*, are scaled by their respective constant free-
stream values, p5  and p’ . The time t* and the pressure p* are non-dimensionalized by
N /U and pi UZ2, respectively.

It should be pointed out that in the supersonic regime shocks appear when the aero-
dynamic body (including a flat plate) has a finite thickness, and that at sufficiently high
Mach numbers shocks can also arise for the idealized case of a flat plate with zero thick-
ness due to the significant displacement produced by the viscous boundary-layer motion
near the leading edge. The presence of a shock may change the boundary-layer instability
properties if it is sufficiently close to the boundary layer (Chang et al. 1990; Cowley &
Hall 1990). Moreover, when any of the three types of perturbations, e.g. a vortical fluctua-
tion, interacts with a shock, all three disturbances may appear downstream of the shock
(McKenzie & Westphal 1968). The acoustic and entropy perturbations may influence
transition via receptivity mechanisms (Fedorov & Khokhlov 2003; Zhong & Wang 2012;
Qin & Wu 2016). In the present study, effects of shocks are neglected on the grounds
that the plate is sufficiently thin and the Mach number is moderate so that shocks are
weak and distant from the boundary. In this case, the interaction of unsteady distur-
bances with the shock is decoupled from their subsequent interaction with the boundary
layer (Qin & Wu 2016). The response of the boundary layer to each type of free-stream
disturbance downstream of a shock can be analysed separately.

2.1. Free-stream disturbances and scaling

Free-stream turbulence is in general of broadband nature. For simplicity, we consider
the case of vortical perturbation consisting of a pair of vortical modes with the same
frequency (and hence streamwise wavenumber), but opposite spanwise wavenumber k7.
In the incompressible analysis of Ricco et al. (2011), this choice of free-stream disturbance
has led to good quantitative agreement between the theoretical prediction and wind
tunnel experimental data. A similar behaviour is expected in the compressible case. The
formulation and computation can be extended to realistic free-stream perturbations,
which are of broadband nature as was shown by Zhang et al. (2011) for incompressible
flows.

The velocity field of free-stream convected gusts of the assumed form can be expressed
as

u—i=cuy(z—tyz) =¢ (ﬁj’f’elkzz + ﬁ‘ioeﬂkzz) ethe(@=ttikyy o (o

where 03°={05%, , 4%, , 43°, }=O(1) is a real vector, e<1 is a measure of the free-stream
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perturbation level and c.c. indicates the complex conjugate. From the continuity equation,
it follows that

It is appropriate and convenient to take A*=1/k¥, so that k,=1. The characteristic
Reynolds number is

* *

U
Ry=-—=2" 1. (2.4)
oo

Only the components of the free-stream disturbance with k, <1 are considered as they
have been shown in experiments to be the ones that can penetrate the most into the
boundary layer to form streaks.

According to the result of Leib et al. (1999), the velocity perturbation is maximum
when z=0(k;1). The following scaling is thus introduced:

z = kyx = O(1). (2.5)

As a measure of the ratio between the boundary-layer thickness §* and the spanwise
length scale A* at z=0(1), a scaled spanwise wavenumber is defined as

1 AEp* k
— L 00 — £, 2.6
A \/ 2nU% ki Rx (26)

The interest is in the downstream viscous region where §*=0(\*) so that viscous diffu-
sion effects in the spanwise and wall-normal directions are comparable. This occurs at
streamwise locations 2*=0(\* Ry ), which, together with (2.5), leads to k,=O(R; "), or,
equivalently, k=0O(1). As shown by Leib et al. (1999), O(e) free-stream disturbances can
produce O(e/k,) fluctuations of the streamwise velocity component within the boundary
layer. Nonlinear effects become of leading order when €/k,=0O(1), i.e. when the turbulent
Reynolds number

K

re = eRy = O(1), (2.7)
since k,=O(R)'). A schematic illustration of the flow domain and its asymptotic struc-
ture is shown in figure 1.

2.2. The inner region: nonlinear unsteady compressible streaks

In the boundary layer the solution is expressed as the superimposition of the unsteady
perturbation on the steady laminar compressible boundary layer. The velocities and
temperature of the Blasius flow have the similarity solution (Stewartson 1964)

T(nF' —F) B
Em%} T =T(),

where the prime indicates differentiation with respect to the similarity variable 7,

_ Ry [ o a

n
and n.=T7""! / T'(17) d7j. The z-momentum and the energy equations are:
0

wv={rw,

FF' + (EF”)' -0
T b

T\’
(“T ) + PrFT’ + Pr(y — 1)1\450%1?”2 =0,
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Free-stream

convected ™
gusts /.((ﬂﬂﬂ

Figure 1: Sketch of the flow configuration representing the asymptotic regions (adapted
from Leib et al. 1999).

where the Prandtl number Pr=0.7. The system is subject to the boundary conditions,
F(0) = F'(0) =0, T(0) = T,

F' 1, T —1 asn— oo,

where Ty, is the imposed wall temperature (isothermal condition). For n>>1, F—n=n— .,
where . depends on M. Using the equation of state, the density p is given by

1
== 2.9
P=r (2.9)
The viscosity u=u(T") is assumed to follow a power law,
w =T with w = 0.76. (2.10)

This relation has been proved to be more appropriate than the linear Chapman law
(w=1) in the Mach number range of interest M., <4 (Stewartson 1964).

The total boundary-layer flow is decomposed as the sum of the Blasius flow and the
perturbation induced by the free-stream disturbance, namely,

1 o [2xky _
{ut0t7vt0t7wt0t7ptot7Ttot} = {Ua‘/aoa _27T} +Tt {u(xanvz7t)7 R)\va(xanvz7t)7

ky _ ks _,_ _
*w(ffan»zvt),7]9(%77,37@»7(%7%27’5) ’ (211)
k R

z

where 7;,; stands for the temperature. The Blasius flow does not correspond to the
mean flow; the latter also consists of the time-independent components generated by
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the nonlinear interactions, which are included in the perturbation. The scaling (2.7) and
the decomposition (2.11) indicate that for low-frequency free-stream disturbances with
spanwise wavelength comparable with the boundary-layer thickness and streamwise wave-
length of O(A*R)), the streamwise velocity and the temperature of the induced streaks
acquire an amplitude of O(eRy), which is much larger than O(e) transverse velocity
components (and the intensity of free-stream disturbances). The boundary-layer signa-
ture therefore bears all hallmarks of streaks observed in experiments. For the assumed
simple composition of free-stream disturbance, the seeded oblique-mode pair would be
dominant in the earlier stage, and is expected to remain the most significant in the non-
linear stage downstream. However, nonlinear interactions generate harmonics and the
mean-flow distortion. The disturbance can be expressed as a Fourier series in time and
2,

————— imkmtqtinkzz7 (212)

m,n

where {@m n, Omn, Wm,n, Pm.ns Tm.n} are functions of  and 7. Unless otherwise speci-
fied, hereinafter the upper and lower limits of the summations are +o0o0. As the physical
quantities are real, the Fourier coefficients are Hermitian,

A~ A%
d—m,—nm = Qm,na

where § indicates any of {@, 0, ®, p, 7} and the symbol * denotes the complex conjugate.
The total density is decomposed as pior=p + r¢p, where p is given by (2.9). Substituting
the total flow into the equation of state, one finds

YM2k, T i

It follows that the total density is:
1 YM2k, T pT
Prot = 77 + 7y <T}>§A “p— TQ) - T?? (2.14)

The total viscosity is expressed by applying (2.10) to the total flow and by expanding it
using the binomial formula as
o (w);

piot = (T +17)¥ = Z Twajrffj =+ T i, (2.15)
P

where (w);j=w(w —1)(w —2)...(w — j+ 1), p’=dp/dT, and i is the nonlinear part of the
viscosity perturbation, which is decomposed as

=Y fomn (et ke, (2.16)

m,n

The nonlinearity of the viscosity comes from the power law exponent w#1 and the tur-
bulent Reynolds number r;=0O(1). The nonlinear part & is null when either (i) w=1 Vr;
or (ii) rs=0 Vw in (2.15). As long as |r;7|<1, which applies to all the cases considered,
the series in (2.15) is absolutely convergent.

By inserting (2.11) and (2.12) into the continuity, momentum and energy equations,
using (2.14)-(2.16), and taking the limits k, <k, Rx>1 with k,; Ry=0O(1), the nonlinear
unsteady compressible boundary-region equations are found as follows.
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The continuity equation

ne T . n Ol Ne Olmpn T 1 O0p.n 4 ind m n FT"\ |
5= 7 Um,n — T a= — = 7'Umn MNMWm,n — = a—rro
22T 0x 2z On T2 T oy ’ T  2zT?
F’ OTm.n F 0%, .
o 2.17
T 0z 2T On Tttmn ( )
the z-momentum equation
. Ne 2 ) /8um n 1 wr T’ 8am,n
ey T g+ F' 22— = (F -
(zm 27 T RET ) Gt oz 2z + T T2 on
/11 a um n + F// . + FF// _ /L/F/N _ /J//F/,T/ HIT/F” .
—0 7,
23T On? T ™" 2zT 272 )"
WEF" Ofm.n N
_ P X 2.18
23‘5T g v (2.18)
the y-momentum equation
wWT ot u 0%
— [FT 4+ n(FT' = TF') — 2 F"T] Gin.n UL
12 [ e ) F T o+ S =R 7 ands
T'n.\ 0t Nepr 0%
T — 13 c m,n c m,n
1222 (“ el = T ) on 1222 on?
Ne gor . F FT' , 00,
—F"+ — - — T ) O + F'———
(ler e L LR e e
1 20T 2uT"\ Oy m, 2u 0y . WT . OWi
ey — = — R T
z\ 2 3T 3T on 3T On? 3z 6z on
1 WF"\' F21’ 4 (WT'F\'
— |n. [ (FF"Y —T — FF' — — W F" + - T,
T |" <( ) ( T S Ny m,
1 0% R . 1 O 1 R
B T (o TR ) Ty S Y (2.19)
2r Ox 32T 472 on 2z On ’
the z-momentum equation
(& TT TaAmn . C TaATnn . A amn
ink? 21l #27 U, — inm2% 1:956 + ink? 1762 1;77 — znmzu'T’vm,m —inkKk %gifi
an?k2uT ow 1 wWT uT\ ow puo 0%
. ~ . Jad mmn L r . mmn m,n
+ <Zm+ 3 >wm t 0z 27 < T T2 ) an 27T On?
QFTI /
- me n +ink Tpm =T m s (2.20)
3z
the energy equation
CT/ M2 _ " Am n /
_neTe My = Dk O, T
2z k xT on T
FT’ 1 wWT\' M2 (y— D/ (F")? un?&2T ot
' - - = Tm,n Fn
T 03T T P ( T ) 22T TR T
1 2T pT' \ Ot T 5
R T i i R (2.21)
2% PrT  Pr7? on 2PrzT On? ’

where the terms Cp, 5y Xmny Vmons Zmons Em,n arise due to nonlinearity and are given
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in the Appendix. The right-hand sides of (2.17)-(2.21), where the nonlinear terms are
collected, vanish as r;—0 so that the linearized compressible unsteady boundary-region
equations of Ricco & Wu (2007) are recovered. Note that the above fully nonlinear
equations are to be used to predict the entire development of streaks even though the
disturbance evolves through a linear stage near the leading edge.

2.3. The outer flow

The outer-flow dynamics is influenced by the displacement of the underlying boundary-
layer flow. The displacement effect becomes of leading order at downstream distances
where z=0O(1) and the streamwise velocity fluctuations acquire an O(1) amplitude.
The disturbance in the outer region consists of the three-dimensional vortical pertur-
bation convected from upstream and of the two-dimensional disturbance arising from
the boundary-layer displacement effect due to the nonlinear interactions in the boundary
layer. The two-dimensional component attenuates over a wall-normal distance O(A*R)),
and thus depends on the relatively slow wall-normal variable y=k,y=0O(1). The three-
dimensional component depends on y and, a priori, also on y because its governing
equations involve the two-dimensional component as we will discuss later. Following the
approach of Wundrow & Goldstein (2001) and Ricco et al. (2011), the outer-region solu-
tion is expanded as:

{uouh Vout» woutvpouta Tout} = Q + 6(10(@7 ga {) + er(i.a yv g7 Z, {) + 62(:11 (i'7 yu gv 2 t_) + ceey

(2.22)
where t=k,t=0(1), Q is the uniform mean flow, and qo and q; (=0, 1, ...) indicate the
two-dimensional and three-dimensional disturbances, respectively.

2.3.1. Linearized inviscid subsonic and supersonic flows

The two-dimensional inviscid part of the perturbation is considered first: the subsonic
and supersonic regimes are analysed by extending the approach of Ricco et al. (2011)
to take compressibility into account. The transonic case is however beyond the scope of
the present analysis. The two-dimensional terms {ug, 0o, Po, 70, po } satisfy the linearized
unsteady compressible Euler equations:

Ouyg n 0t Y: <8p0 8p0> _o, Otg n Oug n Opo o n Ovg  Opo

Bz oy M=\t T o o s tar T Ty Y

ot | ox ot oz | oy
(2.23)

where the density has been eliminated from the continuity equation by using the energy
equation and the equation of state,

079 07 5 (0Do  Opg _ 0 _  _

— +——-(y—=1)M, — +—— ] =0, =~vM — 70 2.24
The displacement effect is associated with the transpiration velocity, i.e. the spanwise-
averaged wall-normal velocity component at the boundary-layer outer edge. The conti-
nuity equation,
Opiot + (prottitot) I(piotViot) I(protWiot )

at T

is integrated first with respect to z over a spanwise period A,=2w/k, and with respect
to y from 0 to oco. For the term O(piotwior)/0z a change in the order of integration
is performed. At supersonic speeds this step is justified by the assumption that shock
waves, if present, are of infinitesimal strength and therefore the flow remains smooth and
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isentropic. It follows that

1 " » .
Iy / (Ptotvtot)‘y%oodzz W [/ / pt tUiot) ———————dydz -I-/ / Pe td dz ‘|
2 Jo R

(2.25)
The first term on the right-hand side of (2.25) represents the derivative with respect to
z of the spanwise-averaged boundary-layer displacement thickness, defined as

_ 1 Az o)
= */ / [1 - (ptotutot)] dydz.
z Jo 0

The second term on the right-hand side of (2.25) is due to compressibility effects and is
not present in Ricco et al. (2011). It can be written as the derivative with respect to ¢ of
a spanwise-averaged boundary-layer thickness §¢ defined as

B 1 Az o
= */ / (1 = ptor) dydz.
z Jo 0

Matching the left-hand side of (2.25) with the outer flow gives

1 [ 1 [
)\7/ (ptotvtot)|y—>oodz = )\7/ (Poutvout)|§—>0dz = €V,
z JO z JO

where the terms O(€?) have been neglected. Therefore, (2.25) leads to
C
vozz(gi+3;t> as § — 0, (2.26)
where the compressibility effects appear in the definition of the displacement thickness
§ and in the additional term 0°. Equation (2.26) is used as a boundary condition on the
system (2.23).

The proof employed by Ricco et al. (2011) to show the irrotationality of the two-
dimensional flow holds for the compressible case as long as the flow remains isentropic (i.e.
shock waves are absent or, if present, their effect is negligible). Therefore, the potential
b is introduced such that Vigggoz{ﬂo,io}, where Vg5 denotes the gradient operator in
the  — y plane. By rewriting (2.23) in terms of $o and eliminating the pressure from the
continuity equation with the aid of the momentum equations, a single equation for the
potential is derived,

9*¢o

0y? 0x? < 9zot o2
which is a wave (i.e. hyperbolic) equation, indicating the acoustic nature of the perturba-
tion. It is interesting that streaks emit sound waves spontaneously during their nonlinear
evolution. Equation (2.27) is of the same form as the linearized perturbation velocity
potential equation governing the flow over a thin airfoil performing small unsteady (pe-
riodic) oscillations in the transverse direction (refer to Landahl 1989, equation (1.7)).
The small thickness of the airfoil is represented here by the boundary-layer displacement
thickness, the equivalent body being semi-infinite rather than finite and closed (i.e. with
null thickness at both ends of the body).

The problem of the flow over a thin oscillating airfoil has been widely studied in
aeroelasticity because of the loads and vibrations occurring on the wing. Thanks to the
linearization, two separated cases are distinguished: the thickness problem (symmetrical)
and the lifting problem (anti-symmetrical). Aeroelasticians are usually interested in the

(9 ¢O _ 2M2 (’92&0 Mz azégo

+(1 - M%)

=0, My #1, (2.27)
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latter because of the contribution to the lift experienced by the wing (Dowell 2014). Here
it suffices to state that the analogy between the boundary-layer displacement effect and
the thin airfoil theory only concerns the thickness problem, as circulatory flow is absent.
This analogy was first suggested by Lighthill (1958) for incompressible flows and its use
in the study of steady flows outside boundary layers has been well established (Van Dyke
1975). However, to the best of our knowledge, this analogy has never been considered for
unsteady boundary layers.
By employing Fourier decomposition in time,

6o(Z,7,1) = Z(bm” imt,

equation (2.27) is recast into a generalized Helmholtz differential equation (i.e. telegraph
equation) for the Fourier coefficients ¢, (Z, y):

82 Am 82 Am m N
852 +(1— M) a¢2 Y M;% +m? M2y = 0. (2.28)
Performing the change ng%ém, where
- . . 2imM?2
Om(Z,7) = o (Z,5)e /2 with b= # Mo #1, (2.29)

the telegraph equation (2.28) is reduced to either the Helmholtz equation if M, <1 or
the Klein-Gordon equation if M, >1:

8 (I)’H'L 82 (i)nb 2M2 "

1_
=Ml * 5 oz ®

=0, (2.30)

where the 4+ or — sign correspond to the subsonic or supersonic case, respectively. The
appropriate boundary conditions for (2.30) are:

~ ke [a oAl - _ B
0P, = <5jn + zm@‘n) /2, y=0,z >0,
T = € (231@)
Yy 0, y=0,% < O0;
0d,, 0d,,
8i‘ s Ty ﬁnlte .’f2 + gZ — o0, (231[))

where 8,,(Z) and §¢,(Z) are the Fourier coefficients of §(Z, %), and 6°(Z, ) and the prime
represents differentiation with respect to z. Equation (2.31a) corresponds to the tangency
(i.e. no penetration) condition imposed on a thin airfoil, according to which the velocity
component normal to the body is fixed by the airfoil motion. This analogy has given rise
to the well-known interpretation of the boundary-layer displacement effect as a surface
distribution of sources (Lighthill 1958). The far-field boundary condition (2.31b) requires
that the displacement-induced velocity field remains finite as the distance from the plate
increases.

In the supersonic case it is convenient to solve for q@m directly. The fluid ahead of
the body remains undisturbed and so the Laplace transform in the z direction can be
employed,

¢m S y / ¢m e **dz.
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The telegraph equation (2.28) and the boundary condition (2.31a) for >0 become:

aQém 27 a(lgm ~
6@2 =cC ¢m; 3@ (87 0) = ’Um(S, 0)7 (232)
where ¢2 = % (M2, — 1) + mMZ2 (2is — m) and 0,,(s,0) indicates the Laplace transform
Obm
of %(E,O). The solution to (2.32) is
1 ~m 70 —ci _
Sun(s,7) = —~ (5,0 v, y=0. (2.33)
c

Inverting (2.33) and using the convolution theorem, one finds

@5 Moo 1) = = — 3 0) i o) T
m\L, Y5 Moo - . Mgo—l / m\Zo tmo,,(To)| € S0
mM — _ _
< |t (o 0 - (M~ )32 | @ (2.31)

where Jy is the zeroth-order Bessel function of the first kind (Abramowitz & Stegun
1964). The procedure to derive (2.34) closely follows the theory proposed by Stewartson
(1950) for harmonically oscillating thin airfoils in supersonic flows.

In the subsonic case, the disturbance is felt in all directions and so the use of the
Laplace transform in & is not appropriate. The Fourier transform is instead employed
and the analytic continuation of the Neumann boundary condition (2.31a) to the complex
plane £ = Z + iy is considered. The solution reads

Z+igy/T— M2, .
o ety ks @) 4 imde (6] 222 (50
@ g M) ==t [ 5@ vimb @]

Z—ig\/1—M

x Jo [% (z - 5)2 + (1 — M2) 2 } de. (2.35)

The solution can also be expressed in terms of the Green’s function by modelling the
boundary-layer thickness as a distribution of pulsating sources as suggested by Lighthill’s
theory. The free-space Green’s function associated with the Helmholtz equation (2.30) is
given by Dragos (2004) on page 33 for a single source located in the origin. Considering
a line distribution of these sources at the point (Zg,0), where Ty spans the T axis, and
using the method of images to include the boundary y=0, we obtain

(2,5 Moo <1) = [ (31, (50) + i )] 2 )
m\T, Y, o) _26 1— Mgo / m\L0 m\+0
M _ _ _
x H [ﬁMQ (T — %)% + (1 — M2) 32 ] do, (2.36)

where Hég) is the zeroth-order Hankel function of the second kind (Abramowitz & Stegun

1964). The solution with H((,z) has been chosen instead of that with Hél) to ensure out-
going waves radiating from the source. As M, —0, (2.35) matches the solution obtained
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in the incompressible case (Ricco et al. 2011):

T+1y
i G (@5 Moc<t) = =55 [ 8,000 = <52 B+ i9) ~ bu(a — i)
T—if
ks .
— 555 + i)

where § indicates the imaginary part and use has been made of the property of holo-
morphic functions, 6, (€*)= 8,,(€)*. The limit M.,—o0 is not considered because for
very large hypersonic Mach numbers the Blasius boundary-layer assumption of negligi-
ble wall-normal pressure gradient is invalid (refer to Anderson 2006, page 275).

The pressure is obtained from the y-momentum equation (2.23) as

_ do . I
_ g A 2.
or, in Fourier space,
L Obm
Pm = <zm¢m 5z ) . (2.38)

From substitution of the supersonic and subsonic expressions for the potential, (2.34)
and (2.36), into (2.38), it follows that

—g/ME
_ Ky o
Pm (%, Y; Moo >1) —m O/ f(zo,z,7)dZo

imM2

(80 = GV/ME =) + imé, (@ - g/ ME - T)] e ViR V!

in the supersonic case, where

imM?2

f= [S:n(io) +im<§fn(fo)} ¢ ML)
m mMoo _
b e

My (2 — Moo _ _
+ m (x 1'0) J]_ |:]\;n"2 = (.T _ $0)2 _ (Mgo _ 1) y2
(M2~ Dy (@~ 50)* = (M2 - 1)
and Jp is the first-order Bessel function of the first kind (Abramowitz & Stegun 1964),
and in the subsonic case

ﬁ’rn(f7g;Moo<1) 330,33 y dea

oy [

where

imM2

9= [S;n(fo) + im&cn(fo)} eronE (P70

m 2) mM 2 B
X {1MOQOH0 [IMOQO (T —20)" + (1 - M3)y? }
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—Z0)" + (1 - M2)

1 _ 2
Q-2 f@-z)?+(1-m2)p M

and H {2) is the first-order Hankel function of the second kind (Abramowitz & Stegun
1964). The temperature is found from the energy equation (2.24) as

7o = (v = 1) M po. (2.39)

2.3.2. Viscous three-dimensional flow

By substituting the expansion (2.22) into the Navier-Stokes equations and subtracting
the equations (2.23) and (2.24) for the displacement-induced disturbance, the leading
order three-dimensional part of the perturbation is found to satisfy the equations:

81)0 + 6’(1)0

— +—=0 2.40
Ay 0z ’ (2.40)
(7%} 0 Uo
0 0 e [, 0 0 vol € JOp/oy 22 o
{aﬁ FEa [(”0 tu)g, +w°az]} wo = T Yopjoz (T V) we ([
70 0 Prln
(2.41)

where pp=0 without loss of generality and V,,, is the gradient operator in the y — 2 plane.

The three-dimensional part of the perturbation in (2.40) and (2.41) does not directly
depend on the slow variable g at the leading order, but the momentum equations (2.41)
include the inviscid wall-normal velocity component vy, which depends on y. Therefore,
the dependence of the leading-order three-dimensional disturbance upon ¥ is parametric.
The aim of the following analysis is to decouple (2.41) from vy to obtain a system of
equations in the only unknowns {ug, vg, wo, 7o, p1}. This is accomplished by introducing
the Prandtl transformation, g=y — R[A(&, )], where R denotes the real part and A is
suitably chosen to eliminate the coupling between {ug, v, wo, 70, p1} and vy from (2.41).
The new variable ¢ is written in this form for consistency with the previous analyses of
Wundrow & Goldstein (2001) and Ricco et al. (2011), although it will turn out that only
the dependence of A on the real variables  and ¢ is relevant since we are interested in
the matching at y=0. Written in terms of §, equations (2.40)-(2.41) become

8@0 8w0
— =0 2.42
o "oz (2.42)
(%) 0 Uuo
Vo o _i 6p1/3§ 2«2 Vo
N wo [k, |Op1/0z TV wo [’ (2.43)
T0 0 PI'_l’TO

where V, is the gradient operator in the § — z plane and A is the differential operator:

/\/—g_’_g_Fi Uﬁ_i_wﬁ — (R %_’_% _i{) 2
Ot 9T k. \ C0) ‘0z ot o] k. °) 0y

The dependence on 7y is removed by choosing A to satisfy (Ricco et al. 2011)
5 [aA 8A] €

o] R
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which, in view of (2.26), becomes

oA  OA 95 06°

ot "oz " or ! of

Decomposing A into Fourier series as

A(z,8) =) Ap(@)e ™D atg=0,

and using the time Fourier series of § and ¢, we obtain the expression for Am,

~ ~

A (T) = O (T)e'™ +zm/ —65,(%)| e di, at y =0, (2.44)

where the condition A(0,7)=0, V¢>0 has been employed.

Equations (2.43) shows that the streamwise velocity ug and the temperature 7y are
decoupled from the transverse velocities {vg,wp} and from the pressure p;. At leading
order only {vg,wo,p1} enter the matching with the boundary-layer solution, while the
matching of {ug, 79} needs to be considered when a solution with an order of accuracy
higher than O(R; ') is sought.

In view of the continuity equation (2.42), the streamfunction g (:E, 7,2, f) is introduced
such that Vj,1o={—wo,vo}. In terms of the streamfunction the transverse momentum
equations are recast into a transport equation for the longitudinal vorticity V;z%,

9,0, (D _dnd
t 0% 0z 0 0 0%
along with the Poisson equation for the pressure,

0%po D%y [ 0%o "
Vip1 = la«@? 57 (agaz> . (2.46)

)} Vi tho = K*V5tho, (2.45)

In the general case of a full spectrum of free-stream vortical disturbances, the stream-
function is decomposed as:

/ll)() T y’z {) Z ,l/}(j) 7, mt+]k:yy+nkzz) (247)

m,n,j

By substituting (2.47) into (2.45) and expanding the resulting equation for a pair of
oblique forcing modes, the nonlinear terms cancel out and (2.45) reduces to

o )
; _ (4 — 2k2 2.2
<zm+(%) Vi = =1 (7 + 0°K2) i,
with {m, j,n}={1,—1,+£1}. The solution is:

1/’1 :tl — Ficoe —iz—r? (ky+k2)a | cc., (2.48)

where ¢ =1/k, is chosen to normalize the amplitude of the free-stream spanwise velocity
to unity. From (2.47) and (2.48) it follows that

0 (2,9, 2,t) = —2iceecos (T —t + kyi e (K +k2)T+ik. 2 + c.c.. 2.49
y
The transverse velocities are obtained as

{vo, wo} = 2¢o0 {k.cos (Z — t + ky§) , —ikysin (T — ¢ + ky9) } e (ky+h2)a+ikaz 4
(2.50)
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By inserting (2.49) into (2.46), the pressure is found to be
pL= 2k§c§oe*2ﬁ2(k§+kz)i+2ikﬁ - 2k§ci€€*2ﬁz(k§+k§)icos (2z — 2t + 2kyg) + c.c.. (2.51)

At y=0, the expression §=y—A(Z,t) is substituted into (2.49)-(2.51), and the time-
dependent terms are expanded into Fourier series,

ev;t’+ikyA(§c,{) Z Lm 7mf 622‘{+2¢kyA(:z,E) — Zﬁm(f)eim{' (2.52)

Rewriting (2.50) and (2.51) with the aid of (2.52), the outer-flow solution for y=0(1) is
obtained as

{vo, wo,p1} = Z {’an,n, wjn,n,p;rnm} gimitink.z (2.53)
with |
”jn,ﬂ — kocose" 2(k2+k2)z [ —i(z+hyy) Ximei(i-i-kyy)} 7 (2.54a)
w:nyil = thycoe " K2 (K2+k2)z [)2 —i(Z+kyy) X:mei(iJrkyy)] ’ (2.54b)
Db s = 2k2c2 e 2 DT, (2.54¢)
Pl o = —2k2c2 e 2 Ktk {ﬁme—%(“’%y) A me%(“kyw] . (2.544)

The other components v, ,,, w], ,, with n#+1 and pf, ,, with n#0, +2 are null. Although
the upstream flow is forced only by a pair of oblique modes with opposite spanwise
wavenumbers, further downstream the disturbance is composed of all the temporal har-
monics. These are generated by nonlinear interactions in the boundary layer and trans-
mitted to the outer flow via the displacement effect. Although the Fourier components
(2.54) are of the same form as those obtained in the incompressible case (refer to Ricco
et al. 2011, equation (2.28)), the coeflicients R, and 7, defined in (2.52) now include
the compressible effects, the function A(Z,t) being related to § and §¢ through (2.44).

2.4. Initial and boundary conditions

As the boundary-region equations (2.17)-(2.21) constitute a parabolic system in the
streamwise direction, initial conditions are needed for £<1. Since the velocity and tem-
perature fluctuations are of small amplitude near the leading edge, their governing
equations become linear. This was elucidated by Ricco et al. (2011), who showed that
the full nonlinear regime develops gradually from the initial linear stage in the up-
stream region corresponding to R;1<<§7<< 1. The initial conditions for the forced modes
(m,n) = (1,£1) are thus the same as those in Ricco & Wu (2007).

The upstream conditions are found by first seeking the power series solution for n=
O(1) and z<1,

o0

n=0
and by constructing a composite solution that is valid for z<1 and V#:

2
k uzwi{UlnaVvlna:FZWzn7T’zn7Pln} (255)

where {U;n, Vin, Win, Tin, Pin} are equal to the right-hand sides of equations (4.12)-(4.16)
in Ricco & Wu (2007). The term u, 4, + represents the spanwise slip velocity at the surface

{ﬁ,,f} 0 f'ﬁ} 1i1—>:|:
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of the plate (refer to Leib et al. 1999, equation (3.14)). In the case of a pair of oblique
modes, it is given by
ik, oo

For all the other harmonics generated by nonlinear effects, null initial velocity, tempera-
ture and pressure profiles are imposed.

The velocity fluctuations are required to vanish at the wall (no-slip condition). Two
types of different thermal boundary conditions at the wall may be imposed: the Dirichlet
boundary condition, 7(0)=0, which was also employed by Ricco & Wu (2007), and the
Neumann boundary condition, 07/0n|,_,=0. The condition 7(0)=0 is used herein as
Ricco et al. (2009) showed that there is no substantial difference in the development of
the Klebanoff modes.

As n—o0, the boundary-region solution must match to the limit y—0 of the outer flow.
On taking into account the decomposition (2.11) and (2.12) within the boundary layer,
the matching with the outer solution (2.53) requires that

Uz w, £ = Fl+

(G Doars Wy s rnms P} — 10, ——=v k2wl pt 04 asy— oo
m,n; Ym,n, m,napm,na m,n 7\/2f m,n’ m,n?k pm,n? 7]
xr T

(2.56)
for z=0O(1), where the condition on ¥, , holds only for n#0. In the spanwise-averaged
equations (n=0) the pressure only appears in the y-momentum equation. The velocities
and the temperature are calculated by solving the continuity, t— and z—momentum and
the energy equations. The condition on 9,90 as n—o00 is not needed because the order
of the system has decreased. As an a posteriori check, the free-stream value of 0y, ¢ is
obtained from the large-n limit of the continuity equation,

ky x [do, déy . <
Dm0 = = | e Y 5¢ 2.57
Um0 ; 2x<dx i +im m) ( )
o 6ﬁm0 ﬂmo OOF/ 8?m0 7A’m0 Ooim
— _ s ) d ’ s d Am d
/0<ag—s+2z>"+/o T(8j+2£ 77+/0 T 0

o 851\2m0 ﬁnLO oozm/\
_ T ) 5 d - T d
(Bt Bt Y [ 2

o (opr pr
+rt/ F' <pam’0+pm’0> dn asn— oo, (2.58)
0 z

2z

where dy; is the compressible Blasius displacement thickness,

Op = /000 {1 - ?((7;7))] dy = \/g(% + Be),

and v.=n. —n as n—o0. In the limit M, —0 the result of Ricco et al. (2011) is recovered:

o ke (db,  doy __/°° Ot | Bm0\ 40 por oo
mO= Az \dz dz ) Jy ez Tz )N WY

where 5bl:/ [1— F'(n)] dy=B+/2%/k, Ry is the incompressible Blasius displacement
0

thickness and $=1.2168. In the compressible case the additional term related to ¢ in
(2.57) is present or absent depending on the motion being unsteady or steady, while in
the incompressible case the transpiration velocity is not affected by unsteady effects.
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3. Numerical procedures

The Fourier coefficients {@m. n, Omn, Wmn, Tm.n, Pmn} are obtained by solving the
boundary-region equations (2.17)-(2.21) with the initial conditions (2.55) and the bound-
ary conditions (2.56). The wall-normal domain extends t0 7imax=60 and 2000 grid points
are used in this direction. The typical step size in the marching direction is Az=1073.
The resulting block tri-diagonal system is solved using a standard block-elimination algo-
rithm. In order to avoid the pressure decoupling phenomenon, the pressure is computed
on a grid that is staggered in the 7 direction with respect to the grid for the velocity
and temperature. The nonlinear terms are evaluated using the pseudo-spectral method
(Canuto et al. 1988). Dealiasing is performed by following the so-called 3/2-rule, which
prevents the spurious cascade from the unresolved higher-frequency modes into the re-
solved low-frequency modes (Canuto et al. 1988).

The density fluctuations are calculated using (2.13), where the first term is neglected
with respect to the other two because k, /R <1. The viscosity fluctuations are evaluated
using (2.15) and by excluding the mean flow and the linear part of the disturbance from
(2.15). The following steps are performed to obtain p, ., and fim, .

(a) The temperature fluctuation 7y, , is transformed from the spectral to the physical
space to calculate 7.

(b) The fluctuations of density and viscosity are evaluated as follows

- T = ~ (W)j rw—j. -2~
- — AT I pw—3,.d J.
P T(T—F’I"ﬂ_')’ 1 JZ:z ]| T3 T

(¢) The latter are transformed back to the spectral space to obtain py, , and fim, .
A second-order predictor-corrector scheme is used to calculate the nonlinear terms while
marching downstream. Extensive resolution checks have been carried out to verify the
accuracy of the code. The amplitudes of the truncated Fourier series are six or seven order
of magnitude smaller than that of the forcing modes and so they do not significantly affect
the flow dynamics. Use of N;=N_.=9 is sufficient to capture the nonlinear effects in the
case ry=2, while for r;=4 an accuracy of the same order is obtained with N;=N,=13.

To calculate the outer-flow field in the subsonic case, we solve the Helmholtz equation
(2.30) numerically with M., <1 to obtain ®,,(Z,%), and the Fourier coefficients ¢y, (,7)
are then retrieved from (2.29). The computational domain for >0 extends sufficiently
downstream for the forcing at y=0 to vanish. The symmetry about y = 0 implies that
the homogeneous Neumann boundary condition 0d,, /0y = 0 is used at y=0 and z<0.
Careful resolution checks have been performed to ensure that the solution is independent
of the size of the computational domain. The Helmholtz equation is discretized with a
second-order finite difference scheme in z and y. The resulting block tri-diagonal ma-
trix is solved at each point using the generalized minimum residual method (Saad &
Schultz 1986) with diagonal preconditioner implemented in the Iterative Methods Li-
brary, IML++ (Dongarra et al. 2006).

4. Results for the outer flow

The solution for the irrotational part of the outer flow qo(Z,y,t) (refer to equation
(2.22)) is studied in this section. The streamwise and wall-normal velocity components,
o (Z, ¥, t) and 9o(Z, 7, t), are calculated for two different flow regimes: a subsonic case with
{Mx, R, r+, k}={0.69, 600, 3.6, 1.3} and a supersonic case with { Mo, Ry, ¢, x}={3, 1000,
3.6,1.12}.

The displacement-induced transverse velocity ¥, given in (2.58) represents, after
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Figure 2: Large-n limit of 9y, o for Mw=0.69 (left) and M.,=3 (right).

multiplication by v/2%/k, the Neumann boundary condition at 3j=0 for ¢ and is shown
for the subsonic and supersonic cases in figure 2. Only the real part of the modes with
|m|=0, 2, 4 is considered, as the imaginary part is similar to the real part and higher
harmonics are negligible. Physically, the terms 0y, o(Z,7>>1) represent the harmonics of
a spanwise-averaged time-periodic modulation which is superimposed onto the slope of
the Blasius displacement thickness. In the light of the thin airfoil theory analogy, this
modulation is interpreted as the strength of the pulse source distribution.

In the subsonic case, due to the difficulty in calculating the integral in (2.35), the
solution is obtained numerically, as explained in §3. In the supersonic case, the solution
(2.34) is employed to calculate the Fourier coefficients ¢, (Z,7), from which io(Z, 7, t)

and 0o (Z, y,t) are obtained. The pressure po(Z, y,t) is derived from (2.37).

Contours of ug, vg and pg in the T — y plane, which represent the acoustic field emitted
by streaks, are shown in figures 3 and 4 at two different times ¢ for the subsonic and
supersonic cases, respectively. According to (2.39) the temperature 7y differs from py by
a factor (y —1)M2,, which is equal to 0.19 and 3.6 in the two flow regimes. The scale for
the temperature 7 is thus reported together with that for the pressure.

In the subsonic case, the influence of the boundary-layer thickness pulsation propagates
in all directions from the plate and gradually diminishes as the distance from the body
increases. The streamwise modulation of the solution is caused by the oscillatory forcing
at y=0, which corresponds to a sequence of sources with positive and negative strength
(refer to figure 2). The apparent ‘wavelength’ of modulation is Az & 0.5. The outer-flow
solution shows the most intense peaks for 0.5<z<2, i.e. where the forcing is strongest.

The supersonic solution, shown in figure 4, is non-zero only inside the Mach dihedron
delimited by the Mach line y=z/+/M2 — 1, as in the thin airfoil theory (Dragos 2004,
page 32). The magnitude of the disturbance is constant along the Mach line and thus
the perturbations do not vanish as y—o0.

5. Results for the boundary-layer streaks

The parameters for the numerical results are selected to be representative of two pos-
sible applications: subsonic turbomachinery and supersonic flight conditions. The former
is characterized by a relatively low Mach number and an intense turbulence level, while



Nonlinear unsteady streaks in a compressible boundary layer 21

-0.10 -0.01

T0 -0.025 -0.009  0.006 0.019 0.034

Po -0.13 -0.05 0.03 0.10 0.18
15

Figure 3: Contours of the streamwise and wall-normal velocity components, uy and vy,
the pressure py and the temperature 7y in & — y plane, at different times ¢ for M,,=0.69.

the latter features a higher Mach number and a quieter disturbance environment. An
idealized case of a supersonic wind tunnel flow with no acoustic modes is also considered.
In all the cases, the scaled amplitudes of the free-stream turbulence velocity components
are: 13°, =i, =1 and 4° =F1. Through continuity (2.3), this leads to the following
relation for the wavenumbers: k; + k, — 1=0.

In the following, the parameters employed for the three sets of calculations are pre-
sented and the relevant results are shown. The reader may skip §5.1 without loss of
clarity.
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Figure 4: Contours of the streamwise and wall-normal velocity components, uy and vy,
the pressure pg and the temperature 7y in & — i plane, at different times ¢ for M,,=3.
The dashed lines represent the Mach line y=z//M2 — 1.

5.1. Choice of parameters
5.1.1. Turbomachinery applications

With a reference to typical experimental works on turbomachinery applications (e.g.
Camci & Arts 1990) the following parameters are adopted: unit Reynolds number R; =
Uz Jvi,=8 x 10° m~1, chord length £*=8 cm, free-stream temperature 7% =500 K and
kinematic viscosity of air v, =3.9 x 107° m2s~!, free-stream Mach number M. =0.69
and turbulence level Tu=0.8 — 5.2%. Although we have chosen our flow parameters to
be as close as possible to the experimental ones, important extra factors are present in
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real experimental and technological flow systems, such as acoustic free-stream forcing,
surface curvature, pressure gradient and wall cooling. These can be taken into account by
suitable extensions of the present framework. For example, the boundary-region equation
approach has been extended to study the generation and development of Gortler vortices
in the incompressible boundary layer over a concave wall (Wu et al. 2011). With further
progress, precise quantitative comparisons with experiments and applications to practical
situations would be possible. Presently, the results are of qualitative value as far as their
relevance to turbomachinery is concerned. The adiabatic wall temperature is calculated
using the following relation valid for a perfect gas,

* * ﬁy_l
v =Tk <1 + CtQM;> , (5.1)

where Cy=+v/Pr is the recovery factor for a laminar boundary layer over a flat plate.
The resulting adiabatic wall temperature, 777,=540.5 K, is in the range of typical turbine
rotor applications. The ratio of the wall temperature to the adiabatic wall temperature
Ty /T7,=0.7 is chosen to mimic realistic aero-engine conditions (Zhang & He 2014), where
blade cooling is most often applied to avoid excessive surface temperature. The resulting
non-dimensional wall temperature is T,,=0.75.

As the relevant length scales and spectra of the free-stream turbulence are not doc-
umented in the experiments, we choose to assume that the ratio of the streamwise in-
tegral scale to the chord is equal to 1.5. It follows that A\3=0.12 m and the frequency
f*=U% /A:=2.5 kHz. At downstream locations where z*=0O(A*R}), the boundary-layer
thickness is comparable with the spanwise length scale A*. The laminar boundary-layer
thickness is proportional to /vi x*/U%, and it is estimated that transition occurs at
xh /0*=0.67 (i.e. 5%=5.36 cm), which corresponds to a critical Reynolds number of 5x 103
(Schlichting & Gersten 2000). It follows that the boundary-layer thickness 644, defined
as the wall-normal location where U=0.99, is 0.41 mm, and the displacement thickness
is 0*=0.14 mm. The latter value is taken as the reference length scale A*. The Reynolds
number Ry and the scaled streamwise wavenumber x are worked out by use of (2.4) and

(2.6). The free-stream disturbance intensity is defined as Tu = 26\/(ﬁ§f’+)2 + (050 )2.

For our choice of 43°, =1, T'u = 21/2¢. Given € and Ry, the turbulence Reynolds number
ry is calculated from (2.7). The influence of nonlinear effects is investigated by varying
the turbulence level (i.e. €) with all the other parameters kept constant, as shown in table
1(a). Two different values of \%/¢*=0.77, 3.1 are considered in order to study the effect
of the streamwise wavenumber (refer to table 1(b)). The relation between A%, shown in
table 1, and A\* is AZ=27w\*.

5.1.2. Flight conditions

The data reported in Schneider (1999) are analysed to infer typical parameters for su-
personic flight conditions. The following values are adopted: free-stream Mach num-
ber M ,=3, unit Reynolds number R} _=3.33 x 10 m~! and wall-temperature ratio
Ty /Tr,=0.5. The latter value is in the typical range of high supersonic flight speeds,
where, in addition to aerodynamic heating, radiative cooling also occurs due to the solid
wall of the body radiating energy from the surface (Fedorov & Khokhlov 2001). A free-
stream temperature T3 =218 K is assumed at a typical altitude for supersonic flight of
20 km (Wilson et al. 1971). It follows that the velocity and the kinematic viscosity of air in
the free stream are U =888 ms~! and v}, =2.67 x 10~% m?s~!. From (5.1) the adiabatic
wall temperature 777,=548 K is obtained. It follows that T,;=274 K. The boundary-layer
thickness 6* at high Mach number is assumed to grow as z*M2 /\/R,, where R, is the
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local Reynolds number at the edge of the boundary layer (refer to Anderson 2006, equa-
tion (7.9)). At the transition-onset location z%=0.1 m (Schneider 1999) and §*=1.5 mm,
which is taken as the reference length scale, i.e. \*=0*.

Considering the data reported in figure 6 of Wilson et al. (1971) and figure 1 of Hocking
(1985) on the atmospheric turbulence power spectra and scales, a streamwise wavelength
As=3.68 m is chosen. The corresponding frequency is f*=240.8 Hz. In-flight measure-
ments by Riedel & Sitzmann (1998) and Saric (2008) indicate that the turbulence level
in subsonic flight for the quiescent air atmosphere is 0.05 — 0.06%. For the high-altitude
environment of a supersonic aircraft, Coleman & Steiner (1960) and Ehernberger & Love
(1975) report even lower turbulence intensities. However, close to inversion layers (i.e.
areas where the usual trend of decrease in air temperature with increasing altitude is re-
versed) or within clouds, large turbulence levels in the range 0.1%<Tu<1% or more may
occur (Zanin 1985). The turbulence levels for our simulations are chosen as representative
of these atmospheric conditions (0.1%<Tu<0.3%).

The influence of compressibility is investigated by varying M. It is assumed that the
variation of M, is only due to a variation of the free-stream velocity UZ, , while the free-
stream temperature 773 is unchanged. Therefore, a’_ and vZ, are also constant. The wall
temperature is the same in all the cases, while T, varies according to (5.1) for different
Mach numbers. The dimensional amplitude of the gust is kept fixed at 2.39 ms™!. It
follows that the turbulence level decreases as the free-stream velocity increases, but the
turbulence Reynolds number, which is defined by (2.7), does not change because R
increases linearly with UZ,. The dimensional frequency is kept constant and it corresponds
to different A% depending on UZ , as presented in table 1(c). In order to analyse the
effect of nonlinearity at supersonic speeds, two different turbulence levels, Tu=0.19%
and 0.35%, are considered for M.,=3 (refer to table 1(d)).

5.1.3. Wind tunnel conditions

The following parameters are chosen as representative of typical supersonic wind tunnel
experiments (Graziosi & Brown 2002; Fedorov et al. 2003; Beckwith & Miller IIT 1990):
Moo=3, Uz =646 ms~!, v* =3.7 x 1075 m?s™1, T =1154 K, f*=500 Hz, k,=1.55 x
103, Ry=5400 and x=0.34. The calculations are performed for three different turbulence
levels, Tu=0.11%, 0.23%, 0.31%, which correspond to r;=2.1, 4.4, 6 (refer to table 1(e)).
The representation is idealized since acoustic disturbances are excluded.

For these cases the ratio between the wall temperature and the adiabatic wall temper-
ature provided by Graziosi & Brown (2002), T /T,=1.1, is employed. The results for
this hot-wall condition will be compared with those obtained with the adiabatic condi-
tion T;=T, and with the cold-wall condition employed by Fedorov et al. (2003), where
Tr/Tr,=0.8.

5.2. Evolution of nonlinear compressible streaks

As anticipated on the basis of the linear analysis by Ricco & Wu (2007), free-stream dis-
turbances of the hydrodynamic kind (i.e. convected gusts) generate thermal fluctuations
inside the boundary layer due to the velocity-temperature coupling. Just as the tempera-
ture profile affects the stability of a two-dimensional flow (Lees 1947; Mack 1975), thermal
streaks are bound to influence the secondary instability of the streaky boundary layer.
We will therefore focus on the fluctuations of the streamwise velocity and temperature
inside the boundary layer.

The overall intensity of the streak signature, which comprises all the harmonics in
the nonlinear regime, is measured by the root-mean-square (r.m.s. hereinafter) of the
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Uz, v T A AL 05 f* Msx R kz Kk Tu 7
ms™'] m?~"] [K] [m] [m] [m] [kHg]
x10* %103 x103 x103 (%]

é () 309 039 500 0.89 0.12 041 2.5 0.69 1124 7.3 0.35 0.7 2.7
g 309 039 500 0.89 0.12 041 2.5 0.69 1124 7.3 035 2 7.9
§ b) 309 039 500 0.89 025 041 1.25 0.69 1124 3.6 0.5 1.3 5.3
= 309 039 500 0.89 0.06 041 5 0.69 1124 14.2 025 1.3 5.3
. (© 592 267 218 94 25 26 024 2 3343 3.85 0.28 0.41 4.8
= 1776 2.67 218 94 74 38 024 6 10029 1.28 028 0.14 4.8
& @ 888  2.67 218 94 3.68 2.8 024 3 5014 2.6 0.28 0.19 3.37

888  2.67 218 94 3.68 28 024 3 5014 2.6 0.28 0.35 6.25

646 037 1154 2 1.3 12 05 3 5400 1.55 0.34 0.11 2.1
; ()| 646 037 1154 2 1.3 12 05 3 5400 1.55 0.34 0.23 4.4

646 037 1154 2 1.3 12 05 3 5400 1.55 0.34 0.31 6

Table 1: Choice of the parameters for the turbomachinery, flight and wind tunnel (W.T.)
cases.

fluctuating quantity, defined as

Ny N,
qrms =Tt Z Z |(jm,n|2, m 7é 07
_ .

m=—N; n=-—

where ¢ may stand for the streamwise velocity or the temperature and Ni=(N; — 1)/2,
N,=(N. —1)/2. The downstream development of the maximum ¢,,s along 7,

drms,mazx (i') = m’?JX drms (g_s’ 77)7

is shown in figures 5 (turbomachinery case), 6 (flight case) and 7 (wind tunnel case), where
the nonlinear solutions are compared with the corresponding linearized approximations
for different values of Tw. In the linear case, the peak of the r.m.s. is given by

drms,mazx = eﬂ(kz/kw)\/|uz,w,+|2 + |uz,w,f|2 Hl’?X |QI(£'a 77)|, (52)

where ¢; represents the solution provided by Ricco & Wu (2007). Since |w; v, + =tz w,— |
=|u w|, (5.2) simplifies to:

Qrms,max = 26(]€z/]'€x)|rufz,w| Hl7271X |ql(£7 7’)‘

Sufficiently upstream, the linear and nonlinear solutions overlap as the influence of non-
linearity is still weak. Due to the continued amplification of the disturbance, the streak
signature becomes stronger and the linear and nonlinear solutions start diverging for
moderate r;. In the case with the lowest r; for all the three scenarios considered, the
linear and nonlinear curves are almost indistinguishable. In the cases with higher r;,
a stabilizing effect of nonlinearity is observed on the streamwise velocity and temper-
ature and, as the turbulence intensity increases, the attenuation of the disturbances is
enhanced. The higher the turbulence level, the slower and the weaker the disturbance
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Figure 5: Evolution of the maximum r.m.s. of the streamwise velocity and the tempera-
ture for different values of the turbulence Reynolds number: r;=2.7 (solid lines), r;=7.9
(dashed lines) at Mo,=0.69 (refer to table 1(a)). Thick lines: nonlinear solutions, thin
lines: linearized solution.
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Figure 6: Evolution of the maximum r.m.s. of the streamwise velocity and the temperature
for different values of the turbulence Reynolds number: r,=3.37 (solid line), r;=6.25
(dashed lines) at Mo,=3 (refer to table 1(d)). Thick lines: nonlinear solutions, thin lines:
linearized solution.

growth becomes, and the farther upstream the nonlinear effects start asserting their in-
fluence. The stabilizing effect of nonlinearity was already observed by Ricco et al. (2011)
in the incompressible regime for high turbulence levels. Here, it is shown that nonlinear
effects play the same role on thermal (temperature) streaks.

For the turbomachinery case (figure 5), the attenuation of the streaks is more pro-
nounced than in flight conditions as the turbulence levels are higher, and the deviation
of the kinematic and thermal streaks from the linearized solution is of similar magnitude.
The kinematic fluctuations are approximately one order of magnitude higher than the
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Figure 7: Evolution of the maximum r.m.s. of the streamwise velocity and temperature for
different value of the turbulence Reynolds number: r;=2.1 (dashed-dotted lines), r1=4.4
(dashed lines), =6 (solid lines) at M. ,=3 (refer to table 1(e)). Thick lines: nonlinear
solutions, thin lines: linearized solution.

thermal streaks relatively to the correspondent free-stream mean velocity and tempera-
ture.

In flight conditions (figure 6), because of a higher Mach number, the temperature
fluctuation acquires a large intensity, which is comparable with that of the velocity fluc-
tuation. Although the influence of Tu on the streamwise velocity is quite weak even in
the highest turbulence intensity case, r:=6.25, appreciable attenuation of the nonlinear
thermal streaks with respect to the linearized ones is observed. The stabilizing effect is
more marked on the temperature than on the streamwise velocity. The nonlinear and
linear r.m.s. of the temperature streaks diverge farther upstream than the r.m.s. of the
streamwise velocity. Even for a low-disturbance environment such as free flight, it seems
necessary to describe the formation and amplification of the streaks correctly by taking
into account the nonlinear interactions inside the boundary layer.

In the wind tunnel case shown in figure 7, a peculiar behaviour of the nonlinear curve for
the highest turbulence level case is observed. A sharp deviation of the nonlinear solution
from the linear one occurs at £/0.5, which corresponds to a physical downstream position
of £*~10 cm. This phenomenon was not observed in the incompressible cases studied by
Ricco et al. (2011). The parameters used in this case are very similar to those of the
flight case with highest r; (refer to tables 1(d) and 1(e)), except that k, is approximately
half of that in the flight case. As a consequence, the effect of nonlinearity is stronger.
The streamwise wavenumber of the wind tunnel case is comparable with that of the
flight case with M.,=6 (refer to table 1(c)) but r; is smaller and M, is higher in the
latter, thus resulting in weaker nonlinear effects. Additional calculations suggest that this
abrupt change occurs when a sufficiently small streamwise wavenumber is employed, i.e.
k.<1.5 x 1073, together with a high turbulence Reynolds number, r;>6, at supersonic
speed. In the subsonic regime no such sharp deviation was observed, even at high 7.

The effect of the frequency is displayed in figure 8, where the downstream evolutions
of Urms,maz a0 Trms maes are plotted for different values of k, in the turbomachinery
case (refer to table 1(b)). The fluctuations of the streamwise velocity and temperature
are higher for smaller k., but the dependence of the stabilizing effect of nonlinearity on
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Figure 8: Evolution of the maximum r.m.s. of the streamwise velocity and the temperature
for different streamwise wavenumber: k,=0.0036 (solid lines) and k,=0.0142 (dashed
lines) at Mo=0.69 (refer to table 1(b)). Thick lines: nonlinear solutions, thin lines:

linearized solution.
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Figure 9: Evolution of the maximum r.m.s. of the streamwise velocity and the tempera-
ture for different free-stream Mach number: Mo,=2 (dashed lines), M.,=6 (solid lines).
The turbulence Reynolds number is 7,=4.8 (refer to table 1(c)). Thick lines: nonlinear
solutions, thin lines: linearized solution.

the frequency is very weak and it is the same for the streamwise velocity component
and the temperature. For k;>0.01 the amplitude saturates at an almost constant value
before decaying farther downstream.

Figure 9 displays the signature of the streamwise velocity and temperature for different
Mach numbers in the flight case (refer to table 1(c)). The variation of M., is only
due to a variation of U, while T is constant. As the Mach number increases the
r.m.s. of the streamwise velocity is attenuated while the temperature fluctuations are
intensified. For M_,,=6, the latter acquire an intensity as large as 26% of T , whereas

[oop)
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Figure 10: Evolution of the maximum r.m.s. of the streamwise velocity and the temper-
ature for different wall-temperature conditions: hot wall (hw), adiabatic wall (aw) and
cold wall (cw) at Mo=3.

the velocity fluctuations merely reach 5% of UZ . The result suggests that thermal streaks
are likely to be the primary cause of secondary instability in high speed flows. Figure 9
also shows that the attenuation effect on the velocity is stronger than the enhancement of
the temperature. For example, tripling the Mach number from 2 to 6 results in a decrease
of more than three times in the r.m.s. of the streamwise velocity and an increase of twice
in the temperature signature at x=600. Despite r; being the same, for higher M, the
stabilizing effect of nonlinearity becomes less pronounced and this is more evident for
the streamwise velocity r.m.s., whose nonlinear evolution is indistinguishable from the
linearized curve in the highest M., case. This behaviour is attributed to the turbulence
level being smaller for higher values of the free-stream velocity, although 7, is the same
in all the cases.

In figure 10 the results obtained in the wind tunnel case with r,=6 for the hot-wall con-
dition T}, /T,=1.1 are compared with those relative to a cold-wall condition T, /T.5,=0.8
and an adiabatic temperature at the wall T,;=T",. As the wall-heat flux increases from
negative (heating), to zero (adiabatic) and to positive (cooling), the signature of the
streamwise velocity is enhanced while the temperature disturbance is attenuated. The
position where the abrupt deviation occurs moves from z~0.5 in the hot-wall case to
Z~0.7 in the cold-wall case. Therefore the wall heat flux influences the position where
the onset of the stabilizing effect due to nonlinearity occurs. This suggests that the em-
ployment of the adiabatic wall condition in wind tunnel experiments may lead to an
inaccurate prediction of the transition location for high Mach number supersonic flight
conditions, where wall cooling usually needs to be employed for thermal protection.

5.3. Wall-normal profiles of the perturbation for flight condition

The wall-normal profiles of the streamwise velocity and the temperature are now exam-
ined for flight conditions with M,,=3 and r;=4.8, as this case features significant effects
of nonlinearity and compressibility, whereas in the turbomachinery case compressible ef-
fects are weak. The parameters correspond to case (d) in table 1, except that Tu=0.27%
and 7r;=4.8. The flow is symmetric with respect to the z direction because the Fourier
forcing modes have opposite spanwise wavenumbers but equal amplitude. Therefore, re-
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Figure 11: Profiles of the streamwise velocity (first row) and the temperature (second row)
of the mean-flow distortion and harmonics with |m|=|n|=1,2,3 at £=0.5 (first column)
and £=1.2 (second column). The parameters correspond to the flight case with M.,=3
and r;=4.8.

sults will only be presented for modes with n>0, since modes (m,n) and (m, —n) have
the same amplitude and shape.

Figure 11 shows the profiles of the spanwise-uniform time-averaged flow distortion
(0,0), the forcing mode (—1,1), and the second and third harmonics with |m|=|n|, i.e.
(—2,2) and (—3,3), at z=0.5 and 1.2. As expected, the forcing mode has a higher ampli-
tude than the other components The mean-flow distortion makes a significant contribu-
tion to the overall flow. The magnitude of the higher harmonics decreases so quickly that
the third harmonic becomes almost negligible. The profiles of the temperature perturba-
tion are similar to those of the streamwise velocity and evolve in a similar manner, but
the amplitude of the thermal fluctuations is slightly higher than those of the streamwise
velocity (relatively to the free-stream values).

The streamwise velocity and temperature of the seeded modes attain their respective
maxima at n=1.5 and n=2. The most pronounced peak of the second harmonic occurs at
a larger wall-normal distance, n=3. The mean-flow distortion of the streamwise velocity
is positive near the wall and negative for 1>2, while the temperature profile (0,0) is
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negative close to the plate (excluding a small positive region at 17<0.5) and positive
in the outer layer. The (0,0) components of the streamwise velocity and temperature
grow significantly with the downstream distance and their amplitudes become greater
than that of the seeded modes in the outer portion of the boundary layer, n>4. The
difference between the maximum values of the linear and nonlinear profiles is larger for
the temperature than for the streamwise velocity. This confirms the stronger effect of
nonlinearity on temperature for high-speed flows, which was already observed in figure
6. At £=0.5 the linear solution of r;|@_1 1| and r¢|7_1,1| are almost indistinguishable
from their nonlinear counterparts. At £=1.2 the peaks of ry|_1 1| and r¢|7_1 1] in the
nonlinear case have moved closer to the wall and have decreased in comparison to the
linear case. After reaching their maxima, the nonlinear solutions decay more slowly and
become larger than the linearized approximations in the outer region of the boundary
layer. The mean-flow distortion acquires an amplitude comparable with that of the seeded
modes. Therefore, the effect of nonlinearity is to move the location of the disturbance
peaks nearer to the wall, to weaken the fluctuations in the core of the boundary layer
while enhancing them close to the free stream, and most notably to generate significant
mean-flow distortion.

As was pointed out by Ricco (2006), the nonlinear interactions generate only Fourier
modes with m=n when the flow is forced by a single free-stream mode, while in the case
of a pair of oblique free-stream modes additional components with m##n are induced.
The nonlinearly generated modes are those with |m|+|n| equal to an even integer, i.e.
they are arranged as a checkerboard in spectral space. Those generated at the second
and third orders are displayed in figure 12 at the downstream locations z=0.5 and 1.2.
The amplitudes of the components (—2,0) and (0,2) are comparable with each other
but about three times smaller than that of the mean-flow distortion (0,0). At z=0.5,
the peak positions and the magnitudes of the modes (—2,0) and (0,2) are very similar
(or almost identical for n>2), while at z=1.2 the first peak of the mode (—2,0) becomes
much higher than that of the component (0,2) and the second peak moves further from
the wall. The third-order harmonics feature two or three humps, with the first or second
peak being coincident with the valley of the second-order components. Profiles with three
peaks were not observed in the incompressible case (Ricco et al. 2011) and they are more
evident in the temperature streaks.

The profiles of the cross-flow velocity components and of the pressure are displayed in
figure 13. No mean spanwise velocity component is generated because the disturbances
are symmetric with respect to the plane z=0. The profiles of 9,, ¢ asymptotically ap-
proach a constant value (with respect to 1) in the free stream, as the right-hand side of
(2.58) is a function of & only. The amplitudes of the wall-normal and spanwise velocity
components are much smaller than that of the streamwise velocity, as \/k,/Rx=0(10"%)
and k,/k,=0(1073).

The pressure fluctuations at the wall are analyzed in order to show that these do
not represent an aeroelasticity problem. The root-mean-square of the wall pressure is
calculated and transformed in dimensional terms by multiplying it by pZ UX2, where
Ux =888 ms~! (table 1(d)) and p?,=0.09kgm~3 at 20 km altitude (Champion et al.
1985). The value obtained pZ,,,=0.055 Pa is compared to the pressure difference on the
wing. The latter is derived from the lift coefficient Cj, which is evaluated using the su-
personic linearized theory (refer to Anderson 2007, equation (12.23)) and assuming an
angle of attack equal to 10°. The resulting pressure difference Ap*=4200 Pa is five or-
ders of magnitude higher than the pressure oscillations obtained in our calculations. A
comparison is also performed with the wall pressure oscillations in a turbulent boundary
layer for the same set of parameters. The experimental data provided by Tsuji et al.
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Figure 12: Profiles of the streamwise velocity (first row) and the temperature (second
row) of harmonics with m # n at £=0.5 (first column) and z=1.2 (second column). The
parameters correspond to the flight case with M, =3 and r;=4.8.

(2007), who measured the r.m.s. of the wall pressure at different friction Reynolds num-
ber R, are used to evaluate the p,,,s at the wall at the current friction Reynolds number
R,=ulz*/vi , where u} is the friction velocity and z* is the distance from the leading
edge. From our calculations we obtain u*=13 ms~! and we choose 2*=0.7 m correspond-
ing to #=1.2. It follows that R,=3.4 x 10%. The relation proposed by Farabee & Casarella
(1991) (p;h,,s)?>=6.5+1.861In(R,/333) is employed to extrapolate the wall pressure r.m.s.
phns scaled with inner viscous units. The experiments of Tsuji et al. (2007) refer to
an incompressible boundary layer and therefore the effect of the Mach number on the
wall pressure needs to be included in our calculations. As a first estimate, the effect of
compressibility on the skin-friction coefficient C is evaluated by means of figure 19.1
of Schlichting & Gersten (2000) and the same ratio Cp(Moo=3)/C(Ms=0)=0.6 is as-
sumed to be valid for the wall pressure. It follows that p},,,=35Pa and therefore the ratio
between the wall pressure turbulent and pre-transitional fluctuations is approximately
6 x 102.

The total time-averaged (m=0) streaks of the streamwise velocity and temperature,
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Figure 13: Profiles of the wall-normal velocity (first row), spanwise velocity (second row)
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Figure 14: Contours of the time-averaged streamwise velocity streaks wugy (first row)
and the temperature streaks 7 (second row) in n — z plane, at different downstream
locations: £=0.5 (first column), z=1.2 (second column). The parameters correspond to
the flight case with M,,=3 and r,=4.8.

which will be referred to as ug, and 74, are defined as

N.
{ustr(fy m, Z), Tstr<i'a 7, Z)} =Tt Z {'0'0,1” 'TA-O,n} einkzz7
n=—N,

in which only modes with n=0,2,4, ... provide a non-zero contribution, but the com-
ponent (0,4) is almost negligible. They represent a time-averaged spanwise modulation
superimposed onto the Blasius boundary layer.

Figure 14 shows the contours of the time-averaged streamwise velocity and the tem-
perature streaks plotted in the n — 2z plane at different downstream locations. A positive
value of the contours means that the mean flow is higher than the local Blasius solu-
tion, while a negative value means that it is lower. Therefore, near the wall the flow is
accelerated and cooled, while close to the free stream it is decelerated and heated. The
mean-flow distortion of the streamwise velocity has been interpreted as an increase of
the mean wall shear stress and backward jets at the edge of the boundary layer, both of
which have been observed in experiments (Ricco et al. 2011).
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6. Summary and conclusions

The present work investigated the nonlinear response of a compressible boundary layer
to free-stream unsteady vortical fluctuations of the convected-gust type. Attention is fo-
cused on the low-frequency and long-streamwise components of the disturbances because
these penetrate the most into the core of the boundary layer to form kinematic and
thermal streaks (or Klebanoff modes). Thanks to this assumption, the mathematical
framework of the compressible boundary-region equations (i.e. the Navier-Stokes equa-
tions with the streamwise derivative being neglected in the pressure and viscous terms)
can be employed. The free-stream perturbation is assumed to be sufficiently strong that
the amplitude of the induced streaks is comparable with the mean flow. Nonlinear effects
must therefore be taken into account. The previous works by Ricco & Wu (2007) and
Ricco et al. (2011) were extended to take into account both compressibility and nonlinear
effects.

The boundary-layer displacement effect influences the outer-flow solution at leading
order, that is, nonlinear interactions within the boundary layer generate a spanwise-
independent flow, which drives an unsteady two-dimensional flow of acoustic nature in
the outer inviscid region. The analysis shows that the displacement-induced part of the
outer perturbation assumes different forms depending on the regime being subsonic or
supersonic. Thanks to the well-known analogy with the flow over a thin oscillating air-
foil, analytical linearized solutions in the subsonic and supersonic cases are derived. This
analogy is used here for the first time to study unsteady boundary layers. In the subsonic
regime the disturbances propagate in all directions from the plate, while at supersonic
speeds the fluid ahead of the body remains undisturbed and the perturbations are con-
fined within the Mach dihedron.

An initial boundary-value problem, comprising the nonlinear unsteady compressible
boundary-region equations and appropriate upstream and far-field conditions, is pre-
sented to study the formation and evolution of the streaks. The initial boundary-value
problem is solved for the case where the convected gust consists of a pair of oblique modes
with the same frequency but opposite spanwise wavenumbers. It is shown that nonlin-
ear interactions inside the boundary layer generate higher harmonics and a mean-flow
distortion. Kinematic and thermal streaks arise, which represent an unsteady spanwise
modulation of the velocity and temperature superimposed onto the Blasius boundary
layer. Nonlinearity attenuates the fluctuations of the streamwise velocity and a similar
stabilizing effect on the temperature is identified. Near the wall the new mean streamwise
velocity is higher than the local Blasius value, while the temperature profile exhibits a
deficit with respect to the Blasius solution. At the edge of the boundary layer the flow is
instead decelerated and heated. The effect of the free-stream Mach number is also inves-
tigated: as the Mach number increases, the streamwise velocity fluctuations are inhibited,
while the temperature ones are enhanced.

For the first time we have constructed the unsteady and three-dimensional base flow
generated by the free-stream forcing and by the nonlinear interactions inside the bound-
ary layer. This is the first step towards the formulation of the secondary instability
problem, which, in the compressible case, must account for both the velocity and ther-
mal streaks. Furthermore, by combining the present methodology and solutions, which
pertain to very low-frequency disturbances, with the analytical results of Wu & Dong
(2016) for components of O(1) or higher frequency, it is now possible, for given broad-
band free-stream disturbances, to specify the appropriate inlet perturbations required by
DNS of bypass transition in compressible boundary layers.
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Appendix. Nonlinear terms of the boundary-region equations
The nonlinear terms (fm’n, /'E'm’m ;)Aim’n, Z,A’m,m ffm,n of (2.17)-(2.21) are:
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