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Abstract — This paper presents a systematic review for the most commonly used lumped-
parameter equivalent circuit model structures in lithium-ion battery energy storage
applicationsThese models include the Combined model, Rint model, two hysteresis models,
Randles’ model, a modified Randles’ model and two resistor-capacitor (RC) network models

with and without hysteresis included. Two variations of the lithium-ion cell chemistry,
namely the lithium-ion iron phosphate (LiFef@nd lithium nickel-manganese-cobalt oxide
(LINMC) are used for testing purposes. The model parameters and states are recursively
estimated using a nonlinear system identification technique based on the dual Extended
Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are
verified using the results obtained from a self-designed pulsed-current test and an electric
vehicle (EV) drive cycle based on the New European Drive Cycle (NEDC) profile over a
range of operating temperatures. Analysis on the ten model structures are conducted with
respect to statef-charge (SOC) and statd-power (SOP) estimation with erroneous initial

conditions. Comparatively, both RC model structures provide the best dynamic performance,
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with an outstanding SOC estimation accuracy. For those cell chemistries with large inherent
hysteresis levels (e.g. LiFeROthe RC model with only one time constatombined with

adynamic hysteresis model to further enhance the performance of the SOC estimator.

Keywords — battery modelling, persistent excitation, real-time estimation, state-of-charge,

state-of-power
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1.Introduction

Due to the growing concerns over the emissions of greenhouse gasses, together with the
volatile and ever-increasing cost of fossil fuels, a global shift towards hybrid electric vehicles
(HEVS), plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVS) is
apparent. The uptake of these electrified vehicles (EVs) within the transport system not only
improves the air quality in dense urban areas, but can also provide a distributed energy
storage solution for the implementation of the rapidly evolving smart grid [1]. However,
without significant improvements on traction battery technologies and battery management

systems (BMSs), the adoption of EVs by consumers is not feasible.

A key function of the BMS is to assess and monitor the performance of the traction battery
through accurate characterisation of various battery states. These states include the state-of-
charge (SOG- quantity of deliverable ampere-hour charge at any time), state-of-health (SOH

— ability of a battery to provide its nominal capacity over its service lifetime), state-of-powe
(SOP- a quantity describing the battery’s power capability) and the state-of-function (SOF-

a binaryyes/no parameter indicating the battery’s ability to complete a task) [2—4].

Whilst direct measurement techniques such as coulomb-counting (integration of battery
current over the charge or discharge period) are easy to implement for SOC estimation, they
suffer largely from erroneous initialisation of SOC, drifts caused by current sensor noise and
battery capacity variations due to temperature and SOH. Moreover, the direct measurement of
the other battery states of interest (i.e. SOH, SOP and SOF) for real-time applications is
somewhat impossible. Hence, battery models are often utilised within the BMS to indirectly

infer and monitor the battery’s operation through the measurement of its terminal voltage,
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current and surface temperature. In addition to accurate characterisation of the battery states,
a candidate model is also desired to be computationally efficient. In other words, there should
be a balance between model accuracy and complexity so that it can easily be drobedde
simple and inexpensive microprocessor unit (MCU), similar to those found in EV BMS

hardware.

The battery models presented in literature mainly fall into one of the following categories:

1. Electrochemical or physics-based models,

2. Empirical or data-based models, and

3. Equivalent electrical-circuit based models.
Electrochemical models (e.¢b—9]) that aim to capture the dynamic behaviour of battery
cells on a macroscopic scale often can achieve high accuracies. These models areydefined b
a high number of partial differential equations (PDEs) that must be solved simultaneously.
The complexity of any electrochemical model is directly related to the number and order of
the governing PDEs, which can lead to tremendous requirements for memory and
computational power. Another issue that often precludes these models from real-time
applications is that due to the large number of unknown variables, they are likely to run into
overditting problems, increasing the uncertainty in the model’s output. Alternatively, these
models can be represented bjower number of ‘reduced order’ PDEs and by substituting
boundary conditions and discretisation, real-time applications may become achievable (e.qg.
[10-12]). However, this comes at the expense of reduced SOC accuracy and yet the

computational burden on the MCU remains questionable.

Data-based models (e.g. [®]) often adopt empirically derived equations from

experimental data fittings to infer relationships between various battery parameters such as
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the terminal voltage, throughput current, surface temperature and SOC. Although these
models benefit from simplicity and ease of implementation, they often suffer from
inaccuracies of 5-20% mainly due to the highly non-linear behaviour of a battery ainder
dynamic load profile. In [16,17], the authors took a multiple-model approach to battery
modelling using the local model networks (LMN). This technique interpolates between
different local linear models to capture the battery’s non-linearity due to SOC variations,
relaxation, hysteresis, temperature and the battery current effects. One downside of the LMN
modelling approach is the excessive requirements for different experiments to train the model
in first place. Generally, the data-based model parameters are not physically interpretable,
which drops their popularity for in situ estimation and tracking of SOH and SOP.
Furthermore, a large cell sample of the same chemistry is required to create a dataset for

identification and training of data-based models.

In [18-20], Plett used a series of models including the combined, simple, zero-state
hysteresis, one-state hysteresis and a non-linear enhanced self-correcting (ESC) model to
adaptively estimate the battery’s SOC. The latter model took into consideration the effects of

the current direction, the SOC dependency of open-circuit-voltage (OCV) hysteresis and the
relaxation or the charge-recovery effect to improve the model accuracy for dynamic load
profiles. In an attempt to model the OCV hysteresis behaviour together with the charge
recovery effects, Roscher et al. [21] developed an empirical model whose parameters
required off-line identification. In [22], Huria et al. proposed a mathematical model to
describe the dynamics of the large hysteresis levels that exist amongst high-power lithium-ion
cells. Further on in the paper, this model structure will be referred to as the adaptive

hysteresis model.
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The lumped-parameter equivalent circuit models have gained a lot of interest amongst EV
designers for real-time battery state estimation and power management purposes. This is due
to their simplified mathematical and numerical approaches that minimise the necessity for
computationally intensive procedures. Furthermore, there is often a strong physical relation
between the constituent model parameters and the underlying electrochemical processes that
occur within the battery cells. These models use passive electrical components, such as
resistors and capacitors, to mimic the behavioural response of a battery. The simplest
equivalent circuit model is in the form of an ideal voltage source in series with a resistor [23]
This model assumes that the demand current has no physical influence on the battery, i.e. no
core temperature variations or undesired transition effects. More complicated equivalent
circuit models include resistor-capacitor (RC) networks to characterise the battery transient
responses with different time-constants associated with the diffusion and charge-transfer
processes. Depending on the dynamics of the load profile and the required modelling
accuracy, the number of the parallel RC branches may vary from one-RC (e2y]]j24

two-RC (e.g. [2830]). Higher order Models of up to fifth-order have also been used
previously in literature (e.g. [3L}o improve the model’s impedance response under higher

frequencies of operation.

In literature, there are no studies that compare the accuracy and universality pbttedre
battery models for real-time estimation of SOC and SOP together. Therefore, this review
paper aims to carry out a systematic study of a number of selected lumped-parameter battery
models for two variations of the lithium-ion cell chemistry, namely the lithium-ion iron
phosphate (LiFeP£) and the lithium nickel-manganese-cobalt oxide (LINMC). The models

of interest in this paper include the combined model, Rint model, One-state hysteresis model

by Plett, Huria et al. hysteresis model, one- and two-RC models and one- and two-RC models
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combined with the hysteresis model proposed by Huria et al [22]. These models were
nominated based on the number of their appearances in the literature. The Kalman filter (KF)
algorithm is then applied to simultaneously estimate and identify the model parameters in real
time. Nevertheless, for those models that are non-linear in parameters (e.g. one- and two-RC

models) the extended Kalman filter (EKF) algorithm is adopted.

This paper is organised as follows. Sectign 2 describes the experimental configuration for
gathering an accurate dataset for both training and verification purposes. [Section 3 gives a
guantitative definition for the SOC, SOP and SOF. Seon 4 provides an overview of the
battery model structures of interest in this work. Sen 5 describes the real-time system
identification techniqgue based on the dual-EKF algorithm for both model parameter
identification and battery state estimation. Sen 6 compares the voltage prediction and
SOC estimation capabilities of the nominated model structures. Furthermore, an optimum
model structure will be put forward for real-time SOP and SOF estimation. And finally

sectioﬂ concludes this paper.

2.Battery Dataset Generation

2.1 Experimental Setup

The experimental setup features a multi-channel Maccor battery tester, &-boiltse
thermal chamber and a host computer for rig control and data storage. The voltage and
current sensors incorporated into each channel of the Maccor system have accuracies of
+0.02% (0- 20 V full-scale) and £0.05% (010 A full-scale) respectively. Since the current
sensor noise is very small and the sampling period is reasonablyfhigliQ0 ms), it is safe

to assume that the integral of the throughput current over the discharge/charge period
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158 represents a “true” measurement of the cell’s SOC. Therefore, we use the coulomb-counting

159 technique to systematically compare the accuracy of the model-based SOC estimates.

160

161 The generality of the candidate battery models are demonstrated using two variations of the
162 lithium-ion cell chemistry, (i.e. LiFeP£and LINMC). The specifications for the test cells are

163 presented iE Table| 1. Three cells of each type are used in this work. One reference cell is used

164 for training purposes and the other two cells are used for model verification.

165

166 Table 1. Specifications for the test cells at 25 °C.
Parameter LiFePOa LiINMC
Rated Capacity 3300 mAh 3600 mAh
Nominal Voltage 3.2V 3.65V
End-of-Charge Voltage 3.65V 42V
End-of-Discharge Voltage 2.0V 275V
Nominal Resistance 30 m 20 mQ

167

168 In order to gather an accurate dataset, a test sequence as presented in Table 2, is designed and

169 implemented. The test sequence starts with incubating the cells in the thermal chamber for 24
170 hours. The chosen dwell time is long enough for the small cylindrical cells to reach a thermal
171 equilibrium prior to any characterisation test. Five temperature settings of 5 °C, 15 °C, 25 °C,
172 35 °C and 45 °C are chosen for comparison of the model performances across various
173 operating conditions. Throughout the tests, the thermal distribution over the cells is assumed
174 constant and the internal temperature variations due to high discharge/charge currents are
175 neglected.

176
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Table 2. Battery testing procedures.

Self-designed pulse test

Step Procedure

1. Set temperature
2. Capacity test

3. OCV vs. SOC test
4. HPPC test

5.

6.

Multi-cycle NEDC test

2.2 Capacity Test

Initially, each cell undergoes a capacity measurement cycle, which consists of a 0.5 C
constant-current discharge until the end-of-discharge voltage has been reached. This is to
remove any residual charge left in the cell. After a 60 minute rest period, the cell is re-
charged using the standard constant-current constant-voltage (CCCV) scheme at the
manufacturer’s recommend current and voltage levels. Following a 60 minute rest, the cell

under test is discharged at a 0.5 C current level. The quantity of charge removed from the cell
is recorded as the maximum discharge capacity at the set temperature, which will be used for

SOC calculations.
2.3 OCV-SOC Relationship

In order to generate a function to describe the OCV-SOC relationship, the reference cells
were applied with a pulsed-current and relaxation test. The test profile began with a full

discharge at a constant current of 0.5 C until the lower voltage thresholds were reached.
Then, the cells were re-charged to 100% SOC using the CCCV charging scheme. After a

relaxation period of 60 minutes, the first OCV was recorded at SOC = 100%. Furthermore,
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the cells were discharged in steps of 10% SOC at a current level of 0.5 C for both cell
chemistries followed by 60 minute rest periods. This sequence was repeated until the cells
were fully discharged. The OCV measurements during the charge half-cycle were also
obtained using a similar procedure, where the cells were charged in steps of 10% SOC at a

constant current of 0.5 C.

Upon the completion of the pulsed-current test, the OCV values extracted for both the charge
and discharge regimes were used to curve-fittaar8er polynomial function to describe the

average OCV-SOC relationship for both the LiFeR@d LINMC cells as,

VOC = a850C8 + -+ a1$OC + ao (1)

The fitted OCV curves at various temperatures are preseTted in Fig. 1. As can be seen, during

the operational SOC range of both battery chemistries (i.e. 20% < SOC < 80%), the OCV-

SOC relationship is almost independent of the operating temperature. This finding implies
that for practical purposes, one can safely rely on only an OCV curve obtained at a
reasonable temperature. However, to keep the modelling uncertainties at a minimum, separate
functions are fitted in this work to represent the OCV-SOC relationship at each temperature

setting.

10
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3 35°C
45 °C

0 0.2

0.4

0.6 0.8 1

SOC

Fig. 1. The average OCV-SOC relationship for (a) LiFeP@and (b) LINMC reference cells

2.4 HPPC Test

The Hybrid-Pulse-Power-Characterisation (HPPC) test is a standard procedure developed by

the Partnership for New Generation Vehicles (PNGV) [32] used to determine the power and

energy capability of a rechargeable battery under both discharge and regenbeatjuggc

scenarios. This particular test profile is used in this work to demonstrate the SOP variability

as a function of SOC and operating temperature. It should be noted that the profile starts with

a preamble discharge anddierge step as to adjust the cell’s SOC to 100% prior to testing.

Furthermore the HPPC pulses, as show

nin A

ig. 2(a), are applied over the SOC range of 10-

11
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90% in steps of 10% SOC. A discharge current pulse of 0.5 C is used for both cell
chemistries to take the SOC to the next desired level and a 60 minute rest interval is allowed

between the HPPC pulse repetitions.

2.5 Validation Datasets

The validation datasets in this work include the results from a self-designed pulsed-current

test and a multi-cycle New European Drive Cycle (NEDC) test. The purpose of the self-

designed pulsed-current test, as shown in Fig. 2(b), is to dynamically excite the cell under test

with variable current amplitudes and durations. Note that the self-designed test profile has a
predominant discharge characteristic as to remove charge from the cell under test. The
obtained dataset from this test will be used to compare the output accuracy of the model

structures under review.

The multi-cycle NEDC test profile is used to evaluate the adaptability of the battery models
for realtime SOC estimation. The test profile starts by removing charge form the cell using a
0.5 C current level for both cell chemistries. This step ensures a known initial SOC value of

90% is achieved prior to applying the cell under test with 14 consecutive NEDC cycles. A

single repetition of the NEDC cycle is illustrated in Fig. 2(c). Upon the completion of every

NEDC cycle, a rest period of 15 minutes is allowed before the next cycle commences.

Finally, a discharge current pulse of 0.5 C is applied as to fully discharge the cell.

12
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Fig. 2. Current profiles for a single repetition of the (a) HPPC, (b) self-designed pulsedirent and (c)

multi-cycle NEDC test procedures

3. State Definitions

In this paper, SOC is defined as

13
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252

_ _i (e
SOC(t) = SOC(0) Qn.[;l(‘[) dt

2

253

254  wheren; is the cell’s Coulombic efficiency of the celi(t) is the instantaneous current and
255 @, = 3600 x Ah is the cell’s nominal ampere-hour (Ah) capacity. Conventionatly|s
256 defined as the ratio of the quantity of charge that is injected into a cell during chartfiag to
257 removed from the cell during discharging.

258

Qdischarge(Ah)
= X 100%.
i Qcharge (Ah) ° (3)

259

260 In order to include SOC as an estimable state in the battery models’ state-space equations, the

261 coulomb-counter equation given |in (2) needs to be converted into discrete form. Thus,

262 assuming a small sampling period (fe= At < 1 s) and using a rectangular approximation
263 for SOC(t) yields,

264

4)

265

266 Various guantitative definitions for SOP and SOF exist in literature (e.g3%33 which are
267  all associated with the battery’s power capabilities. In this paper, we define SOP as the

268 available source or sink power over a short periofitotJsingVyc = f(SOC) as defined in

269 (1)} the instantaneous discharge or charge power at timé sepbe respectively calculated

270 as,

271

14
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Vmin(VOC,k - Vmin)

P =
dis,k Req (5)
272
p _ Vmax(Vmax - VOC,k)
chk — =
' Req (6)
273

274 whereV,,;, andV,,,x are the minimum and maximum threshold voltages recommended by
275 the manufacturer foa safe operation anﬁeq is an estimate for the cé&llseries-equivalent

276 resistance. To this end, we can define SOF in terms of available power as,

277

SOF = 1, for Py = B2y and Py = prgg

278

279 where Pr‘;fa andPr%i; are the required quantity of charge or discharge power respectively to

280 complete a particular task. Note that the valuéeqfin (5) and (6) can be approximated by

281 applying the Thevenis Theorem to an equivalent circuit model. Alternatively, the voltage
282 and current waveforms obtained for a sequence of HPPC pulses at every SOC value can be
283 used to calculate a value fibe cell’s discharge or charge resistance as,

284

Rgyis = , R4, = .
dis Idis ch Ich (8)

285

286 In|(8), V, andV, are the cell voltages measured respectively at the start and end of a

287 discharge current pulsé;s, of durationAt seconds. Similarlyl, andV; are the voltage
288 measurements taken for a charge current pyjsef durationAt seconds. The resulting

289 resistances are analogous to the’caliternal resistances and can reflect on the power

15
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capability of a cell under operation. Consequently, anyawais in the cell’s internal
resistance as a function of SOC and temperature can affect the quality of the SOP estimate at

any time.

4. Lithium-ion Battery Models

The candidate battery model structures for the purpose of this review study are summarised in

Table 3. These models form the basis for real-time SOC, SOP and SOF estimation algorithms

in most lithium-ion battery energy storage applications.

Table 3. Candidate lithium-ion battery models.

Model Description

Combined mod

Rint mode]|(10)

Huria et al. Hysteresis mo
Plett Hysteresis mod,
Randles’ model,

Modified Randles’ model,

One-RC modeli(18)
Two-RC mode|(18)

OneRC model with Hysteresj+ )

© ©®© N o ok~ NP

=
©

Two-RC model with Hysteres|s18)[+(11)

4.1 The Combined Model

The combined model [19F a very crude approximation of the battery’s dynamics. As the
name suggests, this model structure is a combination of the Shepherd model [14], Unnewehr

and Nasar universal model [36] and the Nernst model [37] given as,

16
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K
Vi = Ko — ——— — K,SO0Cy, + K3 In(SOCy) + K, In(1 — SOC;.) — iR,
S0Cx
S NG g ©)
Voc = f(S0C)

whereV, is the battery’s terminal voltage and ij is the throughput current. The battery’s
internal series resistance is describedRpgnd is a function of temperature and SOC. The
constants,, K, K,, K; andK, are used to describe the battery’s OCV dependency on SOC.

This model benefits from being linear in parameters and thus simplifies the identification

procedure.

4.2 The Rint Model

The internal resistance or Rint model is comprised of an ideal voltage $gurerepresent
the battery’s OCV as a function of SOC and a series resistor R that describes the internal

ohmic losses [38]This model structure is also linear in parameters and is very “simple” to

implement in real time. However, the model’s output equation expressed by|(10)[ is only a

crude estimate of the battery’s actual terminal voltage, which can result in large uncertainties

in SOC and SOP estimates.

Vi = VOC,k — ik Rs. (10)

4.3 The Hysteresis Models

The OCV as a function of SOC for the two cell chemistries used in this paper are shown in

Fig. 3. It is noted that the OCV obtained after a charge step (see $ection 2.3) for both

17
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LiFePQ; and LINMC cells has a higher value than that obtained after a discharge step. In
literature, this phenomenon is referred to as hysteresis. In [22], the authors have shown that
for high-power LiFeP® cells, the hysteresis level decreases with increasing rest period
allowed immediately after a charge or discharge step. This can be attributed to the
thermodynamic origins of the hysteresis effects [39], which requires for a long rest period for

the cell to reach an equilibrium potential.

The hysteresis levels obtained after a one-hour rest period for the two cell chemistries under

study are presented|Fig. 3(b) and (d)lt is apparent that the hysteresis level for the LikePO

chemistry is considerably higher than that for the LINMC chemistry. Moreover, within the
useable SOC range of 20% to 80%, the OCV curve for the LifFeRémistry is fairly flat.

This implies that for those OCV-based SOC estimators, even a small error in the voltage
measurement within this regiaan result in a large deviation from the actual SOC value.
Thus, for a more reliable SOC estimatiamyodel structure of the cell’s hysteresis behaviour

is of necessity.

To overcome the effect of hysteresis, different modelling approaches have been reported in
literature (e.g. [40Q] For those battery chemistries that pose a relatively small hysteresis level
(e.g. LINMC), often a direct approach is adopted [19]. This technique can be achieved either
by evaluating the arithmetic mean or minimising the global squared-error between the charge
and discharge OCV points obtained separately at the same SOC. However, for those
chemistries with larger hysteresis levels (e.g. LiFgP@e direct methods would lead to

large uncertainties in the SOC estimate. Therefore, more comprehensive models are required.

18
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349 Fig. 3. Open circuit voltage and hysteresis level for LiFeP£and LINMC cell chemistries at 25 °C

350

351 In [21], the authors develop an empirlgatlerived hysteresis model for LiFeRPQ@ells

352 comprising of two parts; first part captures the dynamics of the OCV hysteresis as a function
353 of SOC and an identifiable hysteresis factor that determines the position of the OCV curve
354  with respect to the charge and discharge OCV curves, and the second part considers the SOC-
355 dependent recovery effects (i.e. the time taken for the cell to reach a final equilibrium
356 potential after a current interruption at a given SOC). This results in a comprehensive
357 representation of the c&llOCV during operation. However, due to the empirical nature of

358 the model structure, a training dataset is required to identify the model parameters off-line.

359
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For the purpose of this study, we put the focus on the hysteresis models presented in [19] and
[22] whose parameters can possibly be identified recursively in real time, without the

necessity for various training datasets. Another example of on-line OCV hysteresis treatment
can be found in [41]. The first hysteresis model is developed based on an algorithm presented

by Huria et al. [22] and is defined as,

dVe dsoc
dVoc dsgéh +m(Voc,en — Voc)» for i >0
VVOC = = (11)
dsoC ) dVoc.is Soc

<0

+ m(VOC,diS — Voc), for

dSoC

which determines the gradient g5 = f(SOC) as a function of the rate-of-change of SOC
and its distance away from the major hysteresis loop formed by the dhgarge, and
discharge}ocgis» OCV curves. The dimensionless coefficientdetermines how fasfyc
transitions toward¥yccn OF Vocais after a preceding charge or discharge current pulse

respectively. In order to compare the performance of the two hysteresis models discussed in

this section, algorithml{)|is combined with the Rint model (10) to give,

Vi = (Vock + YWock) — ixRs (12)
whereVVc is theVyc derivative attained at time stép

In [19] Plett developed a model to describe the hysteresis effects using a differential equation

in both time and SOC such as,

dh(SOC, t)

—oe— = rsen(S0C) (H(50C,50C) — h(S0C, 1)) (13)

20



For submission to Journal of Power Souredsine 2015

380
381 whereh(SOC,t) is a function to describe the hysteresis voIt&Q(eSOC,SOC) defines the
382 maximum positive and negative hysteresis as a function of SOC and rate-of-change of SOC,

383 yis a tuneable factor to control the rate-of-decay of hysteresis towards the major loop and

384 SOC = dSOC/dt is the ratesf-change of SOC. Now, using the definitions givep irf (1) and

385 [(2)[and rearranging (1B8) as a differential equation in time only, thenodhl’s state-space

386 equations become,

387

NilkyTs
Qn

)hk + (1 — exp (— migl/Ts )) H(SOC, SOC) ”

s = -

Vk = VOC,k - ikRS + h'k'

388

389 4.4 The Randles’ Model

390 The Randles’ model was originally developed for lead-acid batteries [4244]. However, in

391 recent years their utilisation in lithium-ion battery modelling has been sightegl [45]/ Fig. 4(a)

392 shows the Randles’ equivalent circuit diagram for a typical lithium-ion cell, wher@&; is the
393 series resistancely models the cell’s no-load self-discharge (typically 20k Q), Gy
394 represents the bulk charge storage of the €gelkpresents the electrodes’ double-layer effect
395 andR; is the charge-transfer resistance. The voliggeacros<;, is analogous to the cell’s

396 OCYV and the model’s output response can be expressed as,

397

—Ty
Voo, | |Ra (1 - eRdCb> 0
+ 1\ |5 (15)
Vesy 0 R, <1 - em)

Vi = Vebe — Vesk — tkRs.

eRdCp 0
_TS

Vebsq [ =
0 eRtCs

VCSk+1
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Gould et al. [28] developed a new battery model through the star-delta transformation of the

original Randles’ circuit. This particular model, as shown in|Fig. 4(b), consists of the same

number of parameters as the Randles’ model with a slight modification in the way the
transient states are represented. In [28], it is shown that when applied with real-time state
observers such as the Utkin akdlman Filter, the parallel reconfiguration of the Randles’

model states can yield a better SOC estimate. Thus, the adaptability of this model structure
for online SOC and SOP estimation will be evaluated in this study. Consequently, Mapping
the Randles’ model parameters as per [28] and solving for the output equation in discrete

form yields,

Ch = Cg/(cb + Cs): Cp = Cpcs/(cb + Cs),
(16)
R, = R(Cy + C5)?/CE, Ry, = Rq + Ry

—Ts R —Ts
\Y e T 1—e™ V. —Ts
CPr41 R, Cpy + Ry (eﬁ _ 1) ol.
9%
—Ts __Ts
Van+1 [(1 — e?) e Tn J Van O O (17)
Vie = Vep e — ik Rs
whereRr = R,R,/(Rp + Ry), Tn = RyC, andt, = RrC,,.

4.5 The RC Model

The resistor-capacitor (RC) or the Thevenin equivalent circuit model is a modification of the

Rint model, as shown |n Fig| 4(c). This model is comprised of an ideal voltage source to

represent the cell’s OCV at partial equilibrium as a function of SOC, a series ohmic
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resistance&’s andn number of series-connected RC branches. Depending on the dynamics of
the intended application, the number of the RC branches may vary. For most power
applications, one RC branch is adequate (e.g-4&p to describe the long time-constant

reactions associated with the diffusion of active species into the electrolyte.

Considering applications with faster transients, the short time-constant reactions associated
with the charge-transfer and the double-layer effect of the electrodes can be modelled with
additional RC branches (e.g. [4&2]). However, there is a trade-off between accuracy and
complexity, which must be considered for a particular application. In this paper, the
performance of one-RC and two-RC models are reviewed analytically. Without loss of
generality, the electrical behaviour of ali arder RC model in its discrete form can be

expressed as,

_TS I[Rl 1 — eR1C1 cee 0 }
VRC141 eRiCi ... 0 |[|Vrci | |
: =| : : : + E : . ik
—Ts —Ts
VRCle+1 0 e oRnn VRCle l 0 Rn (1 _ eRnCn>J (18)
Vi = Voc(SOCy) — ixRs — Vrc1 — *** — Vren-
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434 Fig. 4. The equivalent ci4rcuit diagrams for (a) Randles', (b) modified Randles' and (c) RC model
435 structures
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5.0nline Non-linear System ldentification

The Kalman filter is a recursive set of equations that allow for state estimation and parameter
identification of linear time-invariant systems [53]. On the other hand, the EKF is an ad hoc

solution for the identification of non-linear time-varying systems such that, the non-linear

model describing the underlying dynamics of the system is linearised about the filter’s

current estimated trajectory. For simultaneous estimation of both model states and
parameters, two separate are often incorporated in a parallel configuration. This method is

referred to in literature as the dual-EKF algorithm-{54].

Essentially, the dual-EKF combines the state and weight filters, where the model states
including SOC, are estimated by the state filter and the model parameters are identified
recursively by the weight filter. Due to its robustness, the Kalman filter algorithm is often
utilised in the battery energy and/or power management systems to overcome a widé range
problems (e.g. [5&1]). Therefore, this popular system identification technique is applied to

the candidate battery model structures givén in Tﬂble 3.

5.1 Dual-EKF System Identification

With the assumption that the cell terminal currgrind voltagée/, are the only measurable

guantities, the EKF state filter can be designed such that,

X1 = f (g, g, Ox) + wy
Vi = h(xy, ug, 0) + v
(19)
wi ~ N(0,Qy)

vk ~ N(0,Ry)
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wherex; € R" is a vector containing the model states to be predicted in a minimum variance
sensef, € R? contains the time-varying model parametegse RP is the exogenous
model inputy, € R™ is the output and/, € R" andv, € R™ are the zero-mean process
and measurement noises of covaria@feandRj respectively. The non-linear functigig-,,-

) relates the states estimated at discrete kimel to the states at the current time Stesnd

h(--) maps the updated states to the measurements at timé&.sfegsuming that the
parameters vary slowly over time, the weight EKF can be designed to adaptively provide an
estimated of the true model parameters. Thus, the state-space model for the weight filter is

given as,

Or+1 = O + 1%
dy = h(xg, u, 0) + e
(20)
T~ N(O, QQ)

e ~ N(O, RH)

where the “dynamics” of changes in 8, are attribud to a small “imaginary” white noiser;, €
RP of covariance&)? that evolves the parameters over time. The output equatienR™ is

given as a measurable functionfgfand a white noise, € R™ of covariancer? to account

for the sensor noise and modelling uncertainties.

Due to the time-variability of the model parameters, it is imperative that the cell data
collected using the current profiles presented in section 2 convey continual information on
the parameters to be estimated. This condition is referred to in the system identification
literature as the “persistence of excitation” (PE) [62]. In many real-time battery state

estimation problems, the load-current profile may not fully satisfy the PE criterion. For those
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477 observer-based SOC estimators such as the extended Luenberger observer, sliding mode or
478 adaptive observers, if the PE condition is not sufficiently satisfied, the gains tend to approach
479 infinity and divergence occurs [62]. Nevertheless, the EKF algorithm seems to operate well
480 under such conditions without any divergence (e.g-§6J. This is due to the presence of

481 the persistently exciting process and measurement noise, which are assumed to be white
482 colour for the dual-EKF estimator presented here. Note that white noise has a continuous
483 spectrum over the whole frequency range and thus is persistently exciting for any finite order
484 [67,68].

485

486 For brevity, a summary of the dual-EKF algorithm is presentéd in Table 4. Note that the

487 algorithm is initialised by assuming a priori knowledge of the model states and parameters
488 are available. However, in practice the initial system information are unknown. Thus, the
489 states and the parameters are set to their best guess vatuedao thahd = E[6,] and

490 ®5 = E[x,]. The estimation error covariance matrices are also initialised’gf gs=
491 E [(9 ~83)(6 - é;)T] andP}, = E[(x — £3) (x — 2D)71.

492

493 Each time step, the algorithm first updates the state and parameter estjnane®;, and

494  their error covariancgz, andP;, respectively, by propagating them forward in time. Note

495 that for the parameter time-update equgtion|(25), the new parameter e8firsatzual to

496 the previous estima#i_, with an increase in its uncertainty due to the presence of the white
497 process noise,. After a measurement has been taken at timekstepth filters take this

498 measurement into consideration to update the state and parameter eg{jnsaie8; their

499  corresponding uncertainties BS; andPg’k respectively. Ip (26) and (27), the measurement-
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update error covariance matrices, andng are given in their Joseph forms to ensure a

numerically robust algorithm.

It is noted that for the weight filter’s measurement-update equations given(in (27), the total-

differential HY of the model output equatidr(-,,-) with respect to parametefisis required.

Therefore, by decomposing the total-derivative into partial-derivati¥fsis computed

recursively as the following set of equations,

o _ dh(i,wu, 0) )

H
k do ot
—Yk

dh(i e, 0) _ Oh(Ri, u 0) | Oh(i w, 0) di

dé a6 0X; do
> (21)
dx, _ af(fli——l'uk—li 0) af@;—puk—p ) _ df;ﬂ
do 06 03?;_1 dé
d®i_ _ dXp_y x dh(Xy—1, Ug-1,6)
de de k-1 de ' J

SinceLy_, is weakly related to the parameter estimétdscan be safely neglected in (21) to

improve the efficiency of the weight filter. Furthermoréf;_,/d6 is set to zero dt =0
and the three total-derivatives are updated recursively. In order to ensure the divergence of
the state and weight filers, it is important to tune the error covariance matrices. In our case,
the tuning variables are the measurement and process noise covariance RjasmH3,
for the state an@ty andQ, for the weight filters respectilye These parameters are initialised
at time stegk = 0 as,

Q, = diag,{1 x 107}, P¢y = diag,{10}, R, =10

(22)
Qp = diag,{1 x 1078},  Pj, =diag,{10}, Re =10
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516
517 wherediag{-} is a diagonal matrix of sizefor the state and for the weight EKB

518 respectively.
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519 Table 4. Summary of the Dual-EKF algorithm for battery model state and pararater estimation.
Initialisation:
A+ _ + 0+ 5+\T
8 =El6,), Py =E[(6-85)(6-65)] (23
x5 = El[x,], Pfo = E[(x — %) (x — 23]

Time-update equations for state filter:

% = f(&F 1 w1, 0%)

i S (24)
Per = Fr1Pe_1Fiq + Qx

Time-update equations for weight filter:

él: = é\13-—1

- _ p+
Py =Pyt Qo

(29

Measurement-update equations for state filter:

i = P HOT[HE P (T + Ry
& =i + L[y — h(%k, we 6;)] B

P = (I = LiHOPz (I = LEHD + LER (LD
Measurement-update equations for weight filter:

18 = pa ()" (e, () +
9,:' = él; + Li[dk - h(}?;,uk. é’:)] (27)

Py, = (1 = LAHO)P;, (1 — L9HE) + LRe (L)

_0f (gemp, w1, 07)

F _ ah(xk,uk, é\;)
k-1 — axk_l -

0 xp=%p
(28)

X
, k

S+
Xk—1=Xg—1

_ dh(flz' ukl 9)

Hy de

0=0j

520
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6.Results and Discussion

A statistical analysis of the test results was perforned. Fig. 5 presents the average root-mean-

squared-error (RMSE) voltage for each set of LiFe&@l LINMC cells for the self-designed

pulse test results. In order to mitigate the SOC dependency of the OCV functions, the true

SOC values obtained using the coulomb-counting technique were used to compute the RMSE
values for each model structure. It is evident that the Rint model has the largest error for both

lithium-ion cell chemistries. This is due to the absence of any transient states as to capture the

underlying dynamics of the electrochemical and thermodynamic processes.

The hysteresis models perform consistently better compared to the simple Rint model. This
improvement is attributed to the fact that there exists a hysteresis level for both 4 &ePO
LINMC cell chemistries, which needs considering for more accurate cell modelling.
Although similar results are achieved by the two hysteresis models (3 and 4), the model
structure proposed by Huria et al. [22] is comparatively more favourable in real-time
applications as it only has one identifiable parameter. This further reduces the computational
burden on the BMSThe Randles’ and the modified Randles’ models both have two
capacitors to include the OCV and the transients associated with the diffusion effects
respectively. However, a large error is induced due to the instabilities in the battery model

states.

Compared to other structures, the one- and two-RC models both demonstrate excellent
modelling capabilities. These two models have a separate empirical function as to describe
the cell’s OCV as a function of SOC. It is observable that by including the OCV hysteresis as

one of the EKF states, an even better modelling result in terms of RMSE is achievable.
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Fig. 5. Average modelling error for the self-designed pulse test for (a) LiFeR@nd (b) LINMC set of cells

ove the temperature range 5-45 °C

In order to study the SOC estimation and tracking capability of each model structure, the

results for the multi-cycle NEDC test over the SOC range of 5-90% were used. The dual-EKF

algorithm was initialised with the best-guess values for the model parameters and the SOC

state was set to its true val

ue. Fi

). 6 presents the estimated cell voltage for one NEDC cycle

at SOC = 64% for one of the LiFekRP@®st cells. The results obtained for the LINMC cells
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pose a similar behaviour. It can be noted that the two-RC model structure with hysteresis

included has the closest fit to the true cell voltage.

3.4
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S S 33: ;
() ) :
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©° =)
> > o4l
al Model 2 2 Model 4 {
3.8 4 4.2 4.4 3.8 4 4.2 4.4
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3F Model 6 ’ 1 3l Model 10
3.8 4 4.2 4.4 3.8 4 4.2 4.4
(c) Time (h) (d) Time (h)

Fig. 6. Estimated voltage from one NEDC cycle for (a) the Rint, (b) the Ongate Hysteresis, (c) the

modified Randles’ and (d) the Two-RC model with hysteresis for a LiFePQ cell at 25 °C

Fig. 7 illustrates the resulting model-based SOC estimation errors at five different

temperature settings. The average SOC errors for the three LiBeP&f cells are shown in

Fig. 7|(a) and those for the LINMC set of cells are shoyn in Fig. 7(b). The EKF SO@state

all models was correctly initialised to 90% and the filter and hysteresis states were set to zero.
It can be noted that at low operating temperatures, the induced SOC error is the largest. This

is due to the fact that at low temperatures, the inherent electrochemical reactions are
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569 significantly slower. Thus, it becomes more difficult to model the underlying cell dynamics,

570 leading to a larger modelling and SOC error.

571
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574 Fig. 7. Average SOC estimation error for the multi-cycle NEDC test for (a) LiFROs and (b) LINMC set

575 of cells over the temperature range 5-45 °C

576

577 The average SOC errors|in Fig. 7 show that, the one- and two-RC model structures pose a

578 considerably better performance for SOC estimation in real time for both cell chemistries.

579 This can be attributed to the enhanced characterisation of the charge-transfer and diffusion
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580 effects by the model states. Moreover, by including the hysteresis effects in the RC-network
581 model structures, a further improvement in the SOC estimate can be achieved.

582

583 Thus far, the SOC estimation results presented have been obtained using correct initialisation
584  for the EKF’s SOC state. In practice, the EKF would be initialised with a “best” estimate for

585 SOC, which is usually realised based on OCV measurements prior to a load connection
586 and/or using the cBk most recent history of usage. Either way results in an inaccurate a

587 priori estimate for the SOC state, which can be exacerbated if the measured OCYV lies within
588 the flat region of operation for the LiFel?€hemistry or the cell has not rested long enough.

589 Therefore, we may now extend our investigation by comparing the estimation results
590 attainable using incorrect EKF initialisation for the ten model structures.

5901

592 Using the measurements recorded for the pulsed-current test profl|le (seg Fig. 2(b)) at 25 °C,

593 SOC was estimated for all the LiFeP@nd LINMC test cells under three different EKF

594 initialisation scenarios. Firstly, the SOC state was correctly initialised to 100% and the results

595 are presented jn Table 5. As can be seen, all the model structures are able to achieve a SOC

596 estimate that is within the standard +5% error bound, given correct initialisation of the SOC
597 state. Secondly, the SOC state was incorrectly initialised to 80% instead of 100%. The results

598 are presented |n Tablg 6. It is evident that compared to other model structures, both RC

599 models with and without the hysteresis included achieved outstanding SOC estimation errors.
600 Finally, the SOC state was incorrectly set to 60% instead of 100%. Similar results are

601 obtainable as presented|in Table 7. It should be noted that the SOC error statistics for the

602 three SOC initialisation cases given here were computed by excluding the first hour of the
603 SOC data. This allowed for a reasonableveegence towards the “actual” SOC for all the

604 model structures.
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Table 5. SOC estimation results for the pulsed-current test profile at 25 °C with correct initialisation of

100%.
LiFePOa4 LINMC
Model A ] Standard ) Standard
verage Maximum o Average  Maximum o
deviation of deviation of
Error (%) Error (%) Error (%)  Error (%)
error error
1. 3.93 5.27 1.53e-4 5.24 6.80 1.46e-3
2. 2.13 9.63 1.94e-3 3.09 11.11 6.08e-3
3. 3.17 14.35 1.10e-3 2.80 9.78 7.77e-3
4. 2.73 8.93 3.22e-3 4.95 14.76 1.46e-2
5. 3.88 5.86 2.61e-3 6.47 16.32 3.78e-3
6. 3.03 6.02 7.21e-4 2.20 5.21 8.43e-3
7. 2.66 10.74 1.05e-3 2.15 7.98 5.95e-3
8. 2.65 10.64 1.06e-3 2.15 7.78 5.99e-3
9. 1.39 8.58 6.56e-4 2.89 9.69 6.55e-3
10. 1.44 6.78 1.35e-3 2.15 7.96 5.99e-3

Table 6. SOC estimation results for the pulsed-current test profile at 25 °C with incorrect initigsation of

80% when actual SOC =100%.

LiFePOa4 LINMC
Model ) Standard ) Standard
ode Average Maximum o Average  Maximum o
deviation of deviation of
Error (%) Error (%) Error (%)  Error (%)
error error
1. 13.19 14.82 5.6e-4 5.23 7.17 2.06e-3
2. 6.33 11.39 6.5e-3 3.09 10.91 4.2e-3
3. 3.40 14.65 1.6e-3 2.80 9.79 6.2e-3
4, 6.96 13.67 l.1e-2 4.95 16.16 1.0e-2
5. 3.62 6.47 3.5e-3 6.47 15.72 3.41e-3
6. 5.07 9.46 2.9e-4 2.20 6.79 2.70e-3
7. 3.03 11.18 8.5e-4 2.15 8.03 5.16e-3
8. 3.02 11.06 9.0e-4 2.14 8.01 5.16e-3
9. 2.28 11.03 6.8e-4 2.89 9.69 7.05e-3
10. 2.01 8.37 1.4e-3 2.15 8.01 5.11e-3
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Table 7. SOC estimation results for the pulsed-current test profile at 25 °C with incorrect initialisation of

60% when actual SOC = 100%.

LiFePO4 LINMC
Model Average Maximum Stiemfjard Average  Maximum Stf':m.dard
Error (%) Error (%) deviation of Error (%)  Error (%) deviation of
error error
1. 13.45 14.82 4.57e-3 10.00 10.78 1.05e-3
2. 19.58 35.74 6.24e-4 3.54 10.94 2.97e-3
3. 3.72 14.70 2.35e-3 3.27 9.80 5.28e-3
4, 16.20 31.63 2.86e-3 6.56 16.52 1.03e-2
5. 8.61 16.98 2.87e-3 6.60 15.98 3.15e-3
6. 11.42 21.17 4.93e-4 2.55 5.97 1.95e-3
7. 3.12 11.25 8.50e-4 2.33 8.07 4.55e-3
8. 3.12 11.12 8.50e-4 2.32 8.05 4.50e-3
9. 2.47 11.17 3.21e-4 2.78 9.69 7.35e-3
10. 2.34 8.80 5.69e-4 2.34 8.06 4.40e-3
As presented in Table|6 apd Table 7, the best SOC estimation results with incorrectly

initialised filter states are realised with the hysteresis model 3 and the one- aRd( two-

models 7 and 8 respectively. It is apparent that containing the transient effects in a cell model

not only improves the characterisation of a cell under load conditions in real time (sge Fig. 5),

but also results in a more robust SOC estimator. Furthermore, to reduce the uncertainties in

the SOC estimate, the hysteresis functions can possibly be merged with the RC models

resulting in a better SOC convergence.

Using the HPPC method [32he cell discharge resistance and power for every LikeR0O

LINMC test cell under a current pulse with duration of 18 seconds, over a SOC range of 10-

90% at five different operating temperatures is calculated. The averaged-results for the two

sets of chemistries are presented

variation of the discharge cell resistance calculated psir

in Fig. 8. Whereas

0 (8),

Fig. 8(a) and (b) demonstrate the

Fig. 8(c) and (d) display how
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the quantity of available discharge power for a fixed current pulse duration may vary with
respect to SOC and temperature for the LiFeB@ LINMC cells respectively. It can be
noted that at high temperature and SOC values, the cell resistance is smallest for both
chemistries, resulting in a larger quantity of power being available for discharge. Moreover,
at high SOC values, the corresponding OCYV is also larger, which further improves the cell’s

capability to source power, without violating the safe operating voltage thresholds.

As defined by (9) anF (p), the quality of the estimated instantaneous discharge or charge

power largely depends on the accuracy of the identified cell resistance under various
operating scenarios. Using the EKF-identified model parameters obtained for each test cell
under a single HPPC repetition at 25 °C and SOC = 90%, the Thevenin equivalent circuit
resistanceR.q, for every model structure presented in this paper is calculated. The obtained
model-based cell resistances for each set of chemistries are then averaged and compared to

the average of the charge and discharge resistances given by (8) for the same HPPC profile.

The results are presented in Taﬁle 8. It is evident that the two-RC model and the one-RC with

adaptive hysteresis modetovide the best estimates for the cell’s equivalent resistance,

which can be used to improve the quality of the model-based SOP estimate.
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Fig. 8. Comparison of (a) and (b) internal series resistances and (c) and (d)ozdated discharge power

using the HPPC method for the LiFePQ and LINMC cells as a function of SOC and temperature

Note that for a reliable SOP assessment, an accurate SOC estimate is also required, which in

turn reflects on the accuracy of the cell’s predicted OCV in|(5)|and (6). Thus, to this end, the

two-RC model structure can be nominated as an optimum selection with only two estimable
states and five identifiable parameters for superior cell dynamic modelling and joint SOC and
SOP estimation results. Alternatively, for cell chemistries with large inherent hysteresis

levels, the one-RC with hysteresis model is preferred.
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Table 8. Comparison of the EKF identified equivalent cell resistance with that calculated for the LiF&P

and LINMC cells for a single HPPC repetition at 25 °C and SOC = 90%.

LiFePOa4 LINMC

Model EKF Identified  Mean Error EKF Identified  Mean Error

Req (MQ) (MQ) Req (MQ) (mQ)
1. 355 8.1 26.5 7.8
2. 384 5.2 28.3 6.0
3. 45.6 2.0 46.4 12.1
4, 384 5.2 28.3 6.0
5. 37.9 57 29.4 4.9
6. 36.4 7.2 27.8 6.5
7. 48.2 4.6 29.5 4.8
8. 47.0 34 30.2 4.1
9. 46.0 2.4 327 1.6
10. 47.3 3.7 36.6 2.3

/.Conclusion

This paper has systematically reviewed the most common lumped-parameter equivalent
circuit models used in lithium-ion battery energy storage applications based on their number
of appearances in literature. The merits for comparison were modelling accuracy in terms of
average root-mean-squared-error for two sets of lithium-ion cells of different electrode
chemistries, namely the LiFeR@nd LINMC. The generality of each model structure was
examined over a temperature range @552C. The battery models’ parameters and states

were recursively estimated using a nonlinear system identification technique based on the
dual-EKF algorithm. Furthermore, the dynamic performance of each model structure for joint
estimation of SOC and SOP were discussed. The results suggested that the two-RC model
structure, with two estimable states and five identifiable parameters, is an optimum choice for

implementation of most battery energy and power management strategies. Alternatively, for
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cell chemistries with large inherent hysteresis levels, the one-RC model with hysteresis

included is preferred without an increase in complexity.
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