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 14 

Abstract – This paper presents a systematic review for the most commonly used lumped-15 

parameter equivalent circuit model structures in lithium-ion battery energy storage 16 

applications. These models include the Combined model, Rint model, two hysteresis models, 17 

Randles’ model, a modified Randles’ model and two resistor-capacitor (RC) network models 18 

with and without hysteresis included. Two variations of the lithium-ion cell chemistry, 19 

namely the lithium-ion iron phosphate (LiFePO4) and lithium nickel-manganese-cobalt oxide 20 

(LiNMC) are used for testing purposes. The model parameters and states are recursively 21 

estimated using a nonlinear system identification technique based on the dual Extended 22 

Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are 23 

verified using the results obtained from a self-designed pulsed-current test and an electric 24 

vehicle (EV) drive cycle based on the New European Drive Cycle (NEDC) profile over a 25 

range of operating temperatures. Analysis on the ten model structures are conducted with 26 

respect to state-of-charge (SOC) and state-of-power (SOP) estimation with erroneous initial 27 

conditions. Comparatively, both RC model structures provide the best dynamic performance, 28 
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with an outstanding SOC estimation accuracy. For those cell chemistries with large inherent 29 

hysteresis levels (e.g. LiFePO4), the RC model with only one time constant is combined with 30 

a dynamic hysteresis model to further enhance the performance of the SOC estimator. 31 

 32 

Keywords – battery modelling, persistent excitation, real-time estimation, state-of-charge, 33 

state-of-power  34 

  35 
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1. Introduction 36 

Due to the growing concerns over the emissions of greenhouse gasses, together with the 37 

volatile and ever-increasing cost of fossil fuels, a global shift towards hybrid electric vehicles 38 

(HEVs), plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) is 39 

apparent. The uptake of these electrified vehicles (EVs) within the transport system not only 40 

improves the air quality in dense urban areas, but can also provide a distributed energy 41 

storage solution for the implementation of the rapidly evolving smart grid [1]. However, 42 

without significant improvements on traction battery technologies and battery management 43 

systems (BMSs), the adoption of EVs by consumers is not feasible. 44 

 45 

A key function of the BMS is to assess and monitor the performance of the traction battery 46 

through accurate characterisation of various battery states. These states include the state-of-47 

charge (SOC – quantity of deliverable ampere-hour charge at any time), state-of-health (SOH 48 

– ability of a battery to provide its nominal capacity over its service lifetime), state-of-power 49 

(SOP – a quantity describing the battery’s power capability) and the state-of-function (SOF – 50 

a binary yes/no parameter indicating the battery’s ability to complete a task) [2–4]. 51 

 52 

Whilst direct measurement techniques such as coulomb-counting (integration of battery 53 

current over the charge or discharge period) are easy to implement for SOC estimation, they 54 

suffer largely from erroneous initialisation of SOC, drifts caused by current sensor noise and 55 

battery capacity variations due to temperature and SOH. Moreover, the direct measurement of 56 

the other battery states of interest (i.e. SOH, SOP and SOF) for real-time applications is 57 

somewhat impossible. Hence, battery models are often utilised within the BMS to indirectly 58 

infer and monitor the battery’s operation through the measurement of its terminal voltage, 59 
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current and surface temperature. In addition to accurate characterisation of the battery states, 60 

a candidate model is also desired to be computationally efficient. In other words, there should 61 

be a balance between model accuracy and complexity so that it can easily be embedded on a 62 

simple and inexpensive microprocessor unit (MCU), similar to those found in EV BMS 63 

hardware.  64 

 65 

The battery models presented in literature mainly fall into one of the following categories: 66 

1. Electrochemical or physics-based models, 67 

2. Empirical or data-based models, and 68 

3. Equivalent electrical-circuit based models. 69 

Electrochemical models (e.g. [5–9]) that aim to capture the dynamic behaviour of battery 70 

cells on a macroscopic scale often can achieve high accuracies. These models are defined by 71 

a high number of partial differential equations (PDEs) that must be solved simultaneously. 72 

The complexity of any electrochemical model is directly related to the number and order of 73 

the governing PDEs, which can lead to tremendous requirements for memory and 74 

computational power. Another issue that often precludes these models from real-time 75 

applications is that due to the large number of unknown variables, they are likely to run into 76 

over-fitting problems, increasing the uncertainty in the model’s output. Alternatively, these 77 

models can be represented by a lower number of ‘reduced order’ PDEs and by substituting 78 

boundary conditions and discretisation, real-time applications may become achievable (e.g. 79 

[10–12]). However, this comes at the expense of reduced SOC accuracy and yet the 80 

computational burden on the MCU remains questionable.  81 

 82 

Data-based models (e.g. [13–15]) often adopt empirically derived equations from 83 

experimental data fittings to infer relationships between various battery parameters such as 84 
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the terminal voltage, throughput current, surface temperature and SOC. Although these 85 

models benefit from simplicity and ease of implementation, they often suffer from 86 

inaccuracies of 5-20% mainly due to the highly non-linear behaviour of a battery under a 87 

dynamic load profile. In [16,17], the authors took a multiple-model approach to battery 88 

modelling using the local model networks (LMN). This technique interpolates between 89 

different local linear models to capture the battery’s non-linearity due to SOC variations, 90 

relaxation, hysteresis, temperature and the battery current effects. One downside of the LMN 91 

modelling approach is the excessive requirements for different experiments to train the model 92 

in first place. Generally, the data-based model parameters are not physically interpretable, 93 

which drops their popularity for in situ estimation and tracking of SOH and SOP. 94 

Furthermore, a large cell sample of the same chemistry is required to create a dataset for 95 

identification and training of data-based models.  96 

 97 

In [18–20], Plett used a series of models including the combined, simple, zero-state 98 

hysteresis, one-state hysteresis and a non-linear enhanced self-correcting (ESC) model to 99 

adaptively estimate the battery’s SOC. The latter model took into consideration the effects of 100 

the current direction, the SOC dependency of open-circuit-voltage (OCV) hysteresis and the 101 

relaxation or the charge-recovery effect to improve the model accuracy for dynamic load 102 

profiles. In an attempt to model the OCV hysteresis behaviour together with the charge 103 

recovery effects, Roscher et al. [21] developed an empirical model whose parameters 104 

required off-line identification. In [22], Huria et al. proposed a mathematical model to 105 

describe the dynamics of the large hysteresis levels that exist amongst high-power lithium-ion 106 

cells. Further on in the paper, this model structure will be referred to as the adaptive 107 

hysteresis model. 108 

 109 
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The lumped-parameter equivalent circuit models have gained a lot of interest amongst EV 110 

designers for real-time battery state estimation and power management purposes. This is due 111 

to their simplified mathematical and numerical approaches that minimise the necessity for 112 

computationally intensive procedures. Furthermore, there is often a strong physical relation 113 

between the constituent model parameters and the underlying electrochemical processes that 114 

occur within the battery cells. These models use passive electrical components, such as 115 

resistors and capacitors, to mimic the behavioural response of a battery. The simplest 116 

equivalent circuit model is in the form of an ideal voltage source in series with a resistor [23]. 117 

This model assumes that the demand current has no physical influence on the battery, i.e. no 118 

core temperature variations or undesired transition effects. More complicated equivalent 119 

circuit models include resistor-capacitor (RC) networks to characterise the battery transient 120 

responses with different time-constants associated with the diffusion and charge-transfer 121 

processes. Depending on the dynamics of the load profile and the required modelling 122 

accuracy, the number of the parallel RC branches may vary from one-RC (e.g. [24–27]) to 123 

two-RC (e.g. [28–30]). Higher order Models of up to fifth-order have also been used 124 

previously in literature (e.g. [31]) to improve the model’s impedance response under higher 125 

frequencies of operation.  126 

 127 

In literature, there are no studies that compare the accuracy and universality of the reported 128 

battery models for real-time estimation of SOC and SOP together. Therefore, this review 129 

paper aims to carry out a systematic study of a number of selected lumped-parameter battery 130 

models for two variations of the lithium-ion cell chemistry, namely the lithium-ion iron 131 

phosphate (LiFePO4) and the lithium nickel-manganese-cobalt oxide (LiNMC). The models 132 

of interest in this paper include the combined model, Rint model, One-state hysteresis model 133 

by Plett, Huria et al. hysteresis model, one- and two-RC models and one- and two-RC models 134 
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combined with the hysteresis model proposed by Huria et al [22]. These models were 135 

nominated based on the number of their appearances in the literature. The Kalman filter (KF) 136 

algorithm is then applied to simultaneously estimate and identify the model parameters in real 137 

time. Nevertheless, for those models that are non-linear in parameters (e.g. one- and two-RC 138 

models) the extended Kalman filter (EKF) algorithm is adopted.   139 

 140 

This paper is organised as follows. Section 2 describes the experimental configuration for 141 

gathering an accurate dataset for both training and verification purposes. Section 3 gives a 142 

quantitative definition for the SOC, SOP and SOF. Section 4 provides an overview of the 143 

battery model structures of interest in this work. Section 5 describes the real-time system 144 

identification technique based on the dual-EKF algorithm for both model parameter 145 

identification and battery state estimation. Section 6 compares the voltage prediction and 146 

SOC estimation capabilities of the nominated model structures. Furthermore, an optimum 147 

model structure will be put forward for real-time SOP and SOF estimation. And finally 148 

section 7 concludes this paper.  149 

2. Battery Dataset Generation  150 

2.1 Experimental Setup 151 

The experimental setup features a multi-channel Maccor battery tester, a built-in-house 152 

thermal chamber and a host computer for rig control and data storage. The voltage and 153 

current sensors incorporated into each channel of the Maccor system have accuracies of 154 

±0.02% (0 – 20 V full-scale) and ±0.05% (0 – 10 A full-scale) respectively. Since the current 155 

sensor noise is very small and the sampling period is reasonably high (ୱܶ = 100 ms), it is safe 156 

to assume that the integral of the throughput current over the discharge/charge period 157 
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represents a “true” measurement of the cell’s SOC. Therefore, we use the coulomb-counting 158 

technique to systematically compare the accuracy of the model-based SOC estimates.  159 

 160 

The generality of the candidate battery models are demonstrated using two variations of the 161 

lithium-ion cell chemistry, (i.e. LiFePO4 and LiNMC). The specifications for the test cells are 162 

presented in Table 1. Three cells of each type are used in this work. One reference cell is used 163 

for training purposes and the other two cells are used for model verification. 164 

 165 

Table 1. Specifications for the test cells at 25 °C. 166 

Parameter  LiFePO4 LiNMC  

Rated Capacity 

Nominal Voltage 

End-of-Charge Voltage 

End-of-Discharge Voltage 

Nominal Resistance 

3300 mAh 

3.2 V 

3.65 V 

2.0 V 

30 mȳ 

3600 mAh 

3.65 V 

4.2 V 

2.75 V 

20 mȳ 

 167 

In order to gather an accurate dataset, a test sequence as presented in Table 2, is designed and 168 

implemented. The test sequence starts with incubating the cells in the thermal chamber for 24 169 

hours. The chosen dwell time is long enough for the small cylindrical cells to reach a thermal 170 

equilibrium prior to any characterisation test. Five temperature settings of 5 °C, 15 °C, 25 °C, 171 

35 °C and 45 °C are chosen for comparison of the model performances across various 172 

operating conditions. Throughout the tests, the thermal distribution over the cells is assumed 173 

constant and the internal temperature variations due to high discharge/charge currents are 174 

neglected.  175 

 176 
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 177 

Table 2. Battery testing procedures. 178 

Step Procedure 

1. Set temperature 

2. Capacity test 

3. OCV vs. SOC test 

4. HPPC test 

5. Self-designed pulse test 

6. Multi-cycle NEDC test 

 179 

2.2 Capacity Test 180 

Initially, each cell undergoes a capacity measurement cycle, which consists of a 0.5 C 181 

constant-current discharge until the end-of-discharge voltage has been reached. This is to 182 

remove any residual charge left in the cell. After a 60 minute rest period, the cell is re-183 

charged using the standard constant-current constant-voltage (CCCV) scheme at the 184 

manufacturer’s recommend current and voltage levels. Following a 60 minute rest, the cell 185 

under test is discharged at a 0.5 C current level. The quantity of charge removed from the cell 186 

is recorded as the maximum discharge capacity at the set temperature, which will be used for 187 

SOC calculations. 188 

2.3 OCV-SOC Relationship 189 

In order to generate a function to describe the OCV-SOC relationship, the reference cells 190 

were applied with a pulsed-current and relaxation test. The test profile began with a full 191 

discharge at a constant current of 0.5 C until the lower voltage thresholds were reached. 192 

Then, the cells were re-charged to 100% SOC using the CCCV charging scheme. After a 193 

relaxation period of 60 minutes, the first OCV was recorded at SOC = 100%. Furthermore, 194 
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the cells were discharged in steps of 10% SOC at a current level of 0.5 C for both cell 195 

chemistries followed by 60 minute rest periods. This sequence was repeated until the cells 196 

were fully discharged. The OCV measurements during the charge half-cycle were also 197 

obtained using a similar procedure, where the cells were charged in steps of 10% SOC at a 198 

constant current of 0.5 C.  199 

 200 

Upon the completion of the pulsed-current test, the OCV values extracted for both the charge 201 

and discharge regimes were used to curve-fit an 8th order polynomial function to describe the 202 

average OCV-SOC relationship for both the LiFePO4 and LiNMC cells as, 203 

 204 

 ୓ܸେ ൌ ଼ܽSOC଼ ൅ ڮ ൅ ܽଵSOC ൅ ܽ଴ (1) 

 205 

The fitted OCV curves at various temperatures are presented in Fig. 1. As can be seen, during 206 

the operational SOC range of both battery chemistries (i.e. 20% ≤ SOC ≤ 80%), the OCV-207 

SOC relationship is almost independent of the operating temperature. This finding implies 208 

that for practical purposes, one can safely rely on only an OCV curve obtained at a 209 

reasonable temperature. However, to keep the modelling uncertainties at a minimum, separate 210 

functions are fitted in this work to represent the OCV-SOC relationship at each temperature 211 

setting. 212 
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 213 

Fig. 1. The average OCV-SOC relationship for (a) LiFePO4 and (b) LiNMC reference cells 214 

 215 

2.4 HPPC Test 216 

The Hybrid-Pulse-Power-Characterisation (HPPC) test is a standard procedure developed by 217 

the Partnership for New Generation Vehicles (PNGV) [32] used to determine the power and 218 

energy capability of a rechargeable battery under both discharge and regenerative charging 219 

scenarios. This particular test profile is used in this work to demonstrate the SOP variability 220 

as a function of SOC and operating temperature. It should be noted that the profile starts with 221 

a preamble discharge and re-charge step as to adjust the cell’s SOC to 100% prior to testing. 222 

Furthermore the HPPC pulses, as shown in Fig. 2(a), are applied over the SOC range of 10-223 
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90% in steps of 10% SOC. A discharge current pulse of 0.5 C is used for both cell 224 

chemistries to take the SOC to the next desired level and a 60 minute rest interval is allowed 225 

between the HPPC pulse repetitions. 226 

2.5 Validation Datasets  227 

The validation datasets in this work include the results from a self-designed pulsed-current 228 

test and a multi-cycle New European Drive Cycle (NEDC) test. The purpose of the self-229 

designed pulsed-current test, as shown in Fig. 2(b), is to dynamically excite the cell under test 230 

with variable current amplitudes and durations. Note that the self-designed test profile has a 231 

predominant discharge characteristic as to remove charge from the cell under test. The 232 

obtained dataset from this test will be used to compare the output accuracy of the model 233 

structures under review.  234 

 235 

The multi-cycle NEDC test profile is used to evaluate the adaptability of the battery models 236 

for real-time SOC estimation. The test profile starts by removing charge form the cell using a 237 

0.5 C current level for both cell chemistries. This step ensures a known initial SOC value of 238 

90% is achieved prior to applying the cell under test with 14 consecutive NEDC cycles. A 239 

single repetition of the NEDC cycle is illustrated in Fig. 2(c). Upon the completion of every 240 

NEDC cycle, a rest period of 15 minutes is allowed before the next cycle commences. 241 

Finally, a discharge current pulse of 0.5 C is applied as to fully discharge the cell.   242 

 243 
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244 

245 

 246 

Fig. 2.  Current profiles for a single repetition of the (a) HPPC, (b) self-designed pulsed-current and (c) 247 

multi-cycle NEDC test procedures 248 

 249 

3. State Definitions 250 

In this paper, SOC is defined as 251 
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 252 

 SOCሺݐሻ ൌ SOCሺͲሻ െ ௜ܳ୬ߟ න ݅ሺ߬ሻ ή ݀߬௧
଴  (2) 

 253 

where ߟ௜ is the cell’s Coulombic efficiency of the cell, ݅ሺݐሻ is the instantaneous current and 254 ܳ୬ ൌ ͵͸ͲͲ ൈ ݄ܣ  is the cell’s nominal ampere-hour (Ah) capacity. Conventionally, ߟ௜  is 255 

defined as the ratio of the quantity of charge that is injected into a cell during charging to that 256 

removed from the cell during discharging. 257 

 258 

௜ߟ  ൌ ܳୢ୧ୱୡ୦ୟ୰୥ୣሺAhሻܳୡ୦ୟ୰୥ୣሺAhሻ ൈ ͳͲͲΨǤ 
(3) 

   259 

In order to include SOC as an estimable state in the battery models’ state-space equations, the 260 

coulomb-counter equation given in (2) needs to be converted into discrete form. Thus, 261 

assuming a small sampling period (i.e. ௦ܶ ൌ ȟݐ ൑ 1 s) and using a rectangular approximation 262 

for SOCሺݐሻ yields, 263 

 264 

 SOC௞ାଵ ൌ SOC௞ െ ൬ߟ௜ ή ௦ܶܳ୬ ൰ ݅௞Ǥ 
(4) 

 265 

Various quantitative definitions for SOP and SOF exist in literature (e.g. [33–35]), which are 266 

all associated with the battery’s power capabilities. In this paper, we define SOP as the 267 

available source or sink power over a short period of ȟݐ. Using ܸ ୓େ ൌ ݂ሺSOCሻ as defined in 268 

(1), the instantaneous discharge or charge power at time step ݇ can be respectively calculated 269 

as,  270 

 271 
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 ܲୢ ୧ୱǡ௞ ൌ ୫ܸ୧୬൫ ୓ܸେǡ௞  െ ୫ܸ୧୬൯෠ܴୣ୯  
(5) 

 272 

 ୡܲ୦ǡ௞ ൌ ୫ܸୟ୶൫ ୫ܸୟ୶ െ ୓ܸେǡ௞൯෠ܴୣ୯  
(6) 

 273 

where ܸ ୫୧୬ and ܸ ୫ୟ୶ are the minimum and maximum threshold voltages recommended by 274 

the manufacturer for a safe operation and ෠ܴୣ୯ is an estimate for the cell’s series-equivalent 275 

resistance. To this end, we can define SOF in terms of available power as, 276 

 277 

 SOF ൌ ቊͳǡ  for ୡܲ୦ǡ௞ ൒ ୰ܲୣ୯ୡ୦  and ܲୢ ୧ୱǡ௞ ൒ ୰ܲୣ୯ୢ୧ୱ Ͳǡ for ୡܲ୦ǡ௞ ൏ ୰ܲୣ୯ୡ୦  and ܲୢ ୧ୱǡ௞ ൏ ୰ܲୣ୯ୢ୧ୱ  
(7) 

 278 

where  ܲ୰ୣ୯ୡ୦  and ܲ ୰ୣ୯ୢ୧ୱ are the required quantity of charge or discharge power respectively to 279 

complete a particular task. Note that the value of ෠ܴୣ୯ in (5) and (6) can be approximated by 280 

applying the Thevenin’s Theorem to an equivalent circuit model. Alternatively, the voltage 281 

and current waveforms obtained for a sequence of HPPC pulses at every SOC value can be 282 

used to calculate a value for the cell’s discharge or charge resistance as, 283 

  284 

 ܴୢ୧ୱ ൌ ଴ܸ െ ଵܸୢܫ ୧ୱ ǡ ܴୡ୦ ൌ ଷܸ െ ଶܸܫୡ୦ Ǥ 
(8) 

 285 

In (8),  ܸ ଴  and ܸ ଵ  are the cell voltages measured respectively at the start and end of a 286 

discharge current pulse, ୢܫ ୧ୱ , of duration ȟݐ  seconds. Similarly, ܸଶ  and ܸ ଷ  are the voltage 287 

measurements taken for a charge current pulse ܫୡ୦  of duration ȟݐ  seconds. The resulting 288 

resistances are analogous to the cell’s internal resistances and can reflect on the power 289 
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capability of a cell under operation. Consequently, any variations in the cell’s internal 290 

resistance as a function of SOC and temperature can affect the quality of the SOP estimate at 291 

any time.   292 

 293 

4. Lithium-ion Battery Models 294 

The candidate battery model structures for the purpose of this review study are summarised in 295 

Table 3. These models form the basis for real-time SOC, SOP and SOF estimation algorithms 296 

in most lithium-ion battery energy storage applications.  297 

 298 

Table 3. Candidate lithium-ion battery models. 299 

Model Description 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Combined model, (9) 

Rint model, (10) 

Huria et al. Hysteresis model, (11) 

Plett Hysteresis model, (14) 

Randles’ model, (15) 

Modified Randles’ model, (17) 

One-RC model, (18) 

Two-RC model, (18) 

One-RC model with Hysteresis, (18) + (11) 

Two-RC model with Hysteresis, (18) + (11) 

 300 

4.1 The Combined Model 301 

The combined model [19] is a very crude approximation of the battery’s dynamics. As the 302 

name suggests, this model structure is a combination of the Shepherd model [14], Unnewehr 303 

and Nasar universal model [36] and the Nernst model [37] given as, 304 
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 305 

 ௞ܸ ൌ ଴ܭ െ ଵSOC௞ܭ െ ଶSOC௞ܭ ൅ ଷܭ lnሺSOC௞ሻ ൅ ସܭ lnሺͳ െ SOC௞ሻ െ ݅௞ܴୱ 

    V୓େ ൌ ݂ሺSOCሻ (9) 

 306 

where ܸ ௞  is the battery’s terminal voltage and ݅௞  is the throughput current. The battery’s 307 

internal series resistance is described by ܴୱ and is a function of temperature and SOC. The 308 

constants ܭ଴, ܭଵ, ܭଶ, ܭଷ and ܭସ are used to describe the battery’s OCV dependency on SOC. 309 

This model benefits from being linear in parameters and thus simplifies the identification 310 

procedure.    311 

4.2 The Rint Model 312 

The internal resistance or Rint model is comprised of an ideal voltage source ୓ܸେ to represent 313 

the battery’s OCV as a function of SOC and a series resistor ܴୱ that describes the internal 314 

ohmic losses [38]. This model structure is also linear in parameters and is very “simple” to 315 

implement in real time. However, the model’s output equation expressed by (10) is only a 316 

crude estimate of the battery’s actual terminal voltage, which can result in large uncertainties 317 

in SOC and SOP estimates. 318 

 319 

 ௞ܸ ൌ V୓େǡ௞ െ ݅௞ܴୱǤ 
(10) 

  
 

4.3 The Hysteresis Models 320 

The OCV as a function of SOC for the two cell chemistries used in this paper are shown in 321 

Fig. 3. It is noted that the OCV obtained after a charge step (see Section 2.3) for both 322 
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LiFePO4 and LiNMC cells has a higher value than that obtained after a discharge step. In 323 

literature, this phenomenon is referred to as hysteresis. In [22], the authors have shown that 324 

for high-power LiFePO4 cells, the hysteresis level decreases with increasing rest period 325 

allowed immediately after a charge or discharge step. This can be attributed to the 326 

thermodynamic origins of the hysteresis effects [39], which requires for a long rest period for 327 

the cell to reach an equilibrium potential.  328 

 329 

The hysteresis levels obtained after a one-hour rest period for the two cell chemistries under 330 

study are presented in Fig. 3(b) and (d). It is apparent that the hysteresis level for the LiFePO4 331 

chemistry is considerably higher than that for the LiNMC chemistry. Moreover, within the 332 

useable SOC range of 20% to 80%, the OCV curve for the LiFePO4 chemistry is fairly flat. 333 

This implies that for those OCV-based SOC estimators, even a small error in the voltage 334 

measurement within this region can result in a large deviation from the actual SOC value. 335 

Thus, for a more reliable SOC estimation, a model structure of the cell’s hysteresis behaviour 336 

is of necessity. 337 

 338 

To overcome the effect of hysteresis, different modelling approaches have been reported in 339 

literature (e.g. [40]). For those battery chemistries that pose a relatively small hysteresis level 340 

(e.g. LiNMC), often a direct approach is adopted [19]. This technique can be achieved either 341 

by evaluating the arithmetic mean or minimising the global squared-error between the charge 342 

and discharge OCV points obtained separately at the same SOC. However, for those 343 

chemistries with larger hysteresis levels (e.g. LiFePO4), the direct methods would lead to 344 

large uncertainties in the SOC estimate. Therefore, more comprehensive models are required. 345 

 346 
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 347 

 348 

Fig. 3. Open circuit voltage and hysteresis level for LiFePO4 and LiNMC cell chemistries at 25 °C 349 

 350 

In [21], the authors develop an empirically-derived hysteresis model for LiFePO4 cells 351 

comprising of two parts; first part captures the dynamics of the OCV hysteresis as a function 352 

of  SOC and an identifiable hysteresis factor that determines the position of the OCV curve 353 

with respect to the charge and discharge OCV curves, and the second part considers the SOC-354 

dependent recovery effects (i.e. the time taken for the cell to reach a final equilibrium 355 

potential after a current interruption at a given SOC). This results in a comprehensive 356 

representation of the cell’s OCV during operation. However, due to the empirical nature of 357 

the model structure, a training dataset is required to identify the model parameters off-line.  358 

 359 
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For the purpose of this study, we put the focus on the hysteresis models presented in [19] and 360 

[22] whose parameters can possibly be identified recursively in real time, without the 361 

necessity for various training datasets. Another example of on-line OCV hysteresis treatment 362 

can be found in [41]. The first hysteresis model is developed based on an algorithm presented 363 

by Huria et al. [22] and is defined as, 364 

 365 

׏  ୓ܸେ ൌ d ୓ܸେdSOC ൌ ൞ d ୓ܸେǡୡ୦dSOC ൅ ݉൫ ୓ܸେǡୡ୦ െ ୓ܸେ൯ǡ for dSOCdݐ ൒ Ͳd ୓ܸେǡୢ୧ୱdSOC ൅ ݉൫ ୓ܸେǡୢ୧ୱ െ ୓ܸେ൯ǡ for dSOCdݐ ൏ ͲǤ (11) 

 366 

which determines the gradient of ୓ܸେ ൌ ݂ሺSOCሻ as a function of the rate-of-change of SOC 367 

and its distance away from the major hysteresis loop formed by the charge,୓ܸେǡୡ୦ , and 368 

discharge, ܸ୓େǡୢ୧ୱ, OCV curves. The dimensionless coefficient ݉ determines how fast ୓ܸେ 369 

transitions towards ܸ୓େǡୡ୦  or ୓ܸେǡୢ୧ୱ  after a preceding charge or discharge current pulse 370 

respectively. In order to compare the performance of the two hysteresis models discussed in 371 

this section, algorithm (11) is combined with the Rint model (10) to give,  372 

 373 

 ௞ܸ ൌ ൫V୓େǡ௞ ൅ ׏ ୓ܸେǡ୩൯ െ ݅௞ܴୱ (12) 

 374 

where ׏ ୓ܸେǡ୩ is the ܸ ୓େ derivative attained at time step ݇. 375 

 376 

In [19] Plett developed a model to describe the hysteresis effects using a differential equation 377 

in both time and SOC such as, 378 

  379 

 d݄ሺSOCǡ ሻdSOCݐ ൌ sgn൫SOCሶߛ ൯ ቀܪ൫SOCǡ SOCሶ ൯ െ ݄ሺSOCǡ  ሻቁ (13)ݐ
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 380 

where ݄ ሺSOCǡ ൫SOCǡܪ ,ሻ is a function to describe the hysteresis voltageݐ SOCሶ ൯ defines the 381 

maximum positive and negative hysteresis as a function of SOC and rate-of-change of SOC,  382 ߛ is a tuneable factor to control the rate-of-decay of hysteresis towards the major loop and 383 SOCሶ ൌ dSOC dݐΤ  is the rate-of-change of SOC. Now, using the definitions given in (1) and 384 

(2) and rearranging (13) as a differential equation in time only, the cell model’s state-space 385 

equations become, 386 

 387 

 ݄௞ାଵ ൌ exp ൬െ ฬߟ௜݅௞ߛ ୱܶܳ୬ ฬ൰ ݄௞ ൅ ൬ͳ െ exp ൬െ ฬߟ௜݅௞ߛ ୱܶܳ୬ ฬ൰൰ ሺSOCǡܪ SOCሶ ሻ 

௞ܸ ൌ V୓େǡ௞ െ ݅௞ܴୱ ൅ ݄௞ Ǥ (14) 

 388 

4.4 The Randles’ Model 389 

The Randles’ model was originally developed for lead-acid batteries [42–44]. However, in 390 

recent years their utilisation in lithium-ion battery modelling has been sighted [45]. Fig. 4(a) 391 

shows the Randles’ equivalent circuit diagram for a typical lithium-ion cell, where ܴୱ is the 392 

series resistance, ܴୢ  models the cell’s no-load self-discharge (typically ~͹Ͳk ȳ  ୠ 393ܥ ,(

represents the bulk charge storage of the cell, ܥୱ represents the electrodes’ double-layer effect 394 

and ܴ ୲ is the charge-transfer resistance. The voltage େܸୠ across ܥୠ is analogous to the cell’s 395 

OCV and the model’s output response can be expressed as, 396 

 397 

 ቎Vେୠ௞ାଵ Vେୱ௞ାଵ቏ ൌ ൥݁ ି ౩்ோౚ஼ౘ ͲͲ ݁ ି ౩்ோ౪஼౩൩ ቎Vେୠ௞ Vେୱ௞ ቏ ൅ ێێۏ
ୢܴۍێ ቆͳ െ ݁ ି ౩்ோౚ஼ౘቇ Ͳ

Ͳ ܴ୲ ቆͳ െ ݁ ି ౩்ோ౪஼౩ቇۑۑے
ېۑ ݅௞ ௞ܸ ൌ Vେୠǡ௞ െ Vେୱǡ௞ െ ݅௞ܴୱǤ

 
(15) 
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 398 

Gould et al. [28] developed a new battery model through the star-delta transformation of the 399 

original Randles’ circuit. This particular model, as shown in Fig. 4(b), consists of the same 400 

number of parameters as the Randles’ model with a slight modification in the way the 401 

transient states are represented. In [28], it is shown that when applied with real-time state 402 

observers such as the Utkin and Kalman Filter, the parallel reconfiguration of the Randles’ 403 

model states can yield a better SOC estimate. Thus, the adaptability of this model structure 404 

for online SOC and SOP estimation will be evaluated in this study. Consequently, Mapping 405 

the Randles’ model parameters as per [28] and solving for the output equation in discrete 406 

form yields, 407 

 408 

୬ܥ  ൌ ୠଶܥ ሺܥୠ ൅ ୱሻΤܥ ǡ ୮ܥ ൌ ୱܥ୮ܥ ሺܥୠ ൅ ୱሻǡΤܥ  ܴ୬ ൌ ܴ୲ሺܥୠ ൅ ୱሻଶܥ ୠଶΤܥ ǡ ܴ୮ ൌ ܴୢ ൅ ܴ୲ (16) 

 409 

 ቎Vେ୮௞ାଵ Vେ୬௞ାଵ቏ ൌ ێێۏ
ۍێ ݁ି ౩்ఛ౦ ܴ୘ܴ୬ ቆͳ െ ݁ି ౩்ఛ౦ ቇ
ቆͳ െ ݁ି ౩்ఛ౤ ቇ ݁ି ౩்ఛ౤ ۑۑے

ېۑ ቎Vେ୮௞ Vେ୬௞቏ ൅ ቎ܴ୘ ቆ݁ି ౩்ఛ౦ െ ͳቇ ͲͲ Ͳ቏ ݅௞ ௞ܸ ൌ େܸ୮ǡ௞ െ ݅௞ܴୱ
 (17) 

 410 

where ܴ ୘ ൌ ܴ୮ܴ୬ ൫ܴ୮ ൅ ܴ୬൯Τ , ߬ ୬ ൌ ܴ୬ܥ୬ and ߬ ୮ ൌ ܴ୘ܥ୮. 411 

4.5 The RC Model 412 

The resistor-capacitor (RC) or the Thevenin equivalent circuit model is a modification of the 413 

Rint model, as shown in Fig. 4(c). This model is comprised of an ideal voltage source to 414 

represent the cell’s OCV at partial equilibrium as a function of SOC, a series ohmic 415 
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resistance ܴୱ and ݊  number of series-connected RC branches. Depending on the dynamics of 416 

the intended application, the number of the RC branches may vary. For most power 417 

applications, one RC branch is adequate (e.g. [46–48]) to describe the long time-constant 418 

reactions associated with the diffusion of active species into the electrolyte.  419 

 420 

Considering applications with faster transients, the short time-constant reactions associated 421 

with the charge-transfer and the double-layer effect of the electrodes can be modelled with 422 

additional RC branches (e.g. [49–52]). However, there is a trade-off between accuracy and 423 

complexity, which must be considered for a particular application. In this paper, the 424 

performance of one-RC and two-RC models are reviewed analytically. Without loss of 425 

generality, the electrical behaviour of an nth order RC model in its discrete form can be 426 

expressed as,  427 

 428 

 ቎ܸୖ େଵೖశభୖܸڭ େ௡ೖశభ቏ ൌ ൦݁ ି ౩்ோభ஼భ ڮ Ͳڭ ڰ Ͳڭ ڮ ݁ ି ౩்ோ೙஼೙
൪ ቎ܸୖ େଵೖୖܸڭ େ௡ೖ቏ ൅ ێێۏ

ଵܴۍێێ ቆͳ െ ݁ ି ౩்ோభ஼భቇ ڮ Ͳڭ ڰ Ͳڭ ڮ ܴ௡ ቆͳ െ ݁ ି ౩்ோ೙஼೙ቇۑۑے
ېۑۑ ݅௞ 

௞ܸ ൌ ୓ܸେሺSOC௞ሻ െ ݅௞ܴୱ െ ܸୖ େଵ െ ڮ െ ܸୖ େ௡Ǥ 
(18) 

 429 

 430 
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 431 

 432 

 433 

Fig. 4. The equivalent ci4rcuit diagrams for (a) Randles', (b) modified Randles' and (c) n-RC model 434 
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5. Online Non-linear System Identification 436 

The Kalman filter is a recursive set of equations that allow for state estimation and parameter 437 

identification of linear time-invariant systems [53]. On the other hand, the EKF is an ad hoc 438 

solution for the identification of non-linear time-varying systems such that, the non-linear 439 

model describing the underlying dynamics of the system is linearised about the filter’s 440 

current estimated trajectory. For simultaneous estimation of both model states and 441 

parameters, two separate are often incorporated in a parallel configuration. This method is 442 

referred to in literature as the dual-EKF algorithm [54–57].  443 

 444 

Essentially, the dual-EKF combines the state and weight filters, where the model states, 445 

including SOC, are estimated by the state filter and the model parameters are identified 446 

recursively by the weight filter. Due to its robustness, the Kalman filter algorithm is often 447 

utilised in the battery energy and/or power management systems to overcome a wide range of 448 

problems (e.g. [58–61]). Therefore, this popular system identification technique is applied to 449 

the candidate battery model structures given in Table 3.  450 

5.1 Dual-EKF System Identification  451 

With the assumption that the cell terminal current ݅௞ and voltage ܸ௞ are the only measurable 452 

quantities, the EKF state filter can be designed such that,    453 

 454 

௞ାଵݔ  ൌ ݂ሺݔ௞ǡ ௞ǡݑ ௞ሻߠ ൅  ௞ݓ
௞ݕ  ൌ ݄ሺݔ௞ǡ ௞ݑ ǡ ௞ሻߠ ൅  ௞ݒ
௞ ̱ ܰሺͲǡݓ  ܳ௫ሻ 
௞ݒ   ̱ ܰሺͲǡ ܴ௫ሻ 

(19) 

 455 
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where ݔ௞ א Թ௡ is a vector containing the model states to be predicted in a minimum variance 456 

sense, ߠ௞ א Թ௤   contains the time-varying model parameters, ݑ௞ א Թ௣   is the exogenous 457 

model input, ݕ௞ א Թ௠  is the output and ݓ௞ א Թ௡  and ݒ௞ א Թ௠  are the zero-mean process 458 

and measurement noises of covariance ܳ௞௫ and ܴ ௞௫ respectively. The non-linear function ݂ሺήǡήǡή459 ሻ relates the states estimated at discrete time ݇ െ ͳ to the states at the current time step ݇ and 460 ݄ሺήǡήǡήሻ  maps the updated states to the measurements at time step ݇ . Assuming that the 461 

parameters vary slowly over time, the weight EKF can be designed to adaptively provide an 462 

estimate ߠ෠ of the true model parameters. Thus, the state-space model for the weight filter is 463 

given as, 464 

    465 

௞ାଵߠ  ൌ ௞ߠ ൅ ௞ ݀௞ݎ ൌ ݄ሺݔ௞ǡ ௞ǡݑ ௞ሻߠ ൅ ݁௞ ݎ௞ ̱ ܰሺͲǡ ܳఏሻ ݁௞ ̱ ܰሺͲǡ ܴఏሻ 

(20) 

 466 

where the “dynamics” of changes in ߠ෠௞ are attributed to a small “imaginary” white noise ݎ௞ Թ௣ of covariance ܳ௞ఏ that evolves the parameters over time. The output equation ݀௞ 467א א Թ௠ is 468 

given as a measurable function of ߠ෠௞ and a white noise ݁௞ א Թ௠ of covariance ܴ௞ఏ to account 469 

for the sensor noise and modelling uncertainties.  470 

 471 

Due to the time-variability of the model parameters, it is imperative that the cell data 472 

collected using the current profiles presented in section 2 convey continual information on 473 

the parameters to be estimated. This condition is referred to in the system identification 474 

literature as the “persistence of excitation” (PE) [62]. In many real-time battery state 475 

estimation problems, the load-current profile may not fully satisfy the PE criterion. For those 476 
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observer-based SOC estimators such as the extended Luenberger observer, sliding mode or 477 

adaptive observers, if the PE condition is not sufficiently satisfied, the gains tend to approach 478 

infinity and divergence occurs [62]. Nevertheless, the EKF algorithm seems to operate well 479 

under such conditions without any divergence (e.g. [63–66]). This is due to the presence of 480 

the persistently exciting process and measurement noise, which are assumed to be white 481 

colour for the dual-EKF estimator presented here. Note that white noise has a continuous 482 

spectrum over the whole frequency range and thus is persistently exciting for any finite order 483 

[67,68].  484 

 485 

For brevity, a summary of the dual-EKF algorithm is presented in Table 4. Note that the 486 

algorithm is initialised by assuming a priori knowledge of the model states and parameters 487 

are available. However, in practice the initial system information are unknown. Thus, the 488 

states and the parameters are set to their best guess values at ݇ ൌ Ͳ so that ߠ෠଴ା ൌ ො଴ାݔ ଴ሿ and 489ߠሾܧ ൌ ଴ሿݔሾܧ . The estimation error covariance matrices are also initialised as ఏܲǡ଴ା ൌ490 ܧ ቂ൫ߠ െ ߠ෠଴ା൯൫ߠ െ ܲ ෠଴ା൯்ቃ andߠ ௫ǡ଴ା ൌ ݔሾሺܧ െ ݔො଴ାሻሺݔ െ  ො଴ାሻ்ሿ.  491ݔ

 492 

Each time step, the algorithm first updates the state and parameter estimates ݔො௞ି  and ߠ෠௞ି  and 493 

their error covariance ܲ௫෤ǡ௞ି  and ܲ ఏ෩ǡ௞ି  respectively, by propagating them forward in time. Note 494 

that for the parameter time-update equation (25), the new parameter estimate ߠ෠௞ି  is equal to 495 

the previous estimate ߠ෠௞ିଵା  with an increase in its uncertainty due to the presence of the white 496 

process noise ݎ௞. After a measurement has been taken at time step ݇, both filters take this 497 

measurement into consideration to update the state and parameter estimates ݔො௞ା and ߠ෠௞ା their 498 

corresponding uncertainties as ௫ܲ෤ǡ௞ା  and ܲ ఏ෩ǡ௞ା  respectively. In (26) and (27), the measurement-499 
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update error covariance matrices ௫ܲ෤ǡ௞ା  and ܲ ఏ෩ǡ௞ା  are given in their Joseph forms to ensure a 500 

numerically robust algorithm.  501 

 502 

It is noted that for the weight filter’s measurement-update equations given in (27), the total-503 

differential ܪ௞ఏ of the model output equation ݄ሺήǡήǡήሻ with respect to parameters ߠ is required. 504 

Therefore, by decomposing the total-derivative into partial-derivatives, ܪ௞ఏ  is computed 505 

recursively as the following set of equations, 506 

 507 

௞ఏܪ  ൌ d݄ሺݔො௞ି ǡ ௞ݑ ǡ ߠሻdߠ ቤఏୀఏ෡ೖషd݄ሺݔො௞ି ǡ ௞ǡݑ ߠሻdߠ ൌ μ݄ሺݔො௞ି ǡ ௞ݑ ǡ ߠሻμߠ ൅ μ݄ሺݔො௞ି ǡ ௞ݑ ǡ ො௞ିݔሻμߠ ή dݔො௞ିdߠdݔො௞ିdߠ ൌ ߲݂ሺݔො௞ିଵା ǡ ௞ିଵǡݑ ߠሻ߲ߠ ൅ ߲݂ሺݔො௞ିଵା ǡ ௞ିଵǡݑ ො௞ିଵାݔሻ߲ߠ ή dݔො௞ିଵାdߠdݔො௞ିଵାdߠ ൌ dݔො௞ିଵdିߠ െ ௞ିଵ௫ܮ d݄ሺݔො௞ିଵି ǡ ௞ିଵǡݑ ߠሻdߠ Ǥ ۙۖۖ
ۖۖۖ
ۘۖ
ۖۖۖۖ
ۗ

 (21) 

 508 

Since ܮ௞ିଵ௫  is weakly related to the parameter estimates ߠ, it can be safely neglected in (21) to 509 

improve the efficiency of the weight filter. Furthermore,  dݔො௞ିଵା Ȁdߠ is set to zero at ݇ ൌ Ͳ 510 

and the three total-derivatives are updated recursively. In order to ensure the divergence of 511 

the state and weight filers, it is important to tune the error covariance matrices. In our case, 512 

the tuning variables are the measurement and process noise covariance matrices ܴ௫ and ܳ ௫ 513 

for the state and ܴఏ and ܳ ఏ for the weight filters respectively. These parameters are initialised 514 

at time step ݇ ൌ Ͳ as, 515 

 ܳ௫ ൌ diag௣ሼͳ ൈ ͳͲି଺ሽǡ ௫ܲǡ଴ା ൌ diag௣ሼͳͲሽǡ ܴ௫ ൌ ͳͲ ܳఏ ൌ diag௤ሼͳ ൈ ͳͲି଼ሽǡ ఏܲǡ଴ା ൌ diag௤ሼͳͲሽǡ ܴఏ ൌ ͳͲ 
(22) 
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 516 

where diagሼήሽ is a diagonal matrix of size ݌ for the state and ݍ for the weight EKFs 517 

respectively.  518 
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Table 4. Summary of the Dual-EKF algorithm for battery model state and parameter estimation.  519 

Initialisation:  

෠଴ାߠ ൌ ଴ሿǡߠሾܧ ఏܲǡ଴ା ൌ ܧ ቂ൫ߠ െ ߠ෠଴ା൯൫ߠ െ ො଴ାݔ ෠଴ା൯்ቃߠ ൌ ଴ሿǡݔሾܧ ௫ܲǡ଴ା ൌ ݔሾሺܧ െ ݔො଴ାሻሺݔ െ  ො଴ାሻ்ሿ (23)ݔ

 

Time-update equations for state filter:  

ො௞ିݔ ൌ ݂൫ݔො௞ିଵା ǡ ௞ିଵǡݑ ෠௞ିߠ ൯   ௫ܲ෤ǡ௞ି ൌ ௞ିଵܨ ௫ܲ෤ǡ௞ିଵା ௞ିଵ்ܨ ൅ ܳ௫ 
 

(24) 

 

Time-update equations for weight filter:  

෠௞ିߠ ൌ ෠௞ିଵାߠ  

ఏܲ෩ǡ௞ି ൌ ఏܲ෩ǡ௞ିଵା ൅ ܳఏ 
(25) 

 

Measurement-update equations for state filter: 

௞௫ܮ ൌ ௫ܲ෤ǡ௞ି ሺܪ௞௫ሻ்ൣܪ௞௫ ௫ܲ෤ǡ௞ି ሺܪ௞௫ሻ் ൅ ܴ௫൧ିଵ
ො௞ାݔ  ൌ ො௞ିݔ ൅ ௞௫ܮ ௞ݕൣ െ ݄൫ݔො௞ି ǡ ௞ǡݑ ෠௞ିߠ ൯൧ 

௫ܲ෤ǡ௞ା ൌ ሺܫ െ ௞௫ܮ ௞௫ሻܪ ௫ܲ෤ǡ௞ି ሺܫ െ ௞௫ܮ ௞௫ሻ்ܪ ൅ ௞௫ܮ ܴ௫ሺܮ௞௫ ሻ் 

(26) 

 

Measurement-update equations for weight filter: 

௞ఏܮ ൌ ఏܲ෩ǡ௞ି ൫ܪ௞ఏ൯் ቂܪ௞ఏ ఏܲ෩ǡ௞ି ൫ܪ௞ఏ൯் ൅ ܴఏቃିଵ
෠௞ାߠ  ൌ ෠௞ିߠ ൅ ௞ఏܮ ൣ݀௞ െ ݄൫ݔො௞ି ǡ ௞ǡݑ ෠௞ିߠ ൯൧ 

ఏܲ෩ǡ௞ା ൌ ൫ܫ െ ௞ఏܮ ௞ఏ൯ܪ ఏܲ෩ǡ௞ି ൫ܫ െ ௞ఏܮ ௞ఏ൯்ܪ ൅ ௞ఏܮ ܴఏ൫ܮ௞ఏ ൯்
 

(27) 

 

where 

௞ିଵܨ ൌ ߲݂൫ݔ௞ିଵǡ ௞ିଵǡݑ ෠௞ିߠ ൯߲ݔ௞ିଵ ቤ௫ೖషభୀ௫ොೖషభశ ǡ ௞௫ܪ ൌ ߲݄൫ݔ௞ ǡ ௞ǡݑ ෠௞ିߠ ൯߲ݔ௞ ቤ௫ೖୀ௫ොೖష ǡ 
௞ఏܪ ൌ d݄ሺݔො௞ି ǡ ௞ǡݑ ߠሻdߠ ቤఏୀఏ෡ೖష Ǥ 
 

(28) 

 

  520 
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6. Results and Discussion 521 

A statistical analysis of the test results was performed. Fig. 5 presents the average root-mean-522 

squared-error (RMSE) voltage for each set of LiFePO4 and LiNMC cells for the self-designed 523 

pulse test results. In order to mitigate the SOC dependency of the OCV functions, the true 524 

SOC values obtained using the coulomb-counting technique were used to compute the RMSE 525 

values for each model structure. It is evident that the Rint model has the largest error for both 526 

lithium-ion cell chemistries. This is due to the absence of any transient states as to capture the 527 

underlying dynamics of the electrochemical and thermodynamic processes.  528 

 529 

The hysteresis models perform consistently better compared to the simple Rint model. This 530 

improvement is attributed to the fact that there exists a hysteresis level for both LiFePO4 and 531 

LiNMC cell chemistries, which needs considering for more accurate cell modelling. 532 

Although similar results are achieved by the two hysteresis models (3 and 4), the model 533 

structure proposed by Huria et al. [22] is comparatively more favourable in real-time 534 

applications as it only has one identifiable parameter. This further reduces the computational 535 

burden on the BMS. The Randles’ and the modified Randles’ models both have two 536 

capacitors to include the OCV and the transients associated with the diffusion effects 537 

respectively. However, a large error is induced due to the instabilities in the battery model 538 

states.  539 

 540 

Compared to other structures, the one- and two-RC models both demonstrate excellent 541 

modelling capabilities. These two models have a separate empirical function as to describe 542 

the cell’s OCV as a function of SOC. It is observable that by including the OCV hysteresis as 543 

one of the EKF states, an even better modelling result in terms of RMSE is achievable. 544 
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 545 

 546 

Fig. 5. Average modelling error for the self-designed pulse test for (a) LiFePO4 and (b) LiNMC set of cells 547 

over the temperature range 5-45 °C 548 

 549 

In order to study the SOC estimation and tracking capability of each model structure, the 550 

results for the multi-cycle NEDC test over the SOC range of 5-90% were used. The dual-EKF 551 

algorithm was initialised with the best-guess values for the model parameters and the SOC 552 

state was set to its true value. Fig. 6 presents the estimated cell voltage for one NEDC cycle 553 

at SOC = 64% for one of the LiFePO4 test cells. The results obtained for the LiNMC cells 554 
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pose a similar behaviour. It can be noted that the two-RC model structure with hysteresis 555 

included has the closest fit to the true cell voltage.   556 

 557 

558 

 559 

Fig. 6. Estimated voltage from one NEDC cycle for (a) the Rint, (b) the One-state Hysteresis, (c) the 560 

modified Randles’ and (d) the Two-RC model with hysteresis for a LiFePO4 cell at 25 °C 561 

 562 

Fig. 7 illustrates the resulting model-based SOC estimation errors at five different 563 

temperature settings. The average SOC errors for the three LiFePO4 set of cells are shown in 564 

Fig. 7(a) and those for the LiNMC set of cells are shown in Fig. 7(b). The EKF SOC state for 565 

all models was correctly initialised to 90% and the filter and hysteresis states were set to zero. 566 

It can be noted that at low operating temperatures, the induced SOC error is the largest. This 567 

is due to the fact that at low temperatures, the inherent electrochemical reactions are 568 
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significantly slower. Thus, it becomes more difficult to model the underlying cell dynamics, 569 

leading to a larger modelling and SOC error.  570 

 571 

572 

 573 

Fig. 7. Average SOC estimation error for the multi-cycle NEDC test for (a) LiFePO4 and (b) LiNMC set 574 

of cells over the temperature range 5-45 °C 575 

 576 

The average SOC errors in Fig. 7 show that, the one- and two-RC model structures pose a 577 

considerably better performance for SOC estimation in real time for both cell chemistries. 578 

This can be attributed to the enhanced characterisation of the charge-transfer and diffusion 579 
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effects by the model states. Moreover, by including the hysteresis effects in the RC-network 580 

model structures, a further improvement in the SOC estimate can be achieved. 581 

 582 

Thus far, the SOC estimation results presented have been obtained using correct initialisation 583 

for the EKF’s SOC state. In practice, the EKF would be initialised with a “best” estimate for 584 

SOC, which is usually realised based on OCV measurements prior to a load connection 585 

and/or using the cell’s most recent history of usage. Either way results in an inaccurate a 586 

priori estimate for the SOC state, which can be exacerbated if the measured OCV lies within 587 

the flat region of operation for the LiFePO4 chemistry or the cell has not rested long enough. 588 

Therefore, we may now extend our investigation by comparing the estimation results 589 

attainable using incorrect EKF initialisation for the ten model structures.  590 

 591 

Using the measurements recorded for the pulsed-current test profile (see Fig. 2(b)) at 25 °C, 592 

SOC was estimated for all the LiFePO4 and LiNMC test cells under three different EKF 593 

initialisation scenarios. Firstly, the SOC state was correctly initialised to 100% and the results 594 

are presented in Table 5. As can be seen, all the model structures are able to achieve a SOC 595 

estimate that is within the standard ±5% error bound, given correct initialisation of the SOC 596 

state. Secondly, the SOC state was incorrectly initialised to 80% instead of 100%. The results 597 

are presented in Table 6. It is evident that compared to other model structures, both RC 598 

models with and without the hysteresis included achieved outstanding SOC estimation errors. 599 

Finally, the SOC state was incorrectly set to 60% instead of 100%. Similar results are 600 

obtainable as presented in Table 7. It should be noted that the SOC error statistics for the 601 

three SOC initialisation cases given here were computed by excluding the first hour of the 602 

SOC data. This allowed for a reasonable convergence towards the “actual” SOC for all the 603 

model structures. 604 
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Table 5. SOC estimation results for the pulsed-current test profile at 25 °C with correct initialisation of 605 

100%. 606 

Model 

LiFePO4 LiNMC 

Average 

Error (%) 

Maximum 

Error (%) 

Standard 

deviation of 

error 

Average 

Error (%) 

Maximum 

Error (%) 

Standard 

deviation of 

error 

1. 3.93 5.27 1.53e-4 5.24 6.80 1.46e-3 

2. 2.13 9.63 1.94e-3 3.09 11.11 6.08e-3 

3. 3.17 14.35 1.10e-3 2.80 9.78 7.77e-3 

4. 2.73 8.93 3.22e-3 4.95 14.76 1.46e-2 

5. 3.88 5.86 2.61e-3 6.47 16.32 3.78e-3 

6. 3.03 6.02 7.21e-4 2.20 5.21 8.43e-3 

7. 2.66 10.74 1.05e-3 2.15 7.98 5.95e-3 

8. 2.65 10.64 1.06e-3 2.15 7.78 5.99e-3 

9. 1.39 8.58 6.56e-4 2.89 9.69 6.55e-3 

10. 1.44 6.78 1.35e-3 2.15 7.96 5.99e-3 

 607 

 608 

Table 6. SOC estimation results for the pulsed-current test profile at 25 °C with incorrect initialisation of 609 

80% when actual SOC =  100%. 610 

Model 

LiFePO4 LiNMC 

Average 

Error (%) 

Maximum 

Error (%) 

Standard 

deviation of 

error 

Average 

Error (%) 

Maximum 

Error (%) 

Standard 

deviation of 

error 

1. 13.19 14.82 5.6e-4 5.23 7.17 2.06e-3 

2. 6.33 11.39 6.5e-3 3.09 10.91 4.2e-3 

3. 3.40 14.65 1.6e-3 2.80 9.79 6.2e-3 

4. 6.96 13.67 1.1e-2 4.95 16.16 1.0e-2 

5. 3.62 6.47 3.5e-3 6.47 15.72 3.41e-3 

6. 5.07 9.46 2.9e-4 2.20 6.79 2.70e-3 

7. 3.03 11.18 8.5e-4 2.15 8.03 5.16e-3 

8. 3.02 11.06 9.0e-4 2.14 8.01 5.16e-3 

9. 2.28 11.03 6.8e-4 2.89 9.69 7.05e-3 

10. 2.01 8.37 1.4e-3 2.15 8.01 5.11e-3 

 611 
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Table 7. SOC estimation results for the pulsed-current test profile at 25 °C with incorrect initialisation of 612 

60% when actual SOC =  100%. 613 

Model 

LiFePO4 LiNMC 

Average 

Error (%) 

Maximum 

Error (%) 

Standard 

deviation of 

error 

Average 

Error (%) 

Maximum 

Error (%) 

Standard 

deviation of 

error 

1. 13.45 14.82 4.57e-3 10.00 10.78 1.05e-3 

2. 19.58 35.74 6.24e-4 3.54 10.94 2.97e-3 

3. 3.72 14.70 2.35e-3 3.27 9.80 5.28e-3 

4. 16.20 31.63 2.86e-3 6.56 16.52 1.03e-2 

5. 8.61 16.98 2.87e-3 6.60 15.98 3.15e-3 

6. 11.42 21.17 4.93e-4 2.55 5.97 1.95e-3 

7. 3.12 11.25 8.50e-4 2.33 8.07 4.55e-3 

8. 3.12 11.12 8.50e-4 2.32 8.05 4.50e-3 

9. 2.47 11.17 3.21e-4 2.78 9.69 7.35e-3 

10. 2.34 8.80 5.69e-4 2.34 8.06 4.40e-3 

 614 

As presented in Table 6 and Table 7, the best SOC estimation results with incorrectly 615 

initialised filter states are realised with the hysteresis model 3 and the one- and two-RC 616 

models 7 and 8 respectively. It is apparent that containing the transient effects in a cell model 617 

not only improves the characterisation of a cell under load conditions in real time (see Fig. 5), 618 

but also results in a more robust SOC estimator. Furthermore, to reduce the uncertainties in 619 

the SOC estimate, the hysteresis functions can possibly be merged with the RC models 620 

resulting in a better SOC convergence.   621 

 622 

Using the HPPC method [32], the cell discharge resistance and power for every LiFePO4 and 623 

LiNMC test cell under a current pulse with duration of 18 seconds, over a SOC range of 10-624 

90% at five different operating temperatures is calculated. The averaged-results for the two 625 

sets of chemistries are presented in Fig. 8. Whereas Fig. 8(a) and (b) demonstrate the 626 

variation of the discharge cell resistance calculated using (8), Fig. 8(c) and (d) display how 627 
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the quantity of available discharge power for a fixed current pulse duration may vary with 628 

respect to SOC and temperature for the LiFePO4 and LiNMC cells respectively. It can be 629 

noted that at high temperature and SOC values, the cell resistance is smallest for both 630 

chemistries, resulting in a larger quantity of power being available for discharge. Moreover, 631 

at high SOC values, the corresponding OCV is also larger, which further improves the cell’s 632 

capability to source power, without violating the safe operating voltage thresholds.  633 

 634 

As defined by (5) and (6), the quality of the estimated instantaneous discharge or charge 635 

power largely depends on the accuracy of the identified cell resistance under various 636 

operating scenarios. Using the EKF-identified model parameters obtained for each test cell 637 

under a single HPPC repetition at 25 °C and SOC = 90%, the Thevenin equivalent circuit 638 

resistance, ܴୣ୯, for every model structure presented in this paper is calculated. The obtained 639 

model-based cell resistances for each set of chemistries are then averaged and compared to 640 

the average of the charge and discharge resistances given by (8) for the same HPPC profile. 641 

The results are presented in Table 8. It is evident that the two-RC model and the one-RC with 642 

adaptive hysteresis model provide the best estimates for the cell’s equivalent resistance, 643 

which can be used to improve the quality of the model-based SOP estimate.  644 

 645 
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646 

 647 

Fig. 8. Comparison of (a) and (b) internal series resistances and (c) and (d) calculated discharge power 648 

using the HPPC method for the LiFePO4 and LiNMC cells as a function of SOC and temperature 649 

 650 

Note that for a reliable SOP assessment, an accurate SOC estimate is also required, which in 651 

turn reflects on the accuracy of the cell’s predicted OCV in (5) and (6). Thus, to this end, the 652 

two-RC model structure can be nominated as an optimum selection with only two estimable 653 

states and five identifiable parameters for superior cell dynamic modelling and joint SOC and 654 

SOP estimation results. Alternatively, for cell chemistries with large inherent hysteresis 655 

levels, the one-RC with hysteresis model is preferred.    656 
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Table 8. Comparison of the EKF identified equivalent cell resistance with that calculated for the LiFePO4 658 

and LiNMC cells for a single HPPC repetition at 25 °C and SOC = 90%. 659 

Model 

LiFePO4 LiNMC 

EKF Identified ܴୣ୯ (mȍ) 
Mean Error 

(mȍ) 

EKF Identified ܴୣ୯ (mȍ) 
Mean Error 

(mȍ) 

1. 35.5 8.1 26.5 7.8 

2. 38.4 5.2 28.3 6.0 

3. 45.6 2.0 46.4 12.1 

4. 38.4 5.2 28.3 6.0 

5. 37.9 5.7 29.4 4.9 

6. 36.4 7.2 27.8 6.5 

7. 48.2 4.6 29.5 4.8 

8. 47.0 3.4 30.2 4.1 

9. 46.0 2.4 32.7 1.6 

10. 47.3 3.7 36.6 2.3 

 660 

7. Conclusion  661 

This paper has systematically reviewed the most common lumped-parameter equivalent 662 

circuit models used in lithium-ion battery energy storage applications based on their number 663 

of appearances in literature. The merits for comparison were modelling accuracy in terms of 664 

average root-mean-squared-error for two sets of lithium-ion cells of different electrode 665 

chemistries, namely the LiFePO4 and LiNMC. The generality of each model structure was 666 

examined over a temperature range of 5-45 °C. The battery models’ parameters and states 667 

were recursively estimated using a nonlinear system identification technique based on the 668 

dual-EKF algorithm. Furthermore, the dynamic performance of each model structure for joint 669 

estimation of SOC and SOP were discussed. The results suggested that the two-RC model 670 

structure, with two estimable states and five identifiable parameters, is an optimum choice for 671 

implementation of most battery energy and power management strategies. Alternatively, for 672 
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cell chemistries with large inherent hysteresis levels, the one-RC model with hysteresis 673 

included is preferred without an increase in complexity.    674 

 675 
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