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GENERALISED ADDITIVE MIXED MODELS FOR DYNAMIC ANALYSIS

IN LINGUISTICS: A PRACTICAL INTRODUCTION1

Márton Sóskuthy

University of York

[last updated: March 17, 2017]

1 Introduction

This is a hands-on introduction to Generalised Additive Mixed Models (GAMMs; Wood

2006) in the context of linguistics with a particular focus on dynamic speech analysis.

Dynamic speech analysis is a term used to refer to analyses that look at measureable

quantities of speech that vary in space and/or time. Temporal variation can be short-

term (e.g. formant contours and pitch tracks) or long-term (e.g. diachronic change

or change over the life-span). Similarly, spatial variation can sometimes be measured

in millimetres (e.g. tongue contours), and sometimes in kilometres (e.g. the acoustic

realisation of a sound category as a function of location on a dialect map). The focus

of this introduction is mostly on short-term temporal variation in phonetics, and more

specifically on formant trajectories (though one of the examples also involves diachronic

change). This choice is mostly practical: I chose to illustrate GAMMs through formant

trajectories simply because I’m comfortable talking about them. However, most of the

concepts and techniques discussed here are more general and are also applicable to

other types of short-term and long-term temporal trajectories.

The main goal of this introduction is to explain some of the main ideas underlying

GAMMs, and to provide a practical guide to frequentist significance testing using these

models. Some of the suggestions below are based on simulation-based work presented in

Sóskuthy (2016) and Sóskuthy (in prep), but this introduction is meant as a standalone

guide.

The following discussion is divided into two parts, which can be read in slightly

different ways. The first part (section 2) looks at what GAMMs actually are, how they

work and why/when we should use them. Although the reader can replicate some of

the example analyses in this section, this is not essential – reading the section should be

enough. The second part (section 3) is a tutorial introduction that illustrates the process

of fitting and evaluating GAMMs in the R statistical software environment (R Core Team,

2013), and the reader is strongly encouraged to work through the examples on their

own machine.

Since a lot of the research in GAMM theory is closely intertwined with software

development in R (e.g. the author of one of the main textbooks on GAMM, Wood 2006

is also the maintainer of one of the main GAMM software packages), it is difficult to talk

about GAMMs without using some of the terminology and conventions of R. Therefore,

although the discussion in the first part is mostly conceptual, I do rely on R code to

illustrate the structure of different models. However, I’ve tried not to use too much code,

and it should be possible to follow the discussion without a strong background in R. The

second part relies much more heavily on R and will be mostly of interest to readers who

1 This introduction has been updated a few times. Thanks to Martijn Wieling, Bodo Winter and Donald

Derrick for helpful comments and suggestions. Details of the changes are shown on the associated GitHub

page (see end of section 1 for the link).
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want to fit their own models using R. Readers who want to learn more about R before

reading this introduction may want to consult Baayen (2008) and Johnson (2008), who

both provide thorough introductions to R for beginners using examples from linguistics.

GAMMs are a type of regression model and they are closely related to mixed effects

regression. This tutorial assumes some background in regression modelling and it will

help to be familiar with mixed effects models as well. Winter (2013) is a short but

excellent introduction to mixed effects modelling, while Gelman & Hill (2007) and

Baayen (2008) provide more in-depth treatments of the topic.

The examples in this introduction rely on two R packages: mgcv (Wood, 2006) and

itsadug (van Rij et al., 2016). These should be installed and loaded before trying to

run the analyses that follow. I’ve also put together a script with a few ‘GAMM hacks’

(gamm_hacks.r), which help to keep the code in the tutorial tidier and may also be

useful for the reader’s own analyses. This should be sourced after loading itsadug, as

it overrides some of the functions in that package. Finally, the data sets for the tutorial

are in two separate files called words_50.csv and glasgow_r.csv, which should be

imported into R as words.50 and gl.r.

The data sets, the GAMM hacks script, the slides for Sóskuthy (2016) and the source

code for the PDF are all available from my GitHub page:

https://github.com/soskuthy/gamm_intro.

I relied on a number of sources for this introduction, but the main body of the text

is light on references to make the discussion easier to follow. There is a more detailed

list in the final section that also includes links and brief summaries of each source.

2 A gentle introduction to GAMM theory

2.1 GAMs

Before discussing GAMMs, let’s start with a slightly simpler type of model called Gen-

eralised Additive Models (that’s GAMM without the ‘mixed’ part). The easiest way to

understand GAMs is through a comparison with linear regression models. We will work

through a specific example, where our goal will be simply to fit a regression line/curve to

an F2 trajectory. The formant measurements are in Hz and the trajectory is represented

by 11 measurement points taken at equal intervals (going from the very beginning to

the very end). The figure below shows the trajectory (available as traj.csv from the

GitHub page):
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Here is a linear model that fits a line to the trajectory in R:
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traj <- read.csv("traj.csv") # importing the data
demo.lm <- lm(f2 ~ measurement.no, data = traj)

Though I’ll try to use mathematical notation sparingly in this tutorial, it is useful to write

out the model as a formula, as it will help with the transition to GAMs:2

Yf2 = α+ β1Xmeasurement.no (1)

This is simply an equation for a straight line: Xmeasurement.no stands for the values along

the x-axis (measurement number), while Yf2 stands for corresponding values along

the y-axis (F2 in Hz). α and β1 specify the intercept (i.e. the height) and the slope of

the regression line that represents the relationship between F2 and measurement.no.

When we fit a regression line to the actual trajectory, the result looks like this:
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The regression line is unable to capture the non-linear nature of the trajectory. This

is bad news for models that seek to make causal inferences about such trajectories.

Such discrepancies between the data and the model create systematic patterns in the

residuals of the model (i.e. the difference between the predicted vs. the actual value

of the outcome variable; in this case, the distances between the prediction line and

the individual data points along the y-axis), which makes confidence intervals and

p-values unreliable. This is illustrated by the following two figures. The figure on the left

shows how the residuals are calculated by explicitly indicating the distance between the

predicted and the observed values of the outcome variable. The figure on the right plots

the raw residuals (the lengths of the red dashed lines on the left) against measurement

number:
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2I’ve left out the so-called error term to keep things simple, though this should technically be part of the

model specification.

3



The residuals shouldn’t vary systematically as a function of other predictors, yet there is

a clear pattern in the figure above, which – in this case – results from the inability of

the model to capture non-linearities. If we want to account for non-linear relationships,

we’ll need to take a different approach.

GAMs provide one way of getting around this problem. Let us refer to the slopes and

intercepts of linear regression models as parametric terms. GAMs differ from traditional

linear regression models by allowing so-called smooth terms alongside parametric terms.

Smooth terms are extremely flexible, so much so that their mathematical representation

in model specifications is simply ‘some function of x ’:

Yf2 = α+ f1(Xmeasurement.no) (2)

This model specification does not say anything about the shape of the function linking

Xmeasurement.no and Yf2. The only requirement on the smooth term f1(Xmeasurement.no) is

that it should be a smooth function of one or more predictor variables. Since the shape

of this smooth function is not constrained in the same way as it is for regression lines,

GAMs can deal with non-linearity. The following R function can be used to fit a GAM

with the structure above to the F2 trajectory:3

demo.gam <- bam(f2 ~ s(measurement.no, bs = "cr"), data = traj)

The s() notation is used to distinguish smooth terms from parametric ones. The

bs="cr" parameter tells R to use a so called ‘cubic regression spline’ as the smooth term

(bs actually stands for ‘basis’, a concept that will be discussed in more detail below).

The model fit is shown below.
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So how are such wiggly smooth terms created in practice? We are not going to discuss

the mathematical underpinnings of GAMs, but there are two fundamental and relatively

straightforward concepts that need to be understood if one wants to work with these

models: basis functions and the smoothing parameter. Basis functions are simple functions

that add up to a (potentially) more complex curve. For instance, consider the following

model:

3Throughout this tutorial, we’ll use the bam() function from the mgcv package to fit GAMs and GAMMs.

An alternative is the gam() function from the same package, but gam() is less flexible and often slower

than bam(), so we won’t use it here.
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demo.poly <- lm(f2 ~ measurement.no + I(measurement.no^2) +
I(measurement.no^3), data=traj)

Or, in mathematical notation:

Yf2 = α+ β1Xmeasurement.no + β2X 2
measurement.no + β3X 3

measurement.no (3)

And the model fit:
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This is an example of polynomial regression, where both a variable x and some of its

powers (x2, x3, . . . ) are included as predictors. The terms x , x2, x3 are referred to as

basis functions. The fitted curve is obtained by multiplying each of the basis functions by

the corresponding coefficient and then adding them up. The plot on the left below shows

the basis functions of the GAM smooth for the formant trajectory before multiplication by

the coefficients. The plot on the right shows the same basis functions after multiplication,

and their sum (i.e. the predicted formant trajectory minus the intercept term).
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The above smooth is made up of 9 basis functions, which is a default setting for certain

types of smooths in R. Note that the basis functions are placed at regular intervals, and

that they converge on each other at certain points (this is clearer in the plot on the

left-hand side). These ‘convergence points’ are called knots, and there are 10 of them

(the number of basis functions + 1): 2 at the edges of the plot and 8 in the middle.

There is a simple intuition linked to the number of knots / basis functions: increasing

this number allows for more wiggliness in the smooth, while decreasing it makes the

smooth. . . well, smoother.

In linear regression models where the basis functions are included manually (e.g.

polynomial regression), the number of basis functions (or knots) has to be chosen by the
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modeller. This can be tricky, as using too few basis functions can lead to oversmoothing

(i.e. missing some of the non-linearity in the data), while using too many can lead to

overfitting (i.e. missing the real trend in the data by fitting a curve to random noise). This

is where GAMs really shine. GAMs rely on a value called the smoothing parameter. The

coefficients for the individual basis functions contained in a GAM smooth are estimated

in such a way that the resulting curve has a controlled degree of wiggliness determined

by the smoothing parameter. The higher the smoothing parameter, the smoother ( =

less wiggly) the estimated curve. This is illustrated below, where the number of basis

functions is always the same, but the value of the smoothing parameter is varied.4
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smoothing parameter = 7.58
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smoothing parameter = 351.78
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smoothing parameter = 16328

In other words, the degree of smoothness / wiggliness in GAMs is mostly determined by

the smoothing parameter. The role of the number of basis functions / knots is (mostly)

reduced to setting an upper limit on the degree of wiggliness: having 3 knots ( = 2 basis

functions) obviously allows for much less wiggliness than 10 or 100 knots, even if we

set the smoothing parameter extremely low.

The GAMs that we use in this introduction (i.e. the ones implemented in the mgcv

package) do not require the modeller to decide on a value for the smoothing parame-

ter: they estimate it directly from the data. This can be done using methods based on

cross-validation or maximum likelihood estimation. We won’t discuss these in detail,

but a brief overview will be helpful (see ?gam.selection from mgcv for more detail

and references). Both sets of methods aim at choosing a value for the smoothing pa-

rameter that makes the resulting curve generalisable beyond the specific sample under

investigation. This is especially clear in the case of cross-validation. Cross-validation

4As before, the curve is shown without the intercept, which means that it is centred around 0 along the

y-axis. This is why some of the values are negative. The graphs also include shifted versions of the actual

data points to make the degree of smoothing clearer.
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works by (i) creating subsets of the full data set that each exclude a single data point,

(ii) refitting the model to each of these subsets and (iii) checking how well the fitted

models predict the excluded data points. Choosing a value for the smoothing parameter

that is too low will result in a curve that is overly wiggly. This excess wiggliness will be

used to capture idiosyncratic variation in the data set, which leads to bad performance

on out-of-sample observations (and therefore a high error-rate in cross-validation). If

the smoothing parameter is too high, the curve will fail to capture non-linear patterns

both in within-sample and out-of-sample observations, which, again, leads to a high

error-rate in cross-validation. Note that mgcv actually only fits the model once, and

uses a mathematical trick to calculate the cross-validation score (see Wood 2006 for

more detail). Maximum likelihood estimation relies on a different technique that works

by treating smooths as random effects for the purposes of estimating their smoothing

parameters (but the outcome is the same: a curve that – all things being equal – avoids

under/overfitting and is generalisable beyond the sample).

As a result of smoothing parameter estimation, the number of basis functions has

little bearing on the shape of the smoother provided that there are enough of them to

represent the degree of wiggliness in the data, so a smooth with a high number of basis

functions will often look very similar to one with a lower number. This is illustrated

below using a slightly modified version of our formant trajectory with 50 measurement

points instead of 11 and a small amount of added noise. Three models were fit to this

trajectory with different values for k (10, 20 and 50). The plots show the data, the fitted

curves and the so-called estimated degrees of freedom, or EDF (see below). All three

curves look very similar.

demo.gam.k.10 <- bam(f2 ~ s(measurement.no, bs = "cr", k = 10),
data = traj.50)

demo.gam.k.20 <- bam(f2 ~ s(measurement.no, bs = "cr", k = 20),
data = traj.50)

demo.gam.k.50 <- bam(f2 ~ s(measurement.no, bs = "cr", k = 50),
data = traj.50)
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On the basis of the above discussion, it would seem that the best strategy is to set k

to a high value so that model is not restricted in terms of how much wiggliness it can

attribute to the underlying curve. And once we’ve done that, we could forget about the

whole thing, basically trusting mgcv to do the right thing for us.

Unfortunately, that’s not a good strategy. As is often the case with statistical methods,

knowing only a little about GAMs and setting up models without understanding what

they do is probably worse than using less advanced methods in an informed way. First of

all, although cross-validation and other estimation methods attempt to avoid overfitting,

they are not always successful at doing so, which means that an unrealistically high

value of k does sometimes lead to an unrealistically wiggly curve. Second, there are
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several situations where the number of basis functions needs to be changed, and these

are almost impossible to avoid while working with dynamic speech data:

• too few measurements to support k knots: If our trajectories only have 11 measure-

ments, the maximum number of knots is also 11 (that is, the maximum number

of basis functions is 10). Since the default value for k is 10 (although this number

may be different depending on the type of smooth), it needs to be lowered if there

are less than 10 unique values for a given variable.

• not enough wiggliness allowed: The default value of k can only support a certain

amount of wiggliness in the data. If the actual trajectories show a greater degree

of non-linearity, k needs to be increased.

• computational inefficiency due to high k: The higher the value of k, the longer it

will take to fit the model. Therefore, it is a good idea not to increase k any further

than necessary. In realistic scenarios, the modeller may be forced to choose a k

that is actually lower than would be ideal.

My recommendation is therefore to try and make an informed choice about k rather

than attempting to rely on a one-size-fits-all strategy (e.g. always using the default

value or always specifying a high value for k). For instance, formant trajectories for

monophthongs and diphthongs tend to be relatively smooth and they don’t typically

show any meaningful ‘high-frequency’ wiggliness, so there’s no point in setting k to a

very high value (I’m reluctant to suggest specific values here, but e.g. formant trajectories

for single vowels will hardly ever require more than 10 basis functions). An intonation

contour for a longer chunk of speech will likely show much more wiggliness, so k ought

to be set a bit higher too. Setting k to a reasonable value requires a bit of experience, so

do have a play around with different values of k in the examples in the second part of

this introduction. mgcv also provides some functions and advice for evaluating k; see

?gam.check and ?choose.k from mgcv.

The concepts of basis function and smoothing parameter are closely related to

the so-called estimated degrees of freedom (or EDF). When the coefficients for basis

functions are estimated without any constraints, as in the case of polynomial regression,

a smooth with p basis functions uses up exactly p degrees of freedom. However, when the

coefficients are constrained by a smoothing parameter, the effective degrees of freedom

taken up by the smooth go down (this is because the coefficients for the individual basis

functions become dependent on each other). For instance, at extremely high values

of the smoothing parameter, the smooth becomes a straight line, which only uses up

a single degree of freedom, even if it is represented by more than one basis function.

Conversely, at extremely low values of the smoothing parameter, the smooth will use

all the potential wiggliness provided by the k − 1 basis functions, which corresponds

to k − 1 degrees of freedom. At intermediate values, the smooth uses an intermediate

number of degrees of freedom. The EDF is an estimate of the degrees of freedom that are

actually used by a smooth with a given number of basis functions and a given smoothing

parameter. Significance tests of smooth terms in GAMs rely on the EDF and not the

number of basis functions – and, as a result, model summaries for GAMs always include

the EDF. Note that the EDFs for the three models with different k values above are very

similar (see the plots for the EDF values).
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2.2 GAMMs

We are now in a position to move on to GAMMs, that is, generalised additive mixed

models. This tutorial assumes that the reader is already familiar with random intercepts

and slopes from linear mixed effects models and knows how to implement them in

R. Just as a reminder: random intercepts in linear mixed models capture by-group

random variation in the outcome variable (e.g. between-speaker differences in average

F2 values); random slopes capture by-group random variation in the effect of a predictor

variable on the outcome variable (e.g. between-speaker differences in the effect of style

on F2 – certain speakers exhibit more stylistic adaptation than others). GAMMs are to

GAMs as linear mixed effects models are to linear models. That is, GAMMs incorporate

random effects alongside parametric and smooth terms. Similar to linear mixed effects

models, these random effects can be random intercepts and random slopes. However,

GAMMs also offer a third option: random smooths.

Random smooths are similar to random slopes, but they are more flexible than the

latter: while random slopes can only capture by-group variation in linear effects, random

smooths can also deal with by-group variation in non-linear effects. An example will help

to make this point clearer. Let’s assume that the trajectory that we’ve looked at earlier is

an example of a specific vowel, and that we have four further tokens for this vowel. The

four trajectories are shown below (this data set is available as traj_random.csv):
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First, let’s use linear mixed effects models to fit straight line approximations to the

trajectories. We’ll fit two versions of the same model: one with random intercepts only,

and a second one with random intercepts and random slopes. The random intercepts

model is shown on the left below, while the random intercepts + slopes model is shown

on the right.
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Unsurprisingly, the model fit is not great. In the random intercepts only model, the fitted

lines are parallel to each other, as the slopes are not allowed to vary. In the random

intercepts + slopes model, both the height and the slope of the lines vary. Now let’s fit

three GAMMs to the same trajectories: one with random intercepts only, a second one

with random intercepts + slopes and a third one with random smooths.
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The model with random intercepts simply varies the height of the lines, but does not

yield a particularly good fit. The one with slopes does slightly better: in this case, the

same curve is essentially rotated and stretched to match the actual trajectories. Random

smooths clearly provide the best fit by fitting individual curves to each trajectory. Note,

however, that random smooths are also extremely resource intensive: fitting four separate

random smooths to the data requires 4× k basis functions, and the same number of

coefficients need to be estimated.5

2.3 Residual autocorrelation

Another important concept in GAMM theory is that of residual autocorrelation. Consider

the example of a linear model fitted to the wiggly trajectory from section 2.1. As

explained above, the model fit leaves systematic patterns in the residuals, which are

reproduced below for convenience. One way of conceptualising these patterns is through

the notion of autocorrelation: the correlation between observed values at fix intervals

within a time series, where the size of the interval is usually referred to as the lag.6 For

5The separate random smooths each use up k rather than k − 1 basis functions (as opposed to the

smooths that we’ve looked at before). The additional basis function plays the role of a random intercept.

Since there are four smooths (one for each trajectory), the overall number of basis functions is 4× k.
6 See Venables & Ripley (2002, 390) for the formula for calculating autocorrelation, which is slightly

different from the formula for Pearson’s correlation coefficient.
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instance, the autocorrelation at lag 1 in the residuals below is calculated by taking the

f2 values at measurement points 0, 1, 2, . . . and correlating them with the f2 values at

measurement points 1, 2, 3, . . . The autocorrelation at lag 2 is calculated by correlating

the f2 values at measurement points 0, 1, 2, . . . with those at measurement points 2, 3,

4, . . . These autocorrelation values are usually shown in a plot where the horizontal axis

shows different lag values and the vertical axis shows the autocorrelation at each lag

value. These plots also often include two horizontal lines, which are ‘approximate 95%

confidence limits’ (Venables & Ripley 2002; i.e. autocorrelation values outside these lines

can be regarded as significant at α= 0.05, though significance isn’t of key importance

in this case). The figure on the left below shows the residuals from the linear model,

while the figure on the right is an autocorrelation plot based on these residuals.
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The autocorrelation at lag 0 is simply the correlation of the residuals with themselves,

which, of course, always yields a value of 1. The autocorrelation at lag 1 is slightly

over 0.5, which is a moderately high value. The formant trajectory is non-linear, but it

moves smoothly over time, which means that neighbouring measurements are always

relatively close to each other. Since this non-linear movement is not appropriately

captured by a linear model, this pattern remains in the residuals, which leads to the

observed autocorrelation value. The autocorrelation at lag 2 is very close to 0, but at lags

3, 4 and 5 we observe higher negative values. Negative values indicate a zigzag pattern

in the residuals. The fact that negative autocorrelations are only observed at higher

lag values indicates that the zigzag pattern occurs not between adjacent measurements

but over a slightly longer period. This is indeed what we observe in the residuals: we

start with negative values, which become positive at measurement point 4 and then go

back to negative at measurement point 9. Note that the zigzag pattern in the current set

of residuals is due to the relatively sudden formant transition near the middle of the

trajectory, which is entirely smoothed over by the linear model.

Another example of a residual autocorrelation plot is presented below. The residuals

come from another linear model, which was fitted to the 50-point trajectory from the

previous section (which was introduced in the discussion of different k values). The

residuals look slightly messier as this trajectory included a small amount of added noise.
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Though the overall shape of the autocorrelation plot is similar to that of the previous

one, the actual autocorrelation values are not the same. This is especially clear for the

first few lag values, where the autocorrelation is really high (close to 0.8). The reason

for these high values is that the trajectory moves very slowly when viewed as a function

of measurement number – on average, the change between two neighbouring points

will be very small. If the trajectory didn’t include any noise, the autocorrelation at low

lag values would likely be even higher.

Autocorrelation in the residuals is problematic in that it can lead to inaccurate – and

often downward biased – standard errors, confidence intervals, and p-values. There are

two ways of dealing with this issue (cf. Baayen et al. 2016): (i) fitting more accurate

models that capture all patterns in the residuals (often through using random smooths)

or (ii) including a so-called error model in the regression, which essentially adjusts the

model output to control for the biasing effect of residual autocorrelation. Both of these

methods will be discussed in more detail below.

2.4 Why do we need random smooths and/or error models?

Why are patterns in the residuals such a serious issue for regression models? And why do

we need to add random effects and/or error models to our GAM(M)s? These questions are

partly answered in standard texts dealing with mixed effects regression models (Baayen,

2008; Gelman & Hill, 2007; Zuur et al., 2009). More detailed treatments are given in

Barr et al. (2013) and Bates et al. (2015), while Winter (2013) provides a particularly

clear explanation that should be fairly easy to follow for readers with no background in

statistics. The focus in many of these texts is on how models without random effects may

violate the underlying assumptions of regression models, in particular the assumptions

of linearity and independence of errors. What I’d like to do here is offer a slightly different

approach to the question, and discuss the importance of random effects in more intuitive

terms.

Regression models attempt to make educated guesses about ‘hidden’ underlying

parameters (which correspond to properties of interest in the real world) based on

observable data. Each of the data points in a data set provides some information about

these parameters, increasing our confidence in the guesses the model makes about them

(we will refer to these guesses as estimates). However, it turns out that individual data

points don’t always provide the same amount of information about the underlying param-

eters. In other words, two data sets with the same number of observations may provide

different amounts of information about the same parameters. These differences are
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often dependent on the presence or absence of grouping structure and temporal/spatial

structure in the data.

In terms of the amount of information per data point, the best case scenario is a data

set where there is no grouping or temporal/spatial structure (beyond the variables whose

effects we want to estimate). In such data sets, a regression model can assume that

individual data points are determined solely by the underlying parameters plus a bit of

random noise, so all the information in a given data point can be used towards estimating

the underlying parameters. Let’s illustrate this point using the formant trajectories from

section 2.2. Our data set would have this structure (no grouping/temporal/spatial

structure) if each of the measurements (i.e. each of the dots in the graphs above) came

from a separate vowel. This would mean that we would have to sample 44 different

vowel tokens, and only take a single measurement at a random time point for each of

them (this would be admittedly a rather weird data set). If we were to, say, double

the number of sampled vowels, our confidence in our estimates would also increase

– each new data point would contribute additional information about the underlying

parameters.

However, that is not the way our data set is structured. The 44 measurements

actually come from only 4 vowels, and measurements taken from a single vowel are

not independent of each other. Each of the data points is determined by a combination

of factors: the underlying parameters, which trajectory it is in and what values the

neighbouring points take on (the last point reflects the fact that there is almost always

some autocorrelation in time-series data). Therefore, only part of the information in a

given data point can be used towards estimating the underlying parameters – the rest

of the information is actually about other stuff that we might not be interested in. An

increase in the size of this data set wouldn’t necessarily increase our confidence in our

estimates of the underlying parameters. For instance, if we doubled the size of the data

set by taking another 11 measurements along the same 4 trajectories at different time

points, we wouldn’t gain much additional information about the parameters that define

the underlying curve – instead, we would gain more information about the individual

trajectories themselves. If, on the other hand, we added measurements from 4 additional

vowels, that would contribute more information towards the underlying parameters.

When we fit a regression model to our data set without random effects or an appro-

priate error model, we essentially ignore the grouping/temporal/spatial structure in the

data: we pretend that the data set consists of independent measurements, each of them

taken from a separate vowel. As a result, we will also erroneously assume that all the

information in the individual data points can be used towards estimating the underlying

parameters, even though some of the information is actually about other things like the

separate trajectories. Since we think that we have more information that we actually do,

we become overconfident about our estimates, which leads to anti-conservative results:

p-values that are biased downwards and overly narrow confidence intervals. When the

random effects / error model are correctly specified, the model uses the right amount

of information towards estimating the underlying parameters, and the overconfidence

issue disappears.

We run into the same problem when we use random intercepts and slopes to fit

straight lines to non-linear trajectories. The straight lines correctly ‘soak up’ some of

the trajectory-specific information, but not all of it: they can’t deal with non-linear

dependencies, so those remain in the data. As a result, some of the information that
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we use towards estimating the underlying parameters will still be about the individual

trajectories, so our model remains overconfident.

The three graphs below illustrate this point by plotting 95% confidence intervals for

three models: one without random effects, one with random intercepts only and one

with random smooths.
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The confidence interval becomes slightly wider when we move from the no random

effects model to the random intercepts one, and substantially wider for the random

smooths model. Although the confidence interval for the final model may seem too wide,

it is probably more accurate than the other two. After all, we need to bear in mind that

this estimate is really only based on 4 vowels. For comparison, how confident would

you be about a group mean based on 4 measurements?

2.5 Different smooth classes

Now that we know what GAMMs are, how they are different from GAMs and why

random smooths / error models are necessary, it is time to introduce the concept of

different smooth classes. We’ve actually already seen a range of different smooth classes

in action, but only one of these has been mentioned explicitly: cubic regression splines.

In what follows, we’ll look at what distinguishes smooth classes from each other and

consider a few examples.

Smooth classes are mainly defined by the basis functions used to generate the

smoothers (and also by the type of smoothing penalty applied to them, but we won’t

discuss this). The graphs on page 5 show the basis functions for a smooth that belongs

to the class of cubic regression splines. The models below exemplify two further smooth

classes: thin plate regression splines (bs="tp") and P-splines (bs="ps"; P-splines is
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short for ‘penalised B-splines’ or ‘penalised basis splines’).

demo.gam.tp <- bam(f2 ~ s(measurement.no, bs = "tp"), data = traj)
demo.gam.ps <- bam(f2 ~ s(measurement.no, bs = "ps"), data = traj)

While the exact differences among smooth classes are not so important for us, it is

instructive to compare their basis functions and the fitted curves. The figures below

show the basis functions for thin plate regression splines and P-splines before and

after multiplication by the model coefficients, and should be compared with the cubic

regression splines on page 5.
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The basis functions can be very different (compare e.g. tp vs. ps), but the overall

smooths are quite similar across the three models. P-splines seem to provide a slightly

(though only very slightly!) worse fit in this case, while cubic and thin plate regression

splines do equally well. The default smooth for the bam() function from the mgcv

package is the thin plate regression spline.

The smooths that we’ve looked at so far are all univariate smooths: they fit a smooth

line to the outcome variable as a function of a single predictor. However, it is possible

to specify multivariate smooths as well, and certain smooth classes are capable of

representing such smooths. For instance, one might want to look at how vowel duration

affects the shape of F2 trajectories for a given vowel. One way to do this is to specify a

bivariate smooth, where one of the predictor variables is measurement.no (where the

measurement was taken along the trajectory), and the other one duration (the overall

duration of the vowel in seconds). The fitted bivariate smooth will be a two-dimensional

surface, which essentially consists of trajectory shapes that vary smoothly as a function

of overall duration. We’ll see examples of multivariate smooths in section 3.
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One final note about smooth classes. GAMMs can use smooths to represent not only

fitted curves and surfaces, but also random intercepts and slopes. For instance, the linear

mixed model with intercepts and slopes on page 9 can be specified in two different ways:

using the traditional mixed model specification from the lme4 package (Bates et al.,

2011), or using a GAMM model specification.7

demo.slope.lmer <- lmer(f2 ~ measurement.no +
(1 + measurement.no || vowel),

data=traj.random)

demo.slope.gamm <- bam(f2 ~ measurement.no +
s(vowel, bs="re") +
s(vowel, measurement.no, bs="re"),

data=traj.random)

These formulae actually specify the same model. Random intercepts and slopes are

represented by the random effects (bs="re") smooth class in GAMMs, and they behave

in much the same way as random effects in linear mixed effects models. Random smooths

are a different type of construct, and they do not have a straightforward equivalent in

linear models. The smooth class for random smooths is called factor smooth interactions

(bs="fs"). Its use will be illustrated later in section 3.

2.6 Significance testing using GAMMs

2.6.1 Methods for significance testing with GAMMs

The models and data discussed in the previous section are useful in that they illustrate

some of the basic concepts of GAMMs, but they are also a bit weird. There is only

a single group of trajectories, and the shape of these trajectories does not vary as

a function of any other predictors (although the individual F2 measurements do, of

course, vary as a function of time). This type of situation does not typically arise in real

examples: dynamic analyses of linguistic data are usually conducted with the goal of

testing whether a given set of predictors has a significant effect on the trajectories under

investigation. For instance, one might look at whether the shape of F2 trajectories is

affected by vowel duration, whether pitch contours are different across questions and

statements, or whether a diachronic change in spectral centre of gravity for a given

fricative follows different patterns in different communities. While significance testing

is relatively straightforward for linear models (though less so for linear mixed models),

GAMMs offer a number of different ways of testing for significance. In this section, we

briefly review these methods. It should be emphasised that they are not all equally

appropriate, and some of them are, in fact, seriously flawed. The next section identifies

potential issues with these methods and outlines a few recommendations about how

they should be used.

7The random effect specification in the LMER model is (1 + measurement.no || vowel) instead

of the more typical (1 + measurement.no | vowel), which results in a model where the variance

components for the random intercept and slope are estimated, but their correlation isn’t. This is because

linear mixed models specified using bam() do not include correlations between random slopes and

intercepts under the same grouping factor.
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We start with a simple scenario. Let’s say we have two words sharing the same

diphthong, and we suspect that the realisation of the diphthong differs between the two

words. We’ll refer to the words as A and B. We collect dynamic F2 measurements for 50

tokens of each word. The two sets of 50 trajectories are shown below:
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We use a GAMM of the following structure to test for significant differences between the

two words:

demo.w.gamm <- bam(f2 ~ word +
s(measurement.no) +
s(measurement.no, by=word) +
s(measurement.no, traj, bs="fs", m=1),

data=dat.words, method="ML")

Let’s go through this model specification quickly. The first predictor is a parametric term

that captures overall differences in the height of the trajectories as a function of the

word they come from. The second predictor, s(measurement.no), corresponds to a

single smooth fit at the reference value of the categorical predictor word (i.e. A). The

third predictor is a so-called difference smooth that captures the difference between the

trajectories for A and B. We will discuss difference smooths in more detail later. The last

predictor corresponds to random smooths by trajectory (i.e. a separate smooth for each

of the 50 trajectories). Again, we’ll say more about these later.

Confusingly, there are at least six different ways of testing whether the difference

between A and B is significant (and probably more). Four of these are available as part of

standard model summaries, and the other two can be performed by plotting confidence

intervals.

Let’s start with the model summary-based methods. Here is the model summary for

demo.w.gamm:
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summary(demo.w.gamm)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## f2 ~ word + s(measurement.no) + s(measurement.no, by = word) +
## s(measurement.no, traj, bs = "fs", m = 1)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1898.88 12.22 155.355 < 2e-16 ***
## wordB -80.89 17.12 -4.725 3.58e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(measurement.no) 8.936 8.953 275.314 < 2e-16 ***
## s(measurement.no):wordB 3.378 3.618 4.566 0.00272 **
## s(measurement.no,traj) 793.816 898.000 81.655 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.997 Deviance explained = 99.9%
## -ML = 5908.6 Scale est. = 240.07 n = 1100

The initial section up to the first table should be familiar from other types of regres-

sion models. The Parametric coefficients table shows all non-smooth terms, that

is, the intercept and the categorical predictor word. The next table (Approximate

significance of smooth terms) summarises the smooth terms: the reference

smooth, the difference smooth and the random smooths. Both the parametric and

the smooth tables show p-values for the terms, although they are based on different

tests: t-tests for parametric terms and ‘approximate’ F -tests for smooth terms. Wood

(2006, 191) warns that the approximate p-values values for smooth terms should be

taken with a pinch of salt: they can be anticonservative in certain cases.

So which p-values should we be looking at? First, we can look at the p-value for

the parametric term word (method 1). Assuming an alpha-level of 0.05, this p-value

is < α, which means that there is a significant difference in the overall height of the

two trajectories. We can also look at the p-value of the difference smooth, which, again,

is < 0.05 – that is, there is a significant difference between the shapes of the two

trajectories (method 2). Another option is to claim a significant difference between the

two trajectories if either the parametric term or the difference smooth (or both) are

significant (method 3). The last non-visual option is to set up a nested model which

excludes the parametric term and the difference smooth, and compare this to the original

model using the compareML() command from the itsadug package, which is actually

a form of anova (method 4):
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demo.w.gamm2 <- bam(f2 ~ s(measurement.no) +
s(measurement.no, traj, bs="fs", m=1),

data=dat.words, method="ML")
compareML(demo.w.gamm, demo.w.gamm2, print.output=F)$table

## Model Score Edf Chisq Df p.value Sig.
## 1 demo.w.gamm2 5923.394 5
## 2 demo.w.gamm 5908.614 8 14.780 3.000 1.707e-06 ***

According to the model comparison, the inclusion of the parametric term and the smooth

difference term significantly improves the model fit. Importantly, these methods tell us

little about the exact nature of the difference between the two words.

There are two visual methods for significance testing, both of which rely on con-

fidence intervals. First, we can plot the predicted trajectories for both words with

corresponding pointwise confidence intervals and check for overlap / lack of overlap at

different points (method 5). Second, we can plot the difference smooth itself along with

a confidence interval and check whether the confidence interval includes 0 at different

points (method 6). One of the advantages of these methods is that they allow us to

see where and in what way the trajectories words differ. These methods are illustrated

below:
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Both methods suggest that there is a significant difference between the two sets of tra-

jectories. Moreover, they also reveal that the trajectories only diverge after measurement

number 2 (that’s the 3rd measurement out of 11). In other words, the trajectories differ

significantly, but only between measurement numbers 2 and 10.

As a final note, significance testing with GAMMs can be substantially more com-

plicated when the predictor of interest is a continuous variable. Although the general

principles discussed in this section apply to continuous variables as well, their imple-

mentation can be a lot trickier due to the potential complexity of smooth interactions

and constraints on the software packages used to fit GAMMs. We will go through a few

worked examples later in the tutorial.

2.6.2 Recommendations

In Sóskuthy (2016) and Sóskuthy (in prep), I present simulation-based results that

reveal a wide range of variation in the rate of false positives and false negatives across

the different methods discussed above. A point-by-point summary of these results is

presented below:
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• Significance testing based on the t/F -values for the parametric / smooth terms

in the model summary is only justified when our predictions are directly about

these individual terms. For example, if our prediction is that the average value

of a trajectory will be higher in one condition than in another, but we have no

predictions about trajectory shapes, we can safely rely on the p-value for the

parametric term (method 1). Conversely, if our prediction relates to the shapes of

the trajectories but does not concern their average value, we can use the p-value

for the smooth term (method 2).

• Although predictions specifically about the parametric / smooth terms do arise

occasionally, a lot of the time researchers are interested in overall differences

between trajectories regardless of whether those differences are in their average

value or their shape. In such cases, it is tempting to declare significance if either the

parametric term or the smooth term is significant (method 3). However, this leads

to higher-than-nominal false positive rates (just below 0.10 at α= 0.05). Model

comparison where both the parametric and the smooth terms are excluded in the

nested model (method 4) yields close-to-nominal false positive rates. Another way

to avoid this issue is through correction for multiple comparisons (two compar-

isons in this case), though this can lead to substantially diminished power. This

introduction relies mainly on method 4, and correction for multiple comparisons

won’t be discussed in detail.

• Both visual methods (5 and 6) suffer from an anti-conservativity issue. If we report

significant differences whenever there is any point where confidence intervals are

non-overlapping (method 5) / the confidence interval for the estimated difference

excludes 0 (method 6), the rate of false positives is too high (around 0.12 in the

simulations at α = 0.05). The rate of false positives decreases if we require signifi-

cant differences at more than one point to report a significant overall difference,

but this requires an arbitrary decision about the number of points, and can easily

lead to results that are too conservative.

• Comparison based on whether there is overlap between two confidence inter-

vals (method 5) is inadequate for significance testing, and graphs with separate

trajectories (rather than a difference smooth) should only be used for graphical

illustration. People tend to misinterpret the meaning of overlapping confidence

intervals in such graphs. When the confidence intervals do not overlap, there is

indeed a significant difference between the estimated quantities. However, we

cannot make any conclusions about the significance of the difference when the con-

fidence intervals do overlap: it may be significant but it may also be non-significant.

Difference smooths (method 6) do not suffer from this problem, and should be

the preferred option. Note that this issue is independent of the anti-conservativity

problem described above.

• The simulations also reveal that failing to include (i) an error model to adjust the

model output for residual autocorrelation within the trajectories or (ii) random

smooths-per-trajectory can lead to catastrophically high false positive rates (up to

0.6 at α = 0.05) regardless of what method is used for significance testing. These

methods are discussed in more detail below.
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Based on these results, the most reliable (i.e. least anti-conservative) option for signifi-

cance testing is to first use an ANOVA (method 4) to see if there is an overall difference

between groups of trajectories, and then look at difference smooths (method 6) to iden-

tify where the difference lies along the trajectory. Additionally, it is also useful to plot

individual smooths (with or without confidence intervals) to provide a visual summary

of the main trends in the data set, but these should not be used for significance testing.

3 A GAMM tutorial

In this tutorial, we will work through two detailed examples. The first of these is based

on simulated data, while the second one uses a real data set taken from Stuart-Smith

et al. (2015).

3.1 Analysing a simple simulated data set

The first data set contains simulated F2 trajectories, and is very similar to the example

data set introduced in section 2.6.1. It contains 50 F2 trajectories, each of them repre-

sented by 11 measurements taken at equal intervals (at 0%, 10%, 20%, . . . , 100%). The

observations in the data set are the individual measurements, which means that there

are 550 data points altogether. The variable measurement.no codes the location of

individual data points along the trajectory. Each of the trajectories has an ID (a number

between 1–50), which is encoded in the column traj. The trajectories represent two

different words: 25 of them come from word A and 25 of them from word B. This is

encoded by the word variable. The underlying curves that served as the basis of the

simulated trajectories overlap at the beginning, but are different by about 100 Hz near

the end. There is an additional variable termed duration, which stands for overall

vowel duration measured in seconds. The simulation was set up so that long vowels

have slightly wider trajectories than short vowels. The data set is called words.50 and

can be downloaded from the github page for this introduction:

https://github.com/soskuthy/gamm_intro.

Here’s a small sample of the data:

head(words.50)

## traj word measurement.no f2 duration
## 1 traj.1 A 0 1642.761 0.1378182
## 2 traj.1 A 1 1644.162 0.1378182
## 3 traj.1 A 2 1659.948 0.1378182
## 4 traj.1 A 3 1788.793 0.1378182
## 5 traj.1 A 4 2044.977 0.1378182
## 6 traj.1 A 5 2115.984 0.1378182

Let’s import the libraries that we’ll be using.

library(ggplot2)
library(mgcv)
library(itsadug)
source("gamm_hacks.r")

21



First of all, let’s create a simple plot to see what the raw data look like. This is good

practice regardless of the type of model one is planning to fit, but it is especially useful

for GAMMs, where the shape of the trajectories has implications for the model fitting

procedure (e.g. choosing the number of basis functions). We’ll use the package ggplot2

to create the plot, as it makes it really easy to show the structure of the data set through

the use of colours and other devices. The trajectories representing the two words are

shown in separate panels and the overall duration of each trajectory is indicated by

shading: longer trajectories are darker (the trajectories are time-normalised, so they all

have the same length along the x-axis). Since this tutorial is not about ggplot2, we

won’t discuss the code below.

ggplot(words.50, aes(x=measurement.no, y=f2, group=traj,
alpha=duration)) +

facet_grid(~word) + geom_line()
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So what do we want to capture in our model? First, we want to fit separate smooths to

the two trajectories, and we’ll want to use model comparison and difference smooths

to see whether they are different. We also want to include some type of interaction

between duration and the shape of the trajectories. Finally, we want to include (i)

random smooths by trajectory and (ii) a residual error model in order to avoid false

positives and obtain more accurate estimates of the underlying curves.

Let’s start with a very simple model that fits separate smooths to the two words.

There are a number of different ways of doing this; we’ll look at two of these. First,

we can specify a model that simply includes two smooths: one for word A and another

one for word B. Though this is probably the simplest way of fitting this model, it’s

not necessarily the most useful one. The second method is to fit one smooth to word

A and then another smooth that represents the difference between A and B. This is

identical to the first model in terms of the model fit, but it is easier to interpret the

model output when a difference smooth is included, as it tells us directly whether there

is a significant difference between the shapes of the two trajectories. Both types of

models are shown below along with relevant bits of the model summary. The models

use cubic regression splines (bs="cr") with the default number of knots (k=10). Using

different basis functions does not substantially alter the results. The models are fitted

using maximum likelihood estimation (method="ML"), which is necessary since we

want to perform model comparison between models with different fixed effects. The

default method for bam() is fREML or fast restricted maximum likelihood estimation,

but this cannot be used for comparing models with different fixed effects.
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# model with separate smooths

words.50$word <- as.factor(words.50$word)
words.50.gam.sep <- bam(f2 ~ word + s(measurement.no, by=word, bs="cr"),

data=words.50, method="ML")
summary.coefs(words.50.gam.sep)

## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1885.149 5.755 327.588 < 2e-16 ***
## wordB -67.372 8.138 -8.278 1.01e-15 ***
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(measurement.no):wordA 7.311 8.258 213.0 <2e-16 ***
## s(measurement.no):wordB 6.832 7.871 169.4 <2e-16 ***

# model with smooth for A & difference smooth

words.50$word.ord <- as.ordered(words.50$word)
contrasts(words.50$word.ord) <- "contr.treatment"
words.50.gam.diff <- bam(f2 ~ word.ord + s(measurement.no, bs="cr") +

s(measurement.no, by=word.ord, bs="cr"),
data=words.50, method="ML")

summary.coefs(words.50.gam.diff)

## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1885.149 5.735 328.713 < 2e-16 ***
## word.ordB -67.372 8.110 -8.307 7.99e-16 ***
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(measurement.no) 7.805 8.594 234.40 < 2e-16 ***
## s(measurement.no):word.ordB 1.040 1.079 10.84 0.00098 ***

summary.coefs() (a function from gamm_hacks.r) is used to save space by excluding

parts of the model summary. Readers are encouraged to use the standard summary()

function with GAMMs, as it includes some additional useful information about the model

fit.

Fitting the model with two separate smooths is easy: we need to include a parametric

term that captures overall differences between the trajectories,8 and add the option

by=word to the smooth term (which asks for separate smooths to be fit at each level of

the factor word).

Models with difference smooths require a different approach. First, the categor-

ical grouping variable for the words needs to be converted to a so-called ‘ordered

factor’ using as.ordered(), and the contrasts for this ordered factor need to be set

to "contr.treatment" (this latter step is important, or otherwise the model esti-

mates will be off). Second, the model formula needs to include (i) a parametric term for

word.ord, (ii) a smooth over measurement.nowithout any grouping specification and

8This parametric term needs to be included in both models. Otherwise, the models could not capture

overall differences in F2 and would (incorrectly) force both fitted smooths to have the same average value

over the trajectory.
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(iii) a smooth over measurement.no with the grouping specification by=word.ord.

In the first model summary, the separate smooths simply represent the two different

words. The significance values in the model summary refer to the individual terms: they

suggest that both curves are significantly different from 0 (i.e. not simply flat lines).

However, they do not tell us anything about the difference between the two terms. They

could both be significant even if the two underlying curves were exactly the same. In the

second model summary, the term s(measurement.no) represents the reference smooth,

that is, a curve fit to trajectories at the reference level of the ordered factor word.ord

(i.e. A). The term s(measurement.no):word.ordB represents the difference smooth,

that is, the difference between the trajectories for A and B.

The fact that the difference smooth and the parametric term for word.ord are both

significant suggests that the trajectories for the two words are indeed different. In order

to confirm this, we can perform model comparison using the function compareML().

Following the recommendations in section 2.6.2, the nested model excludes both the

parametric term and the smooth difference term (i.e. all terms that relate to the effect

of word.ord).

# fitting a nested model without the difference smooth
words.50.gam.diff.0 <- bam(f2 ~ s(measurement.no, bs="cr"),

data=words.50, method="ML")

# model comparison using the compareML() function from itsadug
# this is very similar to the anova() function, but better suited
# to models fitted using bam(); some parts of the output are suppressed
compareML(words.50.gam.diff, words.50.gam.diff.0, print.output=F)$table

## Model Score Edf Chisq Df p.value Sig.
## 1 words.50.gam.diff.0 3334.300 3
## 2 words.50.gam.diff 3296.538 6 37.762 3.000 2.798e-16 ***

The model comparison suggests that the inclusion of the difference smooth improves

the model fit significantly.

Let’s create a plot of the model predictions and the difference smooth. These can be

generated using the plot_smooth and the plot_diff functions from itsadug.

plot_smooth(words.50.gam.diff, view="measurement.no",
plot_all="word.ord", rug=F)

plot_diff(words.50.gam.diff, view="measurement.no",
comp=list(word.ord=c("B","A")))
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The view option determines what variable to show along the x-axis; the plot_all =

"word.ord" option tells R to plot predictions separately for each value of the factor

word.ord; the rug=F option tells R not to include ticks for each data point along the

x-axis (these can make plotting very slow and plot files very large when there are many

thousands of data points); and the comp option specifies the levels of word.ord that

the difference smooth is based on. In this case, the difference smooth shows B − A.

Note that the confidence interval for the difference smooth seems a bit too narrow:

the underlying curves were specified in such a way that there is no actual difference

between the curves until about measurement.no 2, but the difference smooth shows a

significant difference along almost the entire trajectory.

As a second step, let’s try to account for the influence of duration on the trajectories.

Simply including it in the model as a parametric term or even as a smooth on its own

won’t work: its effect is not on average F2 values, but on the shapes of the trajectories.

So what we really want is a non-linear interaction between duration and the smooths

for measurement.no. Moreover, it would be useful if we could separate this interaction

term from the main effects of duration and measurement.no. The solution is to use

so-called ‘tensor product interactions’. Although the name is quite intimidating, these are

conceptually very similar to interactions in linear models. All we need to do is include

three terms: s(measurement.no) (a smooth for the main effect of measurement.no),

s(duration) (main effect of duration) and ti(measurement.no, duration)

(the interaction between the two variables).

words.50.gam.dur <- bam(f2 ~ word.ord + s(measurement.no, bs="cr") +
s(duration, bs="cr") +
ti(measurement.no, duration) +
s(measurement.no, by=word.ord, bs="cr"),

data=words.50, method="ML")
summary.coefs(words.50.gam.dur)

## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1887.721 5.315 355.170 <2e-16 ***
## word.ordB -72.516 7.595 -9.548 <2e-16 ***
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(measurement.no) 7.958 8.681 267.519 < 2e-16 ***
## s(duration) 3.339 4.014 7.821 3.78e-06 ***
## ti(measurement.no,duration) 6.409 8.551 8.222 6.08e-11 ***
## s(measurement.no):word.ordB 1.662 2.062 10.137 3.91e-05 ***

The interaction term is significant according to the model summary. If we wanted to

run a more rigorous test, we could fit a nested model where both smooths that include

duration are dropped, and then compare it to the full model using compareML().

There are two ways to plot this interaction. First, we can plot smooths at a few

different values of duration. Or, alternatively, we can plot the surface that represents

the interaction between duration and measurement.no using colours (with warmer

colours representing higher values). Both options are shown below:
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plot_smooth(words.50.gam.dur, view="measurement.no", cond=list(duration=0.16),
rug=F, col="red")

plot_smooth(words.50.gam.dur, view="measurement.no", cond=list(duration=0.08),
rug=F, col="blue", add=T)

fvisgam(words.50.gam.dur, view=c("measurement.no","duration"),
ylim=quantile(words.50$duration, c(0.1, 0.9)))
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The function plot_smooth needs to be run twice to generate the separate smooths:

once to create the plotting area and a smooth for longer trajectories (with a duration of

0.16 s, set using the cond option; this smooth is shown in red) and once to add another

smooth for shorter trajectories (with a duration of 0.08 s; shown in blue). Adding a

smooth to an existing plot is done by including the add=T option. The result is the plot

on the left, which suggests that shorter vowels have a flatter f2 trajectory.

The plot on the right is not easy to interpret, but let’s give it a go. First, let’s pick

a specific point along the y-axis, say, 0.1 s (the second notch from the bottom). This

will allow us to look at a predicted trajectory for a given duration value. Now imagine

a horizontal line crossing this point, and inspect the colours along this line: we start

with dark blue and move towards warmer colours, finally arriving at light ochre. This

indicates a rise in values, which is also shown by the labelled contour lines (which should

be read similarly to contour lines in topographic maps). The colour doesn’t change much

between measurement points 0–2 and between 5–10, indicating that the predicted

trajectory is stable in these ranges, and that most of the change takes place between

2–5. Now let’s zoom out a bit and try to look at a range of different duration values at

the same time. What we see is that the trajectory starts relatively high (over 1550 Hz)

at short durations, and a bit lower (close to 1500 Hz) at long durations. Conversely, the

trajectory ends high for long durations (over 2100 Hz), but ends low for short durations

(lower than 2050 Hz). In the current case, this heatmap is not particularly useful, as the

difference between trajectories with different durations is relatively small. However, it

is often worth inspecting both types of graphs to get a better sense of what the model fit

actually looks like.

Though our model already includes a lot of nuance, it is not yet complete: in its

current form it does not recognise the fact that the data consists of a set of 50 trajec-

tories rather than 550 completely independent measurements, and is therefore likely

overconfident in its estimates. In other words, the model is not capturing dependencies

within individual trajectories, which likely leave patterns in the residuals. This should

show up in a residual autocorrelation plot, so let’s create one. So far, we have only

looked at autocorrelation within a single residual series. In the current case, there are
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50 separate trajectories with 50 separate residual series (though the model is not aware

that the residuals come from different trajectories), so it is impractical to create separate

autocorrelation plots for each of them. Instead, we will look at average autocorrelation

values across the 50 residual series. The plot is shown below.

acf_plot(resid(words.50.gam.dur), split_by=list(words.50$traj))
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The function resid(words.50.gam.dur) extracts the residuals from the model. These

are the main argument to the function acf_plot(), which creates an averaged residual

plot for multiple trajectories. Since the residuals are just a series of numbers without

any structure, the function needs to be told how to chop them up into separate trajec-

tories: this is done using the option split_by=list(words.50$traj), which tells

acf_plot() to calculate the autocorrelations separately for each trajectory and then

average over them. Note also that acf_plot() (like most other autocorrelation plotting

functions) assumes that the order of the observations in your data frame (words.50) is

the same as their order in the time series over which the autocorrelations are calculated

(so e.g. an observation at measurement.no = 2 comes before an observation from

the same trajectory at measurement.no = 5).

The residual autocorrelation plot suggests that there is a fair bit of positive autocor-

relation at lag 1. This confirms our suspicion that there are patterns in the residuals of

the model, which are likely affecting the model output as well. The remaining autocor-

relation values are somewhat less worrying with low values mainly between 0.2 and

−0.2.

We’ll look at two solutions for addressing this issue: (i) using random structures and

(ii) using an autoregressive error model within trajectories. Both of these are effective

at keeping type I error rates close to nominal values in type I error simulations using

data sets with a structure very similar to the current one (Sóskuthy, in prep).

Let’s start with the random structures: we’ll try out a few different options and

perform model comparisons to see what type of random structure is best suited to

our data. We’ll explore three different options: (i) random intercepts only, (ii) random

intercepts plus slopes and (iii) random smooths. The code for fitting these models is

shown below. The last model may take a while to fit, so be prepared to wait for a few

minutes.
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# random intercepts only
words.50.gam.int <- bam(f2 ~ word.ord + s(measurement.no, bs="cr") +

s(duration, bs="cr") +
ti(measurement.no, duration) +
s(measurement.no, by=word.ord, bs="cr") +
s(traj, bs="re"),

data=words.50, method="fREML")
# random intercepts + slopes
words.50.gam.slope <- bam(f2 ~ word.ord + s(measurement.no, bs="cr") +

s(duration, bs="cr") +
ti(measurement.no, duration) +
s(measurement.no, by=word.ord, bs="cr") +
s(traj, bs="re") +
s(traj, measurement.no, bs="re"),

data=words.50, method="fREML")
# random smooths
words.50.gam.smooth <- bam(f2 ~ word.ord + s(measurement.no, bs="cr") +

s(duration, bs="cr") +
ti(measurement.no, duration) +
s(measurement.no, by=word.ord, bs="cr") +
s(measurement.no, traj, bs="fs", xt="cr", m=1, k=5),

data=words.50, method="fREML")

Random intercepts are coded by including a smooth over the grouping variable with the

smoothing class specified as bs="re". This is really a technicality: bam() is able to use

the mathematics of smooths to estimate various random structures, and this is reflected

in its syntax as well. Random slopes are coded by adding the slope variable (duration)

after the grouping variable (traj) inside the smooth, and keeping the smoothing class

as bs="re". This is a bit confusing, since random smooths have the opposite syntax:

here, the continuous variable comes first, followed by the grouping variable. Let’s repeat

this below just to be on the safe side:

• random slopes: grouping factor, continuous variable

• random smooths: continuous variable, grouping factor

For random smooths, we also have to change the smoothing class to bs="fs", which is

short for ‘factor smooth interactions’. The m=1 specification is recommended in several

papers (e.g. Baayen et al. 2016) for random smooths; what it does is slightly change the

way the smoothing penalty is estimated (the default value is 2). The xt="cr" option

sets the smooth class for the individual random smooths to cubic regression splines –

this may not be necessary, but my impression was that cubic regression splines did a

better job at capturing the current vowel trajectories. Finally, k=5 sets a relatively low

upper limit on the wiggliness of the individual random smooths. Although a higher

number might result in a marginally better fit, this model already takes a long time to fit,

and increasing k for random smooths can drastically increase the amount of resources

(memory and time) needed to fit GAMMs.

The estimation method for the three models above is set to method="fREML". We

need restricted maximum likelihood estimation in this case since we want to compare

models with the same fixed effects, but different random effects. In principle, we could

also use method="REML", but fREML (‘fast REML’) is much faster and tends to yield

essentially the same results. If the comparison was between models with different fixed
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effects but the same random effects (the typical case), the models would have to be

estimated using method="ML" (see also Zuur et al. 2009; unfortunately, there is no ‘fast

ML’, so models fitted with ML can take a long time to converge).

In order to find out which model fits the data best, we’ll use a statistic called AIC

(Akaike Information Criterion). This is necessary since the models are not all properly

nested within each other. AIC is a combination of two quantities: how surprising the

data are given our fitted model (the lower this number, the better the fit) and how

many parameters are used in the model. That is, AIC penalises both bad model fits and

unnecessary model complexity. When comparing two models, the one with a lower AIC

should be preferred (AIC comparisons are slightly more complicated, but we will go

with this simple heuristic for the current case). Here are the AIC values for the three

models above:

AIC(words.50.gam.int, words.50.gam.slope, words.50.gam.smooth)

## df AIC
## words.50.gam.int 70.02953 6173.767
## words.50.gam.slope 117.16199 5634.792
## words.50.gam.smooth 212.68868 5269.876

Based on these values, the model with random smooths is a clear winner: the added

model complexity is more than compensated for by the improvement in model fit.

Let’s recreate the model prediction plots that we previously generated for the simple

model without random smooths. The plots below show predicted trajectories for words

A and B (left), and a difference smooth for B − A.

plot_smooth(words.50.gam.smooth, view="measurement.no", plot_all="word.ord",
rug=F, rm.ranef=T)

plot_diff(words.50.gam.smooth, view="measurement.no",
comp=list(word.ord=c("B","A")), rm.ranef=T)
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This is very similar to what we did for the simple model, but both functions include an

additional option: rm.ranef=T. This option ensures that the predictions are shown for

words A vs. B in general. If this option was left out, the predictions would relate to a

given value of the grouping factor for the random effect, that is, traj. In other words,

the plot would show predictions for a specific trajectory. But instead of just plotting that

single trajectory, R would attempt to figure out what that trajectory would look like if it

belonged to word A and what it would look like if it belonged to word B. Since a given
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trajectory can only belong to one word, this can lead to unreliable confidence intervals

and results that are difficult to interpret.

As expected, the confidence intervals for the model with random smooths are much

wider than they are for the simple model (cf. the earlier graphs). Moreover, the shape

of the difference smooth changes considerably between the two models: it looks more

non-linear for the current model, and the confidence interval includes 0 until about

measurement.no 3. Since the initial sections of the underlying curves for the two

words are identical, this is a clear improvement on the previous model.

Can the added by-trajectory random smooths deal with the autocorrelation issue in

the model? Below is the residual autocorrelation plot for the updated model.

acf_resid(words.50.gam.smooth, split_pred=c("traj"))
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Since this model includes traj as a predictor, a different function can be used (though

acf_plot() would also work fine): acf_resid() from itsadug. This function is a

bit simpler in that it automatically extracts the residuals of the model and it’s sufficient

to specify the name of the predictor identifying the trajectories (using the split_pred

option). The plot suggests that the autocorrelation at lag 1 is completely gone, although

a certain amount of negative autocorrelation is introduced at lag 2. This is likely because

of the fact that the initial and final sections of the raw trajectories are completely straight,

but the fitted trajectories are actually a bit wavy. However, this negative autocorrelation

in the residuals does not seem to lead to increased false positive rates in type I error

simulations (at least not for this type of trajectory). This may be a consequence of the

fact that there is very little variance left in the data after the addition of the by-trajectory

random smooths.

The second option for reducing autocorrelation in the residuals is to use an autore-

gressive error model. There are many different kinds of autoregressive models, and

bam() only supports the simplest of these: the so-called AR1 error model. An AR1

error model estimates the model parameters under the assumption that the errors9

for neighbouring observations in a time series are correlated: for instance, the error at

measurement.no 4 is partly determined by the error at measurement.no 3. The AR1

model assumes that such correlations only exist between immediately adjacent points

9 The notion of ‘error’ is closely related to that of ‘residual’: errors are the deviations of the actual obser-

vations from the true underlying quantitites, while residuals are the deviations of the actual observations

from the model predictions. Modelling correlations between errors has the practical effect of removing

correlations in the residuals (assuming that we choose the right error model).
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in the time series. An AR2 model would assume that the error at measurement.no 4

depends both on measurement.no’s 2 and 3.

There are three things that need to be done before adding an AR1 model to a

GAMM. First, the data set needs to be set up so that the order of observations in the

data frame reflects their order in the time series (this is already how the current data

frame is formatted). Second, we need to mark the starting point of each time series

in the data set (i.e. measurement.no 0 for each trajectory) using a separate column –

otherwise bam() wouldn’t be able to determine which adjacent points in the data frame

actually belong to the same time series, and which of them span two time series that just

happen to be next to each other in the data set (e.g. the last measurement.no from

one trajectory and the first measurement.no from the next trajectory). Third, bam()

cannot estimate the degree of correlation between the errors, so that has to be specified

manually. We’ll use a rough estimate from the original model. Here’s the code for fitting

the model:

# 1) data frame is already ordered correctly
# 2) marking starting points of each trajectory

words.50$start.event <- words.50$measurement.no == 0

# 3) getting a rough estimate of the correlation between adjacent errors

r1 <- start_value_rho(words.50.gam.dur)

# fitting the model

words.50.gam.AR <- bam(f2 ~ word.ord + s(measurement.no, bs="cr") +
s(duration, bs="cr") +
ti(measurement.no, duration) +
s(measurement.no, by=word.ord, bs="cr"),

data=words.50, method="fREML",
rho=r1, AR.start=words.50$start.event)

The first line of code adds an indicator column to the data frame that has the value TRUE

marking the beginning of each trajectory. The function start_value_rho() is from the

package itsadug. It takes a GAMM without an autoregressive error model and returns

the residual autocorrelation at lag 1. Note that this value should be treated as a rough

estimate, and other values may, in fact, do a better job at reducing the autocorrelation in

the residuals (see Baayen et al. 2016 for further discussion). The autoregressive model is

added to the GAMM by setting the rho argument to the estimated correlation parameter

and specifying the starting points of the time series using the AR.start argument.

Two plots are shown below, which are both generated using residual autocorrelation

plotting functions.

acf_plot(resid(words.50.gam.AR), split_by=list(words.50$traj))
acf_resid(words.50.gam.AR, split_pred="AR.start")
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As should be clear from the syntax, both of these plots actually show the residuals from

our updated model. However, the one on the left seems to suggest that the residual auto-

correlation has not been affected by the AR1 model, while the one on the right suggests

the opposite, that is, the AR1 model has been successful at reducing autocorrelation.

This is because the plot on the left shows the raw residuals (which don’t take the fitted

AR model into account), while the model on the right shows the normalised residuals

(which do). When an AR model is used, the plot generated using the raw residuals is

misleading, so the plot on the right should be used. Note that this is created by the

acf_resid() function, which works with the normalised residuals by default (but

needs to be told that the data was split into separate time series, which were identified

by the AR.start argument of the bam() function).

The plots below show the model predictions for words A and B, and the difference

smooth.

plot_smooth(words.50.gam.AR, view="measurement.no", plot_all="word.ord", rug=F)
plot_diff(words.50.gam.AR, view="measurement.no",

comp=list(word.ord=c("B","A")))
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These plots look quite similar to the ones from the model including random smooths,

though the confidence intervals are slightly narrower and the shapes of the fitted

trajectories are subtly different.

So which method should be used: random smooths by trajectory or an AR1 model?

In the current case, both of them seem to work fine and lead to very similar conclusions.

However, that may not be the case for all data sets. For instance, Baayen et al. (2016)

discuss a case where both random smooths and an AR model seem to be necessary

in order to appropriately account for all dependencies within a data set. In deciding
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between approaches, it is important to look at residual autocorrelation plots and also to

check how much variance is actually left in the residuals.

There is, however, one practical consideration that makes the AR1 approach slightly

more attractive. Adding an AR1 model to a GAMM is computationally inexpensive, while

adding large numbers of random smooths can be very time- and memory-consuming.

This may not be a problem for small data sets, but the computational cost of random

smooths can be prohibitive for models with large numbers of trajectories.

What if we still want to fit random smooths to a large data set? The function bam()

has an optional argument discrete, which speeds up computation substantially when

set to TRUE. Moreover, when discrete=TRUE, a GAMM can be fitted using multiple

processor cores. The number of processor cores used in the computation is specified by

the nthreads argument. Note that this technique only works with the fREML fitting

method, so evaluating significance through model comparison may not be possible.

4 Analysing data from Stuart-Smith et al. (2015)

We’ve applied GAMMs to various simulated data sets, but we haven’t yet looked at any

real data. In this section, we will use the methods introduced above to analyse a subset

of the data presented in Stuart-Smith et al. (2015). This data set contains dynamic F3

measurements of word-final /r/ in spontaneous recordings of Glaswegian. The speakers

are older males recorded at four different time points between 1970 and 2000. The data

set is a fairly typical example of dynamic speech data. It is thoroughly unbalanced with

varying numbers of tokens across speakers, decades, words and environments. Moreover,

it likely shows the influence of a large number of different variables, though only a few

of these are of interest for our present purposes. It is also larger than the toy data sets

that we’ve worked with so far: the subset that we will look at contains 420 individual

trajectories.

The data set consists of F3 trajectories measured at 11 evenly spaced points. The

trajectories include both /r/ and the preceding vowel. The data come from four sets

of three speakers recorded in the 1970s, the 1980s, the 1990s and the 2000s (i.e. 12

speakers altogether). The following variables will be used in the analysis:

• measurement.no: see above

• duration: overall duration of the vowel + /r/ sequence

• decade: decade of recording coded as a continuous variable

• stress: whether the previous vowel is an unstressed schwa or a full vowel

• traj: a grouping variable by trajectory

• speaker: a grouping variable by speaker

The main question that we’ll try to answer is whether the acoustic characteristics of final

/r/ have changed over time. That is, we’ll be looking for an effect of decade on the F3

trajectories. However, there are a few complicating factors. First, the trajectories vary

quite substantially in terms of their duration, and this is likely to affect their shapes: we

might expect to see flatter trajectories for shorter vowel + /r/ sequences. Second, the
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vowels in the vowel + /r/ sequences are not always the same, but their distribution is

unbalanced: about 65% of all the vowels are schwas. Since the quality of the vowel may

affect the F3 trajectory (though F3 is not expected to vary as much as F1 or F2 would),

it is important to bring this factor into the analysis. To keep things simple, the quality

of the vowel is encoded by the stress variable, which splits the data set according

to whether the vowel is an unstressed schwa or a full vowel. We may also expect that

stressed vs. unstressed vowel + /r/ sequences will change differently, though we have

no clear prediction about what such a difference would look like.

Before we start analysing the data, there is one further important point that should be

discussed. Although the analysis presented here will be shown in a relatively streamlined

form, the model fitting procedure was actually preceded by a detailed exploration of the

data through various plots. These plots won’t be shown here, but many of the analytical

decisions below are actually based on observations that emerged from this exploratory

analysis. This type of data exploration is absolutely crucial, and there is almost no point

in starting to fit GAMMs until we get a sense of the range of variation in the trajectories

that we are trying to model.

To avoid starting with a very complex model, let’s first simply try to capture the effect

of decade on the trajectories. Since decade only across but not within speakers, it’s

essential to include speaker as a random smooth in the model. Otherwise the estimated

effect of decade will be based on the assumption that there are 420 independent data

points where, in reality, there are really only 12. We’ll also record and display the

amount of time it takes to fit the model using the system.time() function. This

function displays three timing values. The last one of these shows how long it takes to

fit the model overall; the other two are less relevant.

gl.r <- read.csv("glasgow_r.csv")
gl.r.gamm.simple.t <- system.time(

gl.r.gamm.simple <- bam(f3 ~ s(measurement.no) +
s(decade, k=4) +
ti(measurement.no, decade, k=c(10,4)) +
s(measurement.no, speaker, bs="fs", m=1, k=4),

dat=gl.r, method="ML")
)
gl.r.gamm.simple.t

## user system elapsed
## 2.508 0.136 2.678

summary.coefs(gl.r.gamm.simple)

## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2327.37 27.48 84.71 <2e-16 ***
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(measurement.no) 1.012 1.018 43.760 3.23e-11 ***
## s(decade) 1.242 1.246 11.620 0.000181 ***
## ti(measurement.no,decade) 1.673 1.750 3.125 0.090800 .
## s(measurement.no,speaker) 30.990 46.000 19.176 < 2e-16 ***

There are a few things to note here. k cannot be set higher than 4 for s(decade),
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since decade only has 4 values. This also holds for the ti() interaction term, where k

needs to be set separately for the two main terms. k is also set to 4 for the by-speaker

random smooths, partly because the raw data don’t show that much wiggliness and

partly because we will eventually want to include some further random smooths, so it’s

worth keeping things reasonably simple.

Here’s a plot illustrating the effect of decade on the trajectories:10

source("gamm_hacks.r")
plot_smooth.cont(gl.r.gamm.simple, view="measurement.no", plot_all.c="decade",

rug=F, rm.ranef=T)
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We won’t run model comparisons for this model, as a few things are still missing, but

decade does seem to have a significant effect on average F3 and possibly even the

slope of the trajectories. Interestingly, the predicted trajectories come out as completely

straight (this can also be read off the model summary, where the EDF for all three fixed

smooth terms is close to 1). This is an example of oversmoothing, which often happens

when residual patterns aren’t appropriately accounted for.

Next, we’ll add two further variables: duration and stress. These two variables

actually show a slight correlation, as unstressed schwas are shorter on average than

full vowels, but there is sufficient overlap between the duration values for the two

stress groups to estimate these effects separately. We’ll add a main smooth term for

duration as well as a ti() interaction with measurement.no. The predictor stress

is included as a parametric term and a difference smooth (using by=stress).

gl.r$stress <- as.ordered(gl.r$stress)
contrasts(gl.r$stress) <- "contr.treatment"
gl.r.gamm.covs.t <- system.time(

gl.r.gamm.covs <- bam(f3 ~ stress +
s(measurement.no) + s(measurement.no, by=stress) +
s(duration) + ti(measurement.no, duration) +
s(decade, k=4) +
ti(measurement.no, decade, k=c(10,4)) +
s(measurement.no, speaker, bs="fs", m=1, k=4),

dat=gl.r, method="ML")
)
gl.r.gamm.covs.t

10A slightly modified version of plot_smooth() is used to keep things simple. This function can be

loaded by sourcing the file gamm_hacks.r.
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## user system elapsed
## 2.728 0.105 2.851

The inclusion of stress raises an additional problem: it is possible that the effect of

stress varies across subjects. In a linear mixed effects model, this issue would be dealt

with through random slopes (e.g. one could include by-subject random slopes for the

interaction between measurement.no and stress and the corresponding main terms).

Although such solutions could also be explored for the current case, we’ll follow a random

smooth-based technique from Wieling et al. (2016) instead. We will fit separate smooths

for each speaker at each level of stress, which will allow us to capture speaker-specific

trends in the stress effect. This can be achieved by using a combined speaker ×

stress variable as the grouping factor for the random smooths. The model is shown

below.

# creating combined grouping variable
gl.r$speakerStress <- interaction(gl.r$speaker, gl.r$stress)

gl.r.gamm.covs.2.t <- system.time(
gl.r.gamm.covs.2 <- bam(f3 ~ stress +

s(measurement.no) + s(measurement.no, by=stress) +
s(duration) + ti(measurement.no, duration) +
s(decade, k=4) +
ti(measurement.no, decade, k=c(10,4)) +
s(measurement.no, speakerStress, bs="fs", m=1, k=4),

dat=gl.r, method="ML")
)
gl.r.gamm.covs.2.t

## user system elapsed
## 6.802 0.346 7.226

Note that the function interaction() simply combines speaker and stress in a

single variable. To save space, the model summary is not shown, but here’s a graphical

summary of the effects of duration and stress.

plot_smooth(gl.r.gamm.covs.2, view="measurement.no", cond=list(duration=0.3),
rug=F, rm.ranef=T, col="blue", main="duration")

plot_smooth(gl.r.gamm.covs.2, view="measurement.no", cond=list(duration=0.1),
rug=F, rm.ranef=T, col="red", add=T)

plot_smooth(gl.r.gamm.covs.2, view="measurement.no", plot_all="stress",
rug=F, rm.ranef=T, main="stress")
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The F3 trajectories start lower for shorter /Vr/ sequences and are a bit flatter (the red

line represents a short trajectory). This suggests that short vowels are more strongly

coarticulated with the following /r/. Moreover, there is a more pronounced dip near the

/r/ part of the sequence for sequences with full vowels. Again, the unstressed sequence

shows a flatter trajectory. One possible interpretation is that /r/ is more likely to be

weakened or deleted after unstressed vowels.

Finally, let’s see whether stress interacts with the effect of decade. Two further

by terms need to be added: one for the decade main term and another one for the

ti() interaction between measurement.no and decade. Only the added terms are

shown in the code chunk below.

gl.r.gamm.intr <- bam(f3 ~ stress +
...
s(decade, k=4, by=stress) +
ti(measurement.no, decade, k=c(10,4), by=stress),

dat=gl.r, method="ML")

## user system elapsed
## 12.390 0.411 12.818

The summary for this model (not shown above) suggests that stress and decade do

not interact significantly.

How does this model fare with respect to residual autocorrelation? Since we haven’t

yet included by-trajectory random smooths and/or an autoregressive error model, there

will likely be some autocorrelation in the residuals. This is confirmed by the residual

autocorrelation plot below:

acf_plot(resid(gl.r.gamm.intr), split_by=list(gl.r$traj))
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The residual patterns look very similar to those from the simpler models of the previous

section, and are due to the fact that the grouping structure in the data is ignored. This

likely has an influence on the estimated effects of stress and duration, which should

really be estimated from differences across trajectories, not individual data points. Since

the model does not include by-trajectory random smooths or an AR error model, it is

not aware of dependencies among data points from the same trajectories.

Let’s first try fitting the model using by-trajectory random smooths. We’ll change

the estimation method to fREML as ML is simply too slow and memory-intensive. This,

of course, means that we cannot check for the significance of fixed terms using model
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comparison. Note also that the value of discrete is set to TRUE to speed up computation.

If your machine has more than one processor core, you can try setting nthreads to a

value higher than one, which may speed up processing even further.

gl.r.gamm.traj.t <- system.time(
gl.r.gamm.traj <- bam(f3 ~ stress +

s(measurement.no) + s(measurement.no, by=stress) +
s(duration) + ti(measurement.no, duration) +
s(decade, k=4) + s(decade, k=4, by=stress) +
ti(measurement.no, decade, k=c(10,4)) +
ti(measurement.no, decade, k=c(10,4), by=stress) +
s(measurement.no, speakerStress, bs="fs", m=1, k=4) +
s(measurement.no, traj, bs="fs", m=1, k=4),

dat=gl.r, method="fREML", discrete=T)
)

gl.r.gamm.traj.t

## user system elapsed
## 220.948 19.134 243.193

summary.coefs(gl.r.gamm.traj, digits=3)

## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2303.8 31.7 72.72 <2e-16 ***
## stressschwa 42.2 43.6 0.97 0.33
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(measurement.no) 6.43 7.35 9.65 2.7e-12 ***
## s(measurement.no):stressschwa 5.24 6.19 2.74 0.01106 *
## s(duration) 1.87 1.87 0.94 0.29569
## ti(measurement.no,duration) 5.59 6.35 3.60 0.00120 **
## s(decade) 1.93 1.93 10.44 0.00022 ***
## s(decade):stressschwa 1.00 1.00 0.24 0.62743
## ti(decade,measurement.no) 11.57 14.12 2.01 0.01198 *
## ti(decade,measurement.no):stressschwa 6.40 8.34 0.34 0.95583
## s(measurement.no,speakerStress) 45.31 94.00 1.54 < 2e-16 ***
## s(measurement.no,traj) 1536.71 1676.00 101.81 < 2e-16 ***

The same model fit with an AR1 error term is shown on the next page.
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# marking start of trajectories
gl.r$start.event <- gl.r$measurement.no == 0
# getting rough estimate of autocorrelation parameter
gl.autocorr <- start_value_rho(gl.r.gamm.intr)

# fit model
gl.r.gamm.AR.t <- system.time(

gl.r.gamm.AR <- bam(f3 ~ stress +
s(measurement.no) + s(measurement.no, by=stress) +
s(duration) + ti(measurement.no, duration) +
s(decade, k=4) + s(decade, k=4, by=stress) +
ti(measurement.no, decade, k=c(10,4)) +
ti(measurement.no, decade, k=c(10,4), by=stress) +
s(measurement.no, speakerStress, bs="fs", m=1, k=4),

dat=gl.r, method="ML",
AR.start=gl.r$start.event, rho=gl.autocorr)

)
gl.r.gamm.AR.t

## user system elapsed
## 19.309 0.868 20.683

summary.coefs(gl.r.gamm.AR, digits=3)

## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2295.4 28.6 80.16 <2e-16 ***
## stressschwa 47.3 39.9 1.19 0.24
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(measurement.no) 4.78 6.07 9.84 6.9e-11 ***
## s(measurement.no):stressschwa 1.01 1.01 1.38 0.241
## s(duration) 2.35 2.99 2.94 0.035 *
## ti(measurement.no,duration) 6.26 8.10 4.61 1.2e-05 ***
## s(decade) 1.50 1.52 11.49 6.7e-05 ***
## s(decade):stressschwa 1.00 1.00 0.37 0.542
## ti(measurement.no,decade) 2.45 3.13 1.61 0.190
## ti(measurement.no,decade):stressschwa 1.01 1.01 0.04 0.846
## s(measurement.no,speakerStress) 67.45 92.00 6.39 < 2e-16 ***

First of all, note that the AR model converges about 10 times faster than the model

with random smooths, even though it is fitted with ML, which is generally a bit slower

(ML was chosen so that we can perform model comparison later). There are also dif-

ferences in significance across the two models. For some variables, the model with

random smooths is more conservative (duration); for others, it is less conservative

(stress). Such differences only really occur in cases where the p-values are relatively

close to 0.05. The fixed effects that are significant in both models are s(decade) and

ti(measurement.no,duration).

The residual autocorrelation plots for the two models are shown below. The results

are very similar to those from the previous sections: the model with random smooths by

trajectory introduces an artefactual negative autocorrelation at lag 2 (though, as before,

there is little residual variance left in the data, so this may be less problematic than it

appears from the autocorrelation plot), while the model with an autoregressive error
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model gets rid of most of the autocorrelation without introducing any artefacts.

# autocorrelation plots
acf_resid(gl.r.gamm.traj, split_pred="traj")
acf_resid(gl.r.gamm.AR, split_pred="AR.start")
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Let’s compare the predictions of the models. The plots below show the estimated decade

effect (for schwa) from the two models.

plot_smooth.cont(gl.r.gamm.traj, view="measurement.no", plot_all.c="decade",
cond=list(stress="schwa"), rug=F, rm.ranef=T,
main="decade - random smooths", ylim=c(1900,2700))

plot_smooth.cont(gl.r.gamm.AR, view="measurement.no", plot_all.c="decade",
cond=list(stress="schwa"), rug=F, rm.ranef=T,
main="decade - AR", ylim=c(1900,2700))
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Though the two plots are very similar, the estimated trajectory shapes are slightly

different, especially for the 1980s speakers (this is likely a reflection of the fact that the

smooth interaction between decade and measurement.no is significant in the model

with random smooths, but not in the one with an AR1 model). The trajectories estimated

by the GAMM with the AR model are also generally a bit smoother.

Here are the predictions for stressed vowel + /r/ vs. unstressed vowel + /r/ se-

quences.

plot_smooth(gl.r.gamm.traj, view="measurement.no", plot_all="stress",
rug=F, rm.ranef=T, main="stress - random smooths", ylim=c(2000,2450))

plot_smooth(gl.r.gamm.AR, view="measurement.no", plot_all="stress",
rug=F, rm.ranef=T, main="stress - AR", ylim=c(2000,2450))

40



0 2 4 6 8 10

2
0
0
0

2
2
0
0

2
4
0
0

stress − random smooths

measurement.no

f3

fi
tt
e
d
 v

a
lu

e
s
, 
e
x
c
l.
 r

a
n
d
o
m

schwa
full

0 2 4 6 8 10

2
0
0
0

2
2
0
0

2
4
0
0

stress − AR

measurement.no

f3

(A
R

.s
ta

rt
)

fi
tt
e
d
 v

a
lu

e
s
, 
e
x
c
l.
 r

a
n
d
o
m

schwa
full

Again, the estimated trajectories look similar, but the AR ones are somewhat smoother

(and since they run almost in parallel, the shape difference that is significant for the

random smooth model is not significant here – see the model summaries).

The predictions for V + /r/ sequences with short vs. long durations:

plot_smooth(gl.r.gamm.traj, view="measurement.no", cond=list(duration=0.3),
rug=F, rm.ranef=T, col="blue", main="duration - random smooths",
ylim=c(2050,2550))

plot_smooth(gl.r.gamm.traj, view="measurement.no", cond=list(duration=0.1),
rug=F, rm.ranef=T, col="red", add=T)

plot_smooth(gl.r.gamm.AR, view="measurement.no", cond=list(duration=0.3),
rug=F, rm.ranef=T, col="blue", main="duration - AR",
ylim=c(2050,2550))

plot_smooth(gl.r.gamm.AR, view="measurement.no", cond=list(duration=0.1),
rug=F, rm.ranef=T, col="red", add=T)

0 2 4 6 8 10

2
1
0
0

2
3
0
0

2
5
0
0

duration − random smooths

measurement.no

f3

fi
tt
e
d
 v

a
lu

e
s
, 
e
x
c
l.
 r

a
n
d
o
m

0 2 4 6 8 10

2
1
0
0

2
3
0
0

2
5
0
0

duration − AR

measurement.no

f3

(A
R

.s
ta

rt
)

fi
tt
e
d
 v

a
lu

e
s
, 
e
x
c
l.
 r

a
n
d
o
m

Though the difference in smoothness seen for the previous graphs is also observed here,

the general conclusions from the two models with respect to duration are very similar.

The plot below shows the estimated random smooths for different speakers from

the model with random smooths. In order to get the graph to display the correct set

of random smooths, we need to specify it using a number, which actually corresponds

to its position in the smooth part of the model summary (i.e. it’s on the 9th line in the

smooth summary).
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inspect_random(gl.r.gamm.traj, select=9, lwd=3,
main="random smooths by speaker")
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Finally, we’ll perform a model comparison to check whether the effect of decade is

significant. The comparison is between the full GAMM with an AR model and a nested

model that excludes all terms with decade. The comparison is shown below:

gl.r.gamm.AR.0 <- bam(f3 ~ stress +
s(measurement.no) + s(measurement.no, by=stress) +
s(duration) + ti(measurement.no, duration) +
s(measurement.no, speakerStress, bs="fs", m=1, k=4),

dat=gl.r, method="ML",
AR.start=gl.r$start.event, rho=gl.autocorr)

compareML(gl.r.gamm.AR, gl.r.gamm.AR.0, print.output=F)$table

## Model Score Edf Chisq Df p.value Sig.
## 1 gl.r.gamm.AR.0 26391.20 13
## 2 gl.r.gamm.AR 26377.75 23 13.450 10.000 0.003 **

The difference between the models is significant, indicating that there is indeed a change

in F3 as a function of time. This concludes our analysis of the Glasgow /r/ data set.

One remaining question to answer is whether we should prefer the GAMM with

random smooths by trajectory or the one with an AR model – or should we perhaps

combine them? In this case, combining the two methods is probably not a good idea:

though the random smooths introduce an artefactual correlation, an AR1 model wouldn’t

be able to deal with this issue appropriately, as it is at lag 2, not lag 1. There are no

such artefacts in the AR1 version of the model, which tips the balance in favour of the

latter model. Moreover, the AR1 version can be fitted using ML, which in turn makes

model comparisons possible. In contrast, the version of the model with random smooths

is too complex to be fitted using ML, so model comparison based on fixed effects is not

an option. Finally, the AR1 version can be fitted in a much shorter time. This may not be

a knock-down argument in the current case, but it is a very important consideration for

data sets with a larger number of trajectories. Therefore, although the overall conclusions

from the two models are similar, a GAMM with an AR1 error model seems preferable to

a GAMM with random smooths by trajectory for the Glasgow /r/ data set.

It should be noted that while these arguments may hold for dynamic formant data of

the type presented here, there is no one-size-fits-all solution for this issue, and the choice

between the two options should be guided by careful consideration of the data and
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model criticism (e.g. inspection of residual autocorrelation plots). There may be also be

cases where both types of structures are needed to account for patterns in the residuals.

For more information on these issues, I strongly recommend Baayen et al. (2016) and

Baayen et al. (2017): both papers offer plenty of advice on using by-trajectory random

smooths and autoregressive error models, and also illustrate their use through a wide

variety of linguistic examples.

5 Final comments

The goal of this paper was to provide an introduction to GAMMs in the context of

dynamic speech analysis. We have discussed a range of theoretical concepts and gone

through two example data sets, covering many of the questions and issues that come up

when working with these models. However, there are many more issues that I simply

had to leave out in order to keep things short:

• checking modelling assumptions: normal distribution of residuals, homoscedastic-

ity

• dealing with violations of these assumptions

• other smoother types such as adaptive smoothers and cyclic smoothers (might be

appropriate for pitch contours)

• GAMMs for two-dimensional spatial data

5.1 Useful references

Below is a short (and incomplete) list of useful GAMM references. I consulted many of

these while putting this introduction together.

• Wood (2006): The standard reference for GAMMs. It is an excellent book with

a lot of detail, and can be very useful for finding out more about the methods

and assumptions underlying GAMMs. Though many of the sections assume a

strong background in mathematics, most of the example analyses and parts of the

conceptual discussion are possible to follow without mathematical training.

• Baayen et al. (2016): A paper that focuses specifically on modelling autocorrelation

using GAMMs, and presents analyses for three separate linguistic examples. It also

includes some complicated GAMMs (even some with three-way interactions).

• Baayen et al. (2017): A paper that looks at typical patterns of temporal autocorre-

lation in data obtained from humans. Provides advice on handling autocorrelation

as well as discussion of other modelling issues (e.g. the difference between ex-

ploratory and confirmatory analyses).

• Kelly (2014): An online tutorial. This one covers not just GAMMs, but also a range

of other methods for dealing with non-linearity, and makes various comparisons

across these methods. Note that this tutorial relies on the gam library, not mgcv.
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• Simpson (2014): An interesting blog post that shows how to model seasonal data

using GAMMs. It also explains basis functions in a clear and concise way.

• Simpson (2011): Another great blog post with a lot of useful detail on autocor-

relation components. It also has an interesting section on generating confidence

intervals for the derivative of a smooth function.

• van Rij (2015): A great online tutorial that covers many of the technical aspects

of fitting GAMMs. It also includes autocorrelation and model comparisons.

• van Rij (2016): A brief R vignette that describes three different methods for

significance testing using GAMMs. Note that some of the model comparisons are

based on GAMMs fitted with fREML, which may lead to unreliable results (this is

noted in the text as well).

• Winter & Wieling (2016): Discusses GAMMs in the context of language change

and evolution and provides a clear and concise introduction to GAMMs and mixed

models in general. It also covers a number of topics that are not discussed here,

such as autocorrelation and logistic / Poisson GAMMs. It comes with thoroughly

commented example code that is also available at

https://github.com/bodowinter/change_tutorial_materials.

• Wieling (2017): Lecture slides for a five-day workshop on advanced regression

methods. Lectures 3–5 provide a very detailed introduction to GAMMs with tons

of useful examples illustrating ways of dealing with autocorrelation, non-normally

distributed residuals and also a range of different types of data (including ERP

and articulatory data).
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Appendix: R packages and functions for fitting GAMMs

There are a number of different functions that can be used for fitting GAMMs in R:

gam(), bam(), gamm() (all three from the package mgcv) and gamm4() (from the

package gamm4). These functions have slightly different strength and weaknesses. Some

of the discussion below is fairly technical, and probably makes more sense to readers

who already have a bit of experience with GAMMs. I have included it here as I think it

may be useful for reference.

gam()/bam() are the best documented and most reliable tools for fitting GAMMs,

and most existing tutorials focus on these functions. Although these are separate func-

tions, they can be used in very similar ways. bam() is in many ways a more advanced

version of gam that can be much faster than gam() and uses less memory, so it is the

preferred option for large or complex data sets. bam() can also be run in parallel on

multiple processor cores and includes an option for further performance gains (these can

be accessed by setting discrete=TRUE and specifying the number of parallel threads

using the nthreads option). bam() also allows the inclusion of a simple autoregressive

error model of order 1 (AR1), which can capture some patterns of autocorrelation in

the residuals. gam()/bam() are generally more versatile than gamm() and gamm4(),

though the latter two can be a bit faster when the model contains random smooths with

many levels. The package itsadug has been developed primarily with gam()/bam() in

mind, and many of its functions do not work properly with models fitted using gamm()

or gamm4(). Here is a brief list of the main features of gam() that are relevant for us

(don’t worry if some of these features are unclear at this point; many of them will be

discussed soon):

• can fit all smooth types, including traditional random effects and random smooths

• can fit crossed random smooths (e.g. random smooths by words and by speakers

at the same time)

• fully compatible with itsadug

• can fit smooth interactions (te() and ti()), where the main effects and interac-

tion terms are separable

• possible to compare models using anova() / compareML()
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• possible to model simple autocorrelation in the data when using bam() (but not

gam())

• can be run on multiple processor cores (bam())

gamm() is superficially similar to gam()/bam(), but it relies on an external package

(nlme) for estimating models. In practical terms, this means that gamm() can be faster

than gam()/bam() when the model includes randoms smooths with many levels. In

addition, gamm() differs from gam()/bam() in the following ways:

• cannot fit crossed random smooths

• only partly compatible with itsadug

• not possible to compare models using anova()

• can include complex models of autocorrelation

• can deal with heteroscedascity in the data by using variance components

gamm4() is in many ways similar to gamm(): it mostly uses the same syntax as gam()/bam(),

but performs model fitting with the help of the lme4 package. Like gamm(), gamm4()

is good at fitting models with random smooths, and possibly even faster than gamm().

It also comes with its specific set of pros and cons compared to gam()/bam() and

gamm():

• can fit crossed random smooths

• only partly compatible with itsadug

• possible to compare models using anova()

• cannot deal with autocorrelation or heteroscedascity

• can only fit smooth interactions where the main effects and interaction terms are

inseparable (so their significance cannot be evaluated separately)
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