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Abstract
Objectives To derive and validate a risk adjustment model for predicting
seven day mortality in emergency medical admissions, to test the value
of including physiology and blood parameters, and to explore the
constancy of the risk associated with each model variable across a range
of settings.

Design Mixed prospective and retrospective cohort study.

Setting Nine acute hospitals (n=3 derivation, n=9 validation) and
associated ambulance services in England, Australia, and Hong Kong.

Participants Adults with medical emergencies (n=5644 derivation, n=13
762 validation) who were alive and not in cardiac arrest when attended
by an ambulance and either were admitted to hospital or died in the
ambulance or emergency department.

InterventionsData were either collected prospectively or retrospectively
from routine sources and extraction from ambulance and emergency
department records.

Main outcome measure Mortality up to seven days after hospital
admission.

Results In the derivation phase, age, ICD-10 code, active malignancy,
Glasgow coma score, respiratory rate, peripheral oxygen saturation,
temperature, white cell count, and potassium and urea concentrations
were independent predictors of seven day mortality. A model based on
age and ICD-10 code alone had a C statistic of 0.80 (95% confidence
interval 0.78 to 0.83), which increased to 0.81 (0.79 to 0.84) with the
addition of active malignancy. This was markedly improved only when
physiological variables (C statistic 0.87, 0.85 to 0.89), blood variables
(0.87, 0.84 to 0.89), or both (0.90, 0.88 to 0.92) were added. In the
validation phase, themodels with physiology variables (physiologymodel)
and all variables (full model) were tested in nine hospitals. Overall, the
C statistics ranged across centres from 0.80 to 0.91 for the physiology

model and from 0.83 to 0.93 for the full model. The rank order of hospitals
based on adjusted mortality differed markedly from the rank order based
on crude mortality. ICD-10 code, Glasgow coma score, respiratory rate,
systolic blood pressure, oxygen saturation, haemoglobin concentration,
white cell count, and potassium, urea, creatinine, and glucose
concentrations all had statistically significant interactions with hospital.

Conclusion A risk adjustment model for emergency medical admissions
based on age, ICD-10 code, active malignancy, and routinely recorded
physiological and blood variables can provide excellent discriminant
value for seven day mortality across a range of settings. Using risk
adjustment markedly changed hospitals’ rankings. However, evidence
was found that the association between keymodel variables andmortality
were not constant.

Supplementary data appendix

Introduction
Around 5 million emergency hospital admissions occur each
year in England, and about 4% of these result in death in
hospital.1 The UK Department of Health is developing
performance indicators for emergency and urgent care that are
intended to be clinically credible and evidence based outcome
measures.2 Mortality is undoubtedly an important outcome in
emergency care, but comparison of crude mortality rates may
be confounded by differences in case mix. Risk adjustment
models may be used to assess the quality of emergency
healthcare.3 4Observed mortality among emergency admissions
can be compared with predicted risk adjusted mortality to
determine whether the number of deaths exceeds the expected
rate, with case mix taken into account.5

Case mix adjusted estimates of hospital mortality have been
used to look for poor quality care by using routinely collected
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data,6-8most notably atMid Staffordshire NHS Trust.9However,
these methods have been criticised as providing potentially
misleading measures of quality of care.10 11 The shortcomings
of existing methods may be due to failure to adjust routine data
adequately and reliably for differences in case mix.12 Existing
methods adjust for age, sex, and comorbidities but do not adjust
for severity of illness, as indicated by physiological measures
or blood tests.6 7 This probably reflects a lack of available
information systems to allow incorporation of these variables
into risk adjustment models, as clinical risk prediction tools are
typically based on physiological measures of severity of illness
rather than on comorbidities.13 In critical care, where information
systems routinely collect physiological blood data, severity
scoringmethods such as the acute physiology and chronic health
evaluation (APACHE) II and simplified acute physiology score
(SAPS) II are used to produce risk adjusted estimates of
mortality.14 15

The development of electronic data collection systems in
emergency and pre-hospital care raises the potential for routine
collection of measures of severity of illness and their
incorporation in risk adjustment models. However, this may
require additional data collection and the overcoming of
substantial problems of data linkage, which can be justified only
if additional variables improve risk adjustment. Furthermore,
the addition of variables may not overcome another limitation
of risk adjustment models, the constant risk fallacy,16 whereby
an association between a predictor variable and outcome is
assumed to be constant whereas it actually varies between
settings. For example, age is often included in risk adjustment
because older age is associated with higher risk of death.
Conventional risk adjustment models assume that the risk
associated with age is constant, so the difference in risk
associated with being 40 or 70 years old is the same in all
settings. However, the risk associated with age may actually
differ between healthy populations with long life expectancy
and unhealthy populations with short life expectancy.
Conventional risk adjustment models commit the fallacy of
assuming that the difference in risk between 40 and 70 year olds
is the same everywhere. Failure to recognise the constant risk
fallacy can result in a model paradoxically increasing the effect
of differences in case mix on the outcome rather than reducing
it.17

We aimed to derive and validate a risk adjustment model for
predicting seven daymortality in emergencymedical admissions
by using routinely collected data, pre-hospital and emergency
department physiological data, and routine blood test results.
We specifically aimed to determine the value of adding
physiological data and blood data to basic risk adjustment
models and to explore whether the risk associated with each
model variable was constant across a range of settings or was
subject to the constant risk fallacy.

Methods
Setting, participants, and data collection
The study took place in emergency departments in Sheffield,
Barnsley, Rotherham, Hull, York, Leicester, and Northampton
in the UK, and in Hong Kong and Melbourne, Australia. The
first three hospitals each contributed two cohorts (derivation
and validation), whereas the other hospitals each contributed a
single validation cohort. Patients were eligible for inclusion if
they were alive and not in cardiac arrest when attended by an
emergency ambulance and then either were admitted to hospital
or died in the ambulance or emergency department.We excluded
children (under 16 years), women with obstetric emergencies,

adults with primarily mental health emergencies, and injured
adults aged under 65. We identified patients at the UK sites
retrospectively by review of hospital computer systems; patients
in Hong Kong and Melbourne were identified prospectively by
research staff working in the emergency department. We used
different methods in different hospitals in response to differences
in the ability of routine data systems to identify relevant cases
and differences in availability of research staff for data
collection.
We identified deaths up to seven days from hospitals’ computer
records, augmented by lists from local coroner’s offices in the
derivation phase. A researcher abstracted emergency department
data, including patients’ age, sex, physiological data (heart rate,
respiratory rate, blood pressure, peripheral oxygen saturation,
temperature, and Glasgow coma score), recorded comorbidities,
and hospital admission within the previous 30 days, from
hospital records. Paramedics routinely recorded physiological
data in the ambulance on the standard patient report forms. Data
from these forms were then either scanned into an electronic
database or manually abstracted by a researcher. We then
matched ambulance data to emergency department data by using
the ambulance dispatch code. Wherever possible, we used the
first physiological recording (that is, the ambulance recording).
Where no physiological data were recorded in the ambulance
or the cases could not be matched to the patient report form, we
used the emergency department physiological data. Each patient
had an ICD-10 (international classification of diseases, 10th
revision) code attributed by hospital clerical staff as part of
routine management, usually around twomonths after the initial
presentation to hospital. We searched blood test data from the
hospital laboratories (full blood count; urea, creatinine,
potassium, sodium, and glucose concentrations) to identify the
first blood result up to 24 hours after initial hospital attendance
that matched with the hospital number of each patient. All data
were entered on to a secure online database managed by the
University of Sheffield Clinical Trials Research Unit.

Model derivation
To explore the univariable association between continuous
variables and mortality, we plotted mortality against deciles of
each variable. Age seemed to have a linear association with
mortality, whereas other variables had more complex
associations. We therefore categorised these variables into
normal, low/high, and very low/high categories on the basis of
their association with mortality and, where applicable,
recognised clinical normal ranges. For peripheral oxygen
saturation, we used different thresholds for low and very low
saturation for recordings with andwithout supplemental oxygen.
We initially grouped ICD-10 codes according to their chapter,
but we then divided the two chapters with the largest number
of cases (XI “Diseases of the digestive system” and X “Diseases
of the respiratory system”) into subgroups of diseases with
similar mortality and amalgamated chapters with a small number
of cases into a group of “others.” The supplementary data
appendix gives details of categorisations.
To explore missing data, we calculated the proportion of each
variable that was missing among dead patients and survivors at
seven days. A substantial proportion of patients, particularly
among the survivors, had no blood test data. Given this high
rate of missing blood data that seemed to be associated with
outcome, we decided to develop twomodels: one without blood
results using data from all patients (the physiology model) and
one with blood results using data only from those with blood
results (the full model). Becausemultivariable logistic regression
excludes patients who do not have complete data for all variables
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in the model, we investigated twomethods for handling missing
data under both models: multiple imputation and replacing
missing values with sex specific means.
We analysed the univariable association between each variable
and mortality by using logistic regression. We included only
variables with a significant association with mortality at the
10% level (that is, P<0.1) in multivariable analyses, determining
improvement of the model by using the likelihood ratio test
with a 5% level of statistically significant improvement. To
estimate how much each additional level of data contributed to
the model, we developed a succession of multivariable models
using increasing numbers of variables. The basic model used
age and ICD-10 code only. Subsequent models included jointly
predictive comorbidities, physiological variables, and blood
results, either separately or in combination.We evaluatedmodels
incorporating blood tests only in cases with blood test data. We
tested the other models separately in patients with and without
blood tests to determine if differences between models were
explained by selection of patients.
We fitted the risk score as an explanatory variable in a logistic
regression model with mortality as the outcome. We used two
standard criteria to assess the model’s validity: log likelihood
(testing whether additional variables improved the overall fit
of nested models by using likelihood ratio tests); and sensitivity
and specificity (using receiver operating characteristics curves
and C statistics to quantify the sensitivity and specificity of the
model).

Model validation
In the validation phase, we tested two models separately: the
physiology model (age, ICD-10, active malignancy, and
physiology) in all patients; and the full model (age, ICD-10,
active malignancy, physiology, and bloods) only in patients
with blood data.We decided to include all physiology and blood
variables in the respective models, even if not all physiology
and blood tests were predictors in the full model, because the
logistics of collecting data meant that the non-predictive
variables were automatically collected alongside the predictive
variables and the distinction between a variable being an
independent predictor or not often depended on the threshold
for statistical significance as much as the strength of association.
We tested the model’s validity in two ways in each setting to
reflect the way the model can be used in practice: using
coefficients from across the whole validation cohort, as might
be used in research or national audit; and using separate
coefficients for each validation site, as might be used in local
audit. We assessed the model’s performance by calculating the
C statistic (with a 95% confidence interval) for each analysis.
We explored how the model would be implemented in practice
by using it to estimate the expected number of deaths in each
centre and calculate a standardised mortality ratio. We carried
out this process three times using models of progressive
complexity: the basic model consisting of age, ICD-10, and
active malignancy; the physiology model outlined above; and
the full model outlined above. We ranked the centres according
to their observed death rate or standardised mortality ratio by
using each model and derived 95% confidence intervals. We
tested the rank correlation between different ranking methods
to determine the extent to which the model changed centres’
ranks. We repeated this process using an alternative method to
estimate the effect of each centre on outcome.We included each
centre as a covariate in the model and used the centre coefficient
to estimate the effect of centre on mortality after adjustment for
model covariates.

Finally, we tested for evidence of the constant risk fallacy by
testing for interactions between the centre and each predictor
variable in the model individually against outcome (death at
seven days) to investigate whether the risk for a given factor
was constant across centres, as evidence of interactions indicates
that risk is not constant between centres.16

Results
Derivation phase
The derivation phase included 2381 eligible cases in Sheffield
(11 February to 5 May 2008), 1626 cases in Barnsley (19
November 2007 to 24 February 2008), and 1637 cases in
Rotherham (19 November 2007 to 25 February 2008). Overall
seven day mortality was 311/5644 (5.5%). The mean age of the
derivation cohort was 66.8 years, and 2687 (47.6%) were male.
The supplementary data appendix gives details of missing data,
univariable analysis, and multivariable analysis. Physiological
variables had high rates of completeness, but around a third of
patients were missing blood data. Dead patients had slightly
higher rates of missing data. Comparison of the multiple
imputation approach and the simpler method of imputing
missing values as sex specific means showed no qualitative
difference in the interpretation of the results between the two
methods. Univariable analysis showed that age, ICD-10 code,
active malignancy and chronic respiratory disease
(comorbidities), steroid treatment, and all physiological and
blood variables were significant predictors of mortality. Sex,
diabetes, epilepsy, and heart disease (comorbidities) and recent
hospital admission did not predict mortality.
We did two separate multivariable analyses—one including all
patients but without blood data and the other limited to those
with adequate blood data. In the first model age, ICD-10 code,
active malignancy, and all physiological variables were
important predictors of mortality. In the second model, heart
rate and systolic blood pressure were less predictive, whereas
white cell count and potassium concentration were important
predictors of mortality, urea and creatinine concentration were
marginal predictors, and haemoglobin, platelets, and sodium
and glucose concentrations were poor predictors.
We then tested models of increasing complexity in patients with
and without blood test data (table 1⇓). A model based on age
and ICD-10 code alone had a C statistic of 0.80 (95% confidence
interval 0.78 to 0.83). Adding active malignancy improved the
discriminant value slightly (C statistic 0.81, 0.79 to 0.84), and
adding physiological variables had a more marked effect (0.87,
0.85 to 0.89). The C statistics for these models were slightly
higher when we limited analysis to patients with blood test data
(0.81, 0.83, and 0.88). Adding blood variables to the basic model
(age, ICD-10, and malignancy) improved the C statistic to 0.87
(0.84 to 0.89), whereas adding both physiological and blood
variables (that is, the full model) improved the C statistic to
0.90 (0.88 to 0.92). The likelihood ratio tests showed that the
improvement in the models’ fit and the associated C statistics
were statistically significant at the 5% level.

Validation phase
The validation phase included 13 762 patients across nine
hospitals (n=1017-2305 per hospital) between 27 September
2008 and 25 July 2010. The supplementary data appendix gives
details. Mean age varied across the hospitals from 64.3 to 75.6
years, and seven day mortality varied from 4.2% to 6.9%. The
proportion with missing blood data varied markedly and was
very low in hospitals B and E (0.6% and 1.5%), moderate in
hospitals A, C, H, and I (13.0-16.3%), and high in hospitals D,
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F, and G (45.5-70.0%). The variation among these sites reflects
the success or failure to achieve record linkage.
Table 2⇓ shows the C statistics, goodness of fit, and log
likelihood ratios for the physiology model (age, ICD-10,
malignancy, and physiology) according to the source of the
coefficients; table 3⇓ shows these statistics for the model
including blood data. The discriminant value of the model is
slightly higher when centre specific coefficients are used.
Overall, the C statistics range from 0.80 to 0.91 for the
physiology model and from 0.83 to 0.93 for the full model,
suggesting that the models perform reasonably well in a variety
of settings.
Table 4⇓ shows the expected number of deaths and the
standardisedmortality ratio that would be generated if the model
were used to estimate risk adjusted mortality in each centre and
the coefficient for each centre when included in the model. The
standardised mortality ratios and coefficients for each centre
were ranked from 1 (lowest ratio or coefficient) to 9 (highest).
Table 5⇓ shows the Spearman correlation between ranks
generated by observedmortality and ranks generated by different
models. Correlations between mortality rates are shown in the
bottom left corner of the table and correlations between
coefficients are shown in the top right. We found greater
correlation between ranks generated by different risk adjustment
models than between rank based on observed mortality and
ranks generated by the models. This suggests that risk
adjustment markedly changes hospital ranking compared with
ranking based on crude mortality but the specific model used
does not markedly change hospital ranking.
Table 6⇓ shows the results of tests for interaction between centre
and the association between each model variable and outcome.
The table summarises whether an improvement in the model’s
fit between outcome and the denoted variable occurs if
interaction between the two is included. Many of the variables
used in the model have significant interactions with centre,
suggesting that they may be subject to the constant risk fallacy.

Discussion
We have derived and validated a risk adjustment model for
emergency medical admissions based on age, ICD-10 code,
active malignancy, and routinely recorded physiological and
blood variables that provided good discriminant value for seven
day mortality in a variety of settings. This model could be used
to estimate risk adjusted mortality as a quality indicator for
emergency care. Age and ICD-10 code are routinely available
for risk adjustment in emergency medical admissions and are
key elements in models currently used to estimate hospital
standardised mortality ratios.9 We found that a model based on
age and ICD-10 code alone had reasonable discriminant value,
with a C statistic of 0.80. Sex and comorbidities are also
routinely recorded, but these were poor predictors of mortality
in our analysis.
Electronic recording of physiological variables and linkage
between administrative, clinical, and laboratory databases would
be needed to improve prediction to the degree suggested by our
analysis, but this may be problematic. ICD-10 coding is not
done until several weeks after hospital admission, thus delaying
the time point at which risk adjustment can be done. We were
unable to match a substantial proportion of admissions data to
blood data, so we developed separate models with and without
blood data. Our findings suggest that adding physiological
variables and adding blood variables result in similar
improvements to the model’s prediction, but both need to be
added to maximise prediction.

Risk adjustment markedly changed the ranking of hospitals
from that based on observedmortality, but using amore complex
model did not result in substantial further changes in ranking.
The model had slightly better discriminant value when we used
centre specific coefficients than when we used whole cohort
coefficients. Centre specific coefficients would be appropriate
for monitoring performance over time in a particular institution
or service, whereas whole cohort coefficients would be
appropriate for comparing performance across multiple sites.
Research typically uses coefficients from amultivariable model
to estimate the effect of each centre on outcome, whereas audit
typically uses the model to generate a standardised mortality
ratio for each centre. We found that the choice of method made
a small difference to the ranking of centres with the more
complex models.

Limitations
The main limitation of the model highlighted by our analysis
was that many of the key variables in the model had significant
interactions with centre, suggesting that they are subject to the
constant risk fallacy.16 In other words, the association between
the variable and mortality varies between the study centres.
Non-constant risk can arise because the variable reflects true
differences in underlying risk in different populations (for
example, the risk associated with age would differ between
populations with different life expectancies), because the
variable is measured or recorded differently (for example, at
different times in different centres such as in the ambulance or
later in the emergency department), because differences in
quality of care between centres differ between subgroups (such
as patients with minor or serious conditions), or because of a
combination of these factors. Using the model to assess
hospitals’ performance by comparing risk adjusted mortality
can result in misleading conclusions being drawn if evidence
of non-constant risk exists.
Comorbidities and elective/emergency admission may be
recorded in different ways in different centres, so these variables
may be subject to the constant risk fallacy.17 “Service” related
variables (such as type of admission) or variables that are highly
dependent on coding practices (such as number of comorbidities)
might be hypothesised to be more prone to variation between
centres than are biological variables, particularly blood variables
for which measurement is automated. However, our study has
shown that physiology and blood also exhibit non-constant risk.
We can only speculate as to why this may be. Variation in the
risk associated with physiological variables could be explained
by the second type of variation outlined above (that is,
differences in the timing, technique, or interpretation of
measurement at different centres). Variation in the risk
associated with blood measures could be explained by the first
type of variation (that is, true population differences) or the
third type of variation (differences between centres in the care
provided to patients with different blood results).

Conclusions and implications for policy
Interest is increasing in using outcome measures to evaluate
quality of emergency care.18 The UK Department of Health is
developing performance indicators for emergency and urgent
care that are intended to be clinically credible and evidence
based outcome measures.2 Mortality rates in emergency
admissions have been used to draw conclusions about the quality
of emergency care,19 20 and hospital standardised mortality ratios
have been developed to evaluate risk adjusted mortality across
emergency and elective admissions.6 9
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Our data suggest that a risk adjustment model based on age,
ICD-10 code, active malignancy, physiological variables, and
(if available) blood variables can be used to produce risk
adjusted estimates of mortality with good discriminant value in
a variety of different settings. Our model can be used in a system
of emergency care (hospital/ambulance service) to produce
repeated estimates of risk adjusted mortality over time and thus
monitor performance. If risk adjusted mortality were seen to
increase, this might raise concerns about quality of care and
prompt more detailed investigation. However, interpretation of
any change in risk adjusted mortality would need to take into
account the possibility of random error or failure of risk
adjustment to adequately adjust for changes in case mix and
illness severity.
Our model can also be used to compare risk adjusted mortality
between different systems of emergency care and draw
inferences about their relative performance. Risk adjusted
estimates of mortality can be used in this way to produce
hospital league tables or identify apparently poorly performing
services or institutions. However, this potential use of risk
adjustment is controversial and subject to additional limitations
(other than random error and failure to adequately adjust). We
found evidence that the constant risk fallacy affects key model
variables. If risk adjustment is done using variables that have a
non-constant association with outcome, then differences in
mortality due to case mix or severity of illness may be
exaggerated by risk adjustment rather than being accounted for.
Conclusions about the relative performance of services or
institutions based on risk adjusted mortality may then be very
misleading.
The policy implications of our study are that risk adjusted
estimates of mortality from our model can provide useful
insights into the performance of a system of emergency care
over time. However, risk adjusted mortality cannot be reliably
used to compare the performance of systems of emergency care
or to draw conclusions about relative quality of care. Analysis
of risk adjusted mortality can provide valuable insights when
used with appropriate caution,9 but it may be damaging if
erroneous conclusions are drawn on the basis of misleading
analysis.11 12
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What is already known on this topic

Quality of emergency care is assessed mainly by comparing process measures, such as times to treatment, rather than outcomes, such
as mortality
Risk adjustment models using routine administrative data have been used to compare hospital standardised mortality rates for all
admissions (elective and emergency)
Physiological and blood variables have been used to predict mortality in clinical practice

What this study adds

A risk prediction model for mortality in emergency medical admissions based on age, ICD-10 code, active malignancy, and physiological
and blood variables has good discriminant value across a range of settings
Linkage of routine hospital admission data to physiological and blood data improves risk prediction for quality assessment in emergency
care
Key predictor variables have a non-constant association with mortality, so differences between hospitals in risk adjusted mortality must
be interpreted with caution

Tables

Table 1| Summary statistics for models tested in derivation phase

Likelihood ratio test χ2 (df) and P value−2 × log likelihoodC statistic (95% CI)SubsetModel

–2028.910.80 (0.78 to 0.83)All patients (n=5644)Age and ICD-10 alone

35.03 (3); P<0.0011991.760.81 (0.79 to 0.84)+ active malignancy

267.12 (15); P<0.0011720.20.87 (0.85 to 0.89)+ active malignancy + physiology

–1232.960.81 (0.78 to 0.84)Those with blood test data
(n=3720)

Age and ICD-10 alone

24.75 (3); P<0.0011208.220.83 (0.80 to 0.85)+ active malignancy

184.65 (15); P<0.0011023.560.88 (0.86 to 0.91)+ active malignancy + physiology

122.062 (20); P<0.0011085.590.87 (0.84 to 0.89)+ active malignancy + bloods

75.23 (20); P<0.001963.160.90 (0.88 to 0.92)+ active malignancy + physiology + bloods
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Table 2| Validation phase C statistics, Hosmer-Lemeshow goodness of fit, and log likelihood for physiology model

Centre specific validation coefficientsWhole validation cohort coefficients

Centre Log likelihoodGoodness of fit (df=10)C statistic (95% CI)Log likelihoodGoodness of fit (df=10)C statistic (95% CI)

−111.565.71 (P=0.68)0.90 (0.86 to 0.94)−2065.826.58 (P=0.58)0.88 (0.84 to 0.93)A

−269.7313.18 (P=0.11)0.82 (0.77 to 0.86)9.90 (P=0.27)0.80 (0.76 to 0.84)B

−185.244.80 (P=0.78)0.90 (0.86 to 0.93)6.86 (P=0.55)0.87 (0.83 to 0.91)C

−122.253.88 (P=0.87)0.91 (0.87 to 0.95)2.81 (P=0.94)0.88 (0.84 to 0.92)D

−232.076.84 (P=0.55)0.85 (0.81 to 0.90)2.72 (P=0.95)0.83 (0.79 to 0.88)E

−216.947.29 (P=0.51)0.87 (0.84 to 0.91)7.85 (P=0.45)0.84 (0.80 to 0.88)F

−245.443.72 (P=0.88)0.87 (0.84 to 0.91)9.41 (P=0.31)0.86 (0.82 to 0.89)G

−281.7711.98 (P=0.15)0.86 (0.83 to 0.90)8.30 (P=0.41)0.86 (0.83 to 0.90)H

−220.518.63 (P=0.37)0.84 (0.80 to 0.89)6.39 (P=0.60)0.83 (0.78 to 0.88)I
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Table 3| Validation phase C statistics, Hosmer-Lemeshow goodness of fit, and log likelihood for full model

Centre specific validation coefficientsWhole validation cohort coefficients

Centre Log likelihoodGoodness of fit (df=10)C statistic (95% CI)Log likelihoodGoodness of fit (df=10)C statistic (95% CI)

−93.411.15 (P=0.19)0.92 (0.88 to 0.97)−19773.03 (P=0.93)0.91 (0.87 to 0.95)A

−249.19.96 (P=0.27)0.84 (0.80 to 0.88)10.07 (P=0.26)0.83 (0.79 to 0.87)B

−170.425.82 (P=0.67)0.92 (0.89 to 0.95)12.53 (P=0.13)0.87 (0.83 to 0.91)C

−107.329.57 (P=0.30)0.93 (0.89 to 0.96)6.49 (P=0.59)0.89 (0.85 to 0.93)D

−184.658.67 (P=0.37)0.92 (0.89 to 0.95)9.84 (P=0.28)0.87 (0.83 to 0.91)E

−198.685.73 (P=0.68)0.90 (0.87 to 0.93)7.93 (P=0.44)0.85 (0.81 to 0.89)F

−229.097.41 (P=0.49)0.89 (0.86 to 0.92)15.16 (P=0.06)0.87 (0.84 to 0.90)G

−254.065.71 (P=0.68)0.90 (0.86 to 0.93)9.41 (P=0.31)0.88 (0.85 to 0.91)H

−186.467.18 (P=0.52)0.90 (0.86 to 0.93)3.34 (P=0.91)0.86 (0.82 to 0.91)I
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Table 4| Comparison of observed and expected death rates (and SMR) and centre coefficients for each model

Full modelPhysiology modelAge, ICD-10, and malignancyObserved

Centre

Centre
coefficients;

rank

SMR
(95%

CI); rank
Expected/N*

(%)

Centre
coefficients;

rank

SMR
(95%

CI); rank
Expected

(%)

Centre
coefficients;

rank

SMR
(95%

CI); rank
Expected

(%)

Centre
coefficients;

rank
Deaths/patients

(%); rank

0.00; 4103.7
(97.2 to
110.2); 5

41/980 (4.2)0.00 387.5
(82.1 to
92.9); 2

49 (4.9)0.00; 496.4
(90.4 to
102.3); 4

45 (4.4)0.00; 143/1008 (4.3); 1A

−0.06; 188.3
(83.8 to
92.8); 2

106/1497
(7.1)

0.25; 5101.6
(96.5 to
106.8); 4

93 (6.1)−0.06; 392.6
(87.9 to
97.2); 3

103 (6.8)0.41; 995/1515 (6.3); 9B

0.32; 6118.0
(111.5 to
124.5); 7

48/1268 (3.8)0.31; 8112.6
(107.8 to
118.2); 8

62 (3.9)0.11; 6111.2
(105.8 to
116.7); 6

63 (4.0)0.03; 270/1592 (4.4); 2C

0.47; 8124.1
(110.3 to
137.9); 9

16/311 (5.1)0.22; 4103.3
(97.0 to
109.6); 5

54 (5.2)0.16; 7112.9
(106.1 to
119.8); 7

50 (4.8)0.24; 656/1043 (5.4); 6D

0.25; 599.0
(93.9 to
104.0); 3

78/1476 (5.3)0.42; 9103.9
(98.6 to
109.1); 6

80 (5.3)0.17; 8112.9
(107.2 to
118.7); 8

74 (4.9)0.27; 783/1501 (5.5); 7E

0.37; 7111.7
(103.8 to
119.5); 6

39/776 (5.0)0.29; 7108.3
(102.8 to
113.8); 7

71 (4.8)0.04; 5101.9
(96.7 to
107.0); 5

76 (5.1)0.21; 577/1478 (5.2); 5F

0.49; 9120.0
(110.6 to
129.5); 8

29/620 (4.5)0.28; 6112.9
(107.1 to
118.6); 9

81 (5.4)0.25; 9123.2
(116.9 to
129.4); 9

74 (5.0)0.38; 891/1494 (6.1); 8G

−0.03; 388.1
(83.9 to
92.3); 1

94/1703 (5.5)−0.02; 289.3
(85.4 to
93.2); 3

116 (5.7)−0.18; 287.9
(84.1 to
91.7); 2

118 (5.8)0.18; 3104/2048 (5.1); 3H

−0.03; 299.9
(94.2 to
105.5); 4

66/1204 (5.5)−0.06; 185.8
(81.4 to
90.3); 1

84 (5.9)−0.32; 180.3
(76.1 to
84.5); 1

91 (6.3)0.19; 473/1434 (5.1); 4I

SMR=standardised mortality ratio.
*N=subset of patients with blood data available and included in the model.
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Table 5| Spearman correlation of mortality rates (upper right triangle) and centre coefficients (lower left triangle)

Full modelPhysiology modelAge, ICD-10, and malignancyObserved

0.000.480.38–Observed

0.630.82–0.38Age, ICD-10, and malignancy

0.55–0.730.32Physiology model

–0.470.830.12Full model
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Table 6| Summary of statistical effect of interactions between covariates and centre

P valuedfCovariate

0.0718Active malignancy

0.00084ICD-10 classification

0.00116Glasgow coma score

0.30224Heart rate

0.00412Respiratory rate

0.00624Systolic blood pressure

0.00816Oxygen saturation

0.10119Temperature

0.04321Haemoglobin concentration

0.01022White cell count

0.24416Platelet count

0.06315Sodium concentration

0.00215Potassium concentration

0.00016Urea concentration

0.00123Creatinine concentration

0.02720Blood glucose concentration
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