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Innovation Capacities in Advanced Economies: Relative Performance of Small 

Open Economies 

 

Eleanor Doyle and FĞƌŐĂů O͛CŽŶŶŽƌ  

 

Abstract 

 
This paper offers an empirical examination of the determinants of a nation’s ability to 
produce commercially viable innovations, measured as patents, across a sample of twenty 
three advanced economies. The approach employed is based on estimating National 
Innovation Capacity that focuses on the long-run ability of economies to produce and/or 
commercialize innovative technologies, in the spirit of Furman, Porter and Stern, (2002).   
 
Motivated by differences in the rate of innovation between economies with different 
economic structures we examine the Small Open Economies chosen from this country sample 
to assess whether there is a significant difference between the determinants of Innovative 
Capacity in Small Open Economies and the other developed economies.  A number of 
alternative specifications are estimated. 
 
We find that advanced Small Open Economies and larger economies do not differ 
substantially in their determinants of patenting activities and, notwithstanding the limitations 
of patents as measures of innovative activity, we conclude that policy choice and variation 
plays a key role in determining the productivity of R&D, when measured as patenting 
activity. 
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1  Introduction 

 
Innovative capacity lies at the heart of factors affecting future competitiveness particularly 
for advanced modern economies since, under a Solow-type growth framework, such 
economies are likely to have exhausted their ability to generate increased output from further 
investments in capital.  According to Furman et al. (2002: 899) an economy’s innovative 
capacity represents 

the ability ... to produce and commercialize a flow of innovative technology over the 
long term. 

 
Many studies (e.g. Gans and Stern (2003) and Gans and Hayes (2008)) have followed such an 
approach and have found evidence to support the contention that the intensity to which 
countries innovate varies based on a set of variables relating to:  
 

 each nation’s Common Innovative Infrastructure (CII); 

 its Cluster Specific Environment (CSE); and  
 the Quality of Linkages between both its CIE and CSE. 

 
This approach facilitates the identification of a set of economic factors that drive patenting 
activity/intensity and also allows for a policy-centred focus on how best to consider the long-
term choices that impinge on innovation capacity.  This policy-centred focus applies as easily 
to business development policy, on the one hand, as to business strategy on the other, given 
the microeconomic basis of the cluster concept.  
 
Empirically, the variation in the ability of countries to produce new-to-world technologies, 
that are patented, is striking. Some countries consistently outperform others by a large 
margin. For example, Canada, the US, Finland, Switzerland and Japan produce well over 100 
patents per year (per million of population in 2008), while most advanced economies average 
approximately 60 patents per million and still others such as Spain, Portugal, New Zealand 
and Italy all may be considered to ‘underperform’ with less than 25 patents per million. 
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Source: IMF WEO, USPTO 
 
This variation in patent outcomes is not explained by larger economies performing better, or 
smaller ‘nimbler’ economies generating better results. This is depicted by Figure 1 above 
where a country’s patent output is ranked by their  2008 GDP from left to right with little or 
no correlation, positive or negative, between a country’s GDP and patent output per million 
of population.  
 
As Furman et al.  (2002) point out there is a strong patenting bias in those countries which 
have a history of patents production such the US and Switzerland (due to path dependency 
and the importance of the history of resource commitments).  However, other ‘new’ 
innovative countries’ rate of growth in patents per million has been nothing short of 
phenomenal: Singapore, for example, has an average annual patent growth rate of 30% 
between 1981 and 2008, going from just over 1 patent per million in 1981 to 84 in 2008.  
Such performance begs analysis and raises the question for us in this paper as to whether 
smaller economies generally are supported or hindered by their relatively low scale, or low 
critical mass in economic terms, in achieving innovative success. The varying rates of 
increase in patent production is treated in detail in Furman and Hayes (2004).   
 
As with any economic definition of success, innovative success requires elaboration and 
explanation.  In the context of this study the selected measure of innovative ‘success’ is 
represented by patent output, which is far from problematic and will be detailed further in 
Section 5.1. 
 
The issues considered in this paper focuses, firstly, on whether the mix of drivers of 
Innovative Capacity vary across advanced economies when categorised by their SOE status. 
Thus, this paper addresses possible heterogeneities that may exist in relation to different 
economy structures. We examine the extent to which a set of factors drive a nation’s 
Innovative Capacity as previously found in the literature and question whether or not the mix 
of policy choices, in terms of the areas mentioned above, for an SOE are significantly 
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different from other economies.  That is, do SOEs perform differently in terms of their 
innovative output (patenting activity) compared to their advanced economy peers when using 
the same policy mix?  
 
Secondly we examine whether an SOE’s innovative capacity is optimised by an emphasis on 
certain on different, if the same basic mix of factors is found to be effective in the first 
instance.  
 
This question addresses a gap in the literature and, therefore, it is necessary to assess the 
relative performance of SOEs.  While some literature on innovative capacity examines 
specific SOEs, such as New Zealand in Marsh (2000), it tends to concentrate on an individual 
industry without adopting a broader international perspective which is the chosen perspective 
offered here, grounded in the National Innovative Capacity approach. 
 
We set out the background to the National Innovative Capacity approach in Section 2 
outlining its constituent parts, and potentially relevant measures.  Our model for estimation is 
presented in Section 3, with Data described in Section 4.  Empirical results for various 
specifications will be examined in Section 5.  
 

2 National Innovative Capacity Framework 

 
The National Innovative Capacity framework integrates three perspectives on the sources of 
innovation i.e.: 
 

 ideas-driven growth theory as outlined in Romer (1990); 
microeconomics-based models of national competitive advantage and industrial clusters 
developed by Porter (1990); and  

 research on national innovation systems as proposed in Nelson (1993).  
 

Both the characteristics of the direct producers of patents are relevant in this context, as are 
the outcomes generated by previous investments, policies and supports for innovation-based 
activities. 
 
Our view is that Innovative Capacity should be viewed differently to science and technology 
advances, as we are interested in economically viable applications.  The discovery of a new 
technology (or significant facts/information) is considered to be independent of its benefit to 
an economy unless it can be harnessed domestically through having the structures and 
resources available to exploit its value before the knowledge becomes diffused and may be 
exploited elsewhere.  With limited data availability and suitability for identification of 
economically viable applications of scientific advances, however, we limit ourselves to a 
proxy in the form of patents. 
 
The National Innovative Capacity Framework is illustrated diagrammatically in Figure. 1.  
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Fig. 1: National Innovative Capacity Framework 

 
 
Source: Furman et al.  (2002: 906) 
 
 
2.1 Common Innovative Infrastructure 
 
This element of the framework relates to features of an economy’s innovation infrastructure 
that confer no particular advantage on any sector or cluster yet provide support for innovation 
activities generally across the economy.  Furman et al. (2002) appeal to endogenous growth 
theory to identify the two main determinants in their model of the quality of the Common 
Innovative Infrastructure: the aggregate level of technological sophistication or its 
accumulated stock of knowledge - denoted by A in Fig.1 - and the range of the talent pool of 
workers appropriate for the generation of new knowledge in an economy (denoted by HA in 
Fig. 1).  In addition to these to determinants they add other universal factors that aid 
innovation such as Higher Education Graduates, Property Rights Protection, the availability 
of R&D Tax Credits, all of which are denoted by XINF in Fig. 1. 
 
Gans and Stern (2003) offer a broader list of potentially relevant variables that may be 
included under the heading of XINF, given below: 
 

 Investment in basic research 

 Tax policies affecting corporate R&D and investment spending 
 Supply of risk capital 

 Aggregate level of education in the population 
 Pool of talent in science and technology 
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 Information and communication infrastructure 
 Protection of intellectual property 

 Openness to international trade and investment 
 Overall sophistication of demand 

 
2.2  Cluster Specific Environment 
 
This aspect of the innovative capacity of an economy makes reference to microeconomic 
theory, specifically the fact that while wider policy-related issues facilitate innovation it is 
ultimately firms that create new technologies. This firm-level impact on national innovative 
capacity depends upon the microeconomic environment present within and across a nation’s 
clusters (following the definition by Porter, 1990). 
 
A variety of cluster-specific circumstances, investments, and policies impact on the extent to 
which a country’s industrial clusters compete on the basis of technological innovation. 
Innovation in particular pairs of clusters may also be complementary to one another, both due 
to knowledge spillovers and other interrelationships (represented by lines connecting selected 
‘Diamonds’ in Fig. 1).  
 
This is a particularly difficult feature to include when estimating an econometric model as 
there are few national or international statistics pertaining directly to the extent of cluster 
activity that are available for the period of the analysis conducted here (for more on issues in 
the challenges of applying a cluster approach see Doyle and Fanning, 2007). Instead a 
number of proxies are identified and estimated for our purposes in this paper. 
 
2.3  Quality of Linkages 
 
The quality of the two previous factors is reinforced by the way in which they are linked, as 
depicted in Fig. 1. For instance even firms within a well developed cluster will not be able to 
produce economically viable new-to-world technologies unless they have access to a pool of 
scientists and engineers and access to basic research and, in some cases, perhaps access to 
advice from local universities. 
 

3 Modelling Innovative Capacity 

 
The basis of the model specified by Furman et al. (2002) uses the findings of prior research 
into the geographic impact of knowledge spillovers, the differences in access to human 
capital and ways that regional differences are driven by public policies. Ideas driven 
endogenous growth models form the base of the model that is extended to incorporate 
additional and more nuanced factors previously not used from industrial organisation, the 
composition of funding (public versus private), public policies and the degree of 
technological specialisation. For example, while Public R&D spending adds to the innovative 
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process by reinforcing the Common Innovation Infrastructure, Private R&D spending and the 
Specialisation of a country’s technological outputs also reflects the nation’s cluster 
innovation environment. 
 
To estimate the relationship between the production of international patents and observable 
contributors to national innovative capacity, we adopt the ideas production function of 
endogenous growth theory as a baseline (Equation 1): 
 

Aj,t = įHA
j,tA

ĳ
t                              (1) 

 
where Aj,t is the flow of new-to-the-world technologies from country j in year t, HA

j,t the total 
level of capital and labor resources or inputs devoted to the ideas sector of the economy, and 

Aĳ
j ,t is the total stock of knowledge held by an economy at a given point in time relevant to 

drive future ideas production. 
 
As the national innovative capacity framework suggests that a broader set of influences 
determine innovative performance a production function for new-to-the-world technologies is 
extended from Equation 1 generating the formulation of Equation 2: 

 
Aj,t = įj,t(X

INF
j,t , Y

CLUS
j,t ,Z

LINK
j,t )H

A
j,t A

ĳ
j,t                                          (2) 

 
The additional variable XINF refers to the level of general resource commitments and policy 
choices that constitute the common innovation infrastructure, YCLUS refers to the particular 
environment for innovation in a countries’ industrial clusters, and ZLINK captures the strength 
of linkages between the common infrastructure and the nation’s various clusters. Under 
Equation (2), we assume that the various elements of national innovative capacity are 
complementary in the sense that the marginal boost to ideas production from increasing one 
factor is increasing in the level of all of the other factors. 
 
The parameters associated with Equation 2 are estimated using a panel dataset of 23 OECD 
countries plus Singapore over 13 years. These estimates can therefore depend on cross-
sectional variation, time-series variation, or both. While comparisons across countries can 
easily lead to problems of unobserved heterogeneity, cross-sectional variation provides the 
direct inter-country comparisons that can reveal the importance of specific determinants of 
national innovative capacity. Time-series variation may be subject to its own sources of 
endogeneity (e.g. shifts in a country’s fundamentals may reflect idiosyncratic circumstances 
in its environment), yet time-series variation provides insight into how a country’s choices 
manifest themselves in terms of observed innovative output. 
 
Recognizing the issues surrounding panel estimations our analysis explicitly compares how 
estimates vary depending on the source of identification. In most of our analysis, we include 
either year dummies in order to account for the evolving differences across years in the 



 7 

overall levels of innovative output and a dummy on the US to account for differences in the 
definition of the dependant variable for that economy (explained further below). 
 
The analysis is organized around a log–log specification, except for qualitative variables and 
variables expressed as a percentage. The estimates, thus, have a natural interpretation in terms 
of elasticities, are less sensitive to outliers, and are consistent with the majority of prior work 
in this area including Jones (1998), Furman et al.  (2002), Gans and Stern (2003), Gans and 
Hayes (2008).  
 
Finally, with regard to the sources of error, we assume that the observed difference from the 
predicted value given by Eq. (2) (i.e. the disturbance) arises from an idiosyncratic 
country/year-specific technology shock unrelated to the fundamental determinants of national 
innovative capacity. Integrating these choices and letting L denote the natural logarithm, our 
main specification takes the following form of Equation 3: 
 

L Aj,t =  + +įINFLXINF j,t + įCLUSL Y CLUS j,t 
                                                                                                  (3) 

+įLINKL ZLINK
 j,t + Ȝ LHA

 j,t +ĳL Aĳ
j,t + İj,t 

Conditional on a given level of R&D inputs (HA), variation in the production of innovation 

(Aĳ) reflects R&D productivity differences across countries or over time. For example, a 
positive coefficient on elements of įINF, įCLUS or įLINK suggests that the productivity of R&D 
investment is increasing in the quality of the common innovation infrastructure, the 
innovation environment in the nation’s industrial clusters, and the quality of linkages. As Aj,t, 
measured by the level of international patenting, is only observed with delay, our empirical 
work imposes a 3-year lag between the measures of innovative capacity and the observed 
realization of innovative output. This follows Furman et al.  (2002), but differs from Gans 
and Stern (2003) and Gans and Hayes (2008), who impose no lag and a two year lag 
respectively: including alternative lag structures does not significantly alter our results. 

 

4  Possible Reasons for SOE Heterogeneity 

A number of ideas may contribute to SOE’s having a different set of factors that add to its 

innovative capacity; or that some factors may be of greater importance in maximising its 

potential for ideas production.   

4.1 Scale Effects 

The idea that in larger conglomerations of people new ideas and innovations will be more 

readily available is an old one. William Petty (1682) commenting on the reconstruction of 

London after the Great Fire of 1666 wrote: 
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“it is more likely that one ingenious curious man may rather be found amongst 

4 millions than among 400 persons.” 

This Scale Effect has also been incorporated in neo-classical growth theories such as Romer 

(1990) which forms a part of the basis for the National Innovation Capacity framework used 

in this paper. In Romer’s (1990) model, the growth rate of an economy is proportional to the 

total amount of research undertaken in it. And an increase in the population of an economy 

will generally lead to an increase in the R&D workforce, thereby increasing the growth rate 

of per capita income. 

So that a small open economy’s ability to produce new to world technologies may be affected 

due to the lower probability of it’s having the “ingenious curious” persons that William Petty 

talks about as well as lacking the critical mass of researchers to maximise growth as in 

Romer’s theory. 

In studies testing scale effects in economic growth however there is no clear evidence that 

larger economies grow faster. Jones (1995b) studied time series evidence and concluded 

against scale effects in economic growth. However on a more concentrated level Backus 

(1992) found scale effects were evident in the manufacturing output in the variety of models 

used. 

4.2 Knowledge Spillovers 

Studies such as Faehn (2008) emphasise the importance of knowledge spillovers for SOE’s. 

Cohen and Levinthal (1989) point out that R&D has “two faces” in its interaction with an 

economy. Not only does it produce new innovations it also allows for the easier absorption 

and understanding of new technologies, both domestically and internationally.  

Due to the lack of scale in SOE’s discussed in the earlier section the importance to SOE’s of 

absorbing all knowledge internationally in order to be able to act at the technological fromtier 

in producing new to world technologies means that a different policy emphasis may be 

required.  Faehn (2008) discusses how national policy can enhance the exploitation of the 

international knowledge stock and find that subsiding R&D is important for domestic 

innovation as it is effective in generating these knowledge spillovers from abroad. Faehn 

(2008) also finds that eports play an important role for SOE’s in encouaraging knowledge 

spillovers. 



 9 

5  Data 

 

5.1  Innovative Output 
 
This analysis requires an observable country-specific indicator of the level of commercially 
valuable innovative output in a given year. We follow previous research and employ as the 
dependant variable the number of “international patents” (PATENTS), defined as “the 
number of patents granted to inventors from a particular country other than United States by 
the USPTO in a given year. For the United States, PATENTS is equal to the number of 
patents granted to corporate or government establishments (this excludes individual 
inventors)” (Furman et al. 2002: 909).  
 
Following Eaton and Kortum (1996), Kortum and Lerner (1999), Griliches (1984) and 
Furman et al. (2002) we recognise a number of difficulties in relation to using patents as a 
measure of innovation at a national level, such as: 
 

 Not all inventions are patentable, 

 Not all inventions of economic value are patented, 
 Not all patented innovations have the same quality or value to an economy, 

 There are varying degrees of willingness to patent across countries and sectors. 
 
However a large number of previous studies used patents based on the assumption that they 
are “the only observable manifestation of inventive activity with a well-grounded claim for 
universality” (Trajtenberg, 1990:183). We temper this assumption by interpreting our 
findings carefully, noting that our dependant variable is an imperfect proxy relating to 
innovations that are economically viable applications and that the true rate of innovation is 
unobservable.  
 
This belief is based on the expense that is required for a non-american investor to register a 
patent with the USPTO acting as a barrier unless there is a strong belief that the innovation 
will produce a sufficient return. A patent registered by an America will be either from a firm 
or the government, again reducing the number of patents registered lacking economic value. 
Any asymmetry this may cause between US and non-US patents does not affect our results as 
we include a US dummy variable in all regressions, in keeping with the previous literature.  
 
5.2  Defining Small Open Economies 

There are 30 economies in the OECD and this study also includes Singapore as a strong 
example of an SOE for which patenting activity has become particularly strong. However, 
Portugal, Turkey and Iceland, Greece were not used as observations as required data was 
available for the Specialisation variable (detailed below). In addition to this Luxembourg was 
excluded as its small size added very little to the data and as it would be given the same 
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weighting would bias the results. Mexico and Poland were also excluded due to the extremely 
low level of patenting when shown relative to population as in Fig 2.   

In the literature there appears to be no one method applied to define an SOE. The conceptual 
definition of an SOE is an economy that participates in international trade, but is small 
enough compared to its trading partners that its policies do not alter world prices, interest 
rates, or incomes.  However this paper must divide the 23 countries estimated into SOEs and 
others and in order to do this data was collected on: 

1) Import/Export Openness of the economy, calculated as exports plus imports divided 
by GDP taken from the Penn World Tables.  

2) Size of the economy, calculated as the relative GDP weighting of each in our overall 
sample. The GDPs of the 31 countries were aggregated and the proportion each 
accounted for was calculated. 

For the purposes of this paper an SOE is defined as one whose GDP makes up less than 2% 
of the 31 countries aggregate GDP and its exports plus imports over GDP is equal to or 
greater than 70%, which is within half a standard deviation of the mean of 100%.  

Fig. 2: Patents per Million of Population: Large Countries and SOEs 
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Table 1 provides a full list of the sampled countries and their status as an SOE or ‘other’: 
Turkey was not an SOE under these criteria, and Portugal and Iceland were SOEs. This 
process was somewhat ad hoc and some countries were border-line. Canada, for instance, is 
studied as an SOE by Appelbaum and Kohli (1979), but its GDP was nearly 3% of the 
aggregate, while its international trade openness was 87% of GDP. 

Table 1: Selection of Small Open Economies and Others 

SOE 

Size:% of Openness   Size: % of Openness 

 Aggregate 

GDP   Large 

 aggregate 

GDP   

Australia 1.36% 46% USA 37.81% 26% 

Austria 0.74% 101% UK 5.70% 58% 

Belgium 0.90% 169% Japan 17.98% 20% 

Czech Republic 0.22% 147% Germany 7.34% 67% 

Denmark 0.62% 80% France 5.14% 56% 

Finland 0.47% 76% Italy 4.24% 56% 

Hungary 0.18% 127% Canada 2.79% 87% 

Ireland 0.37% 176% Spain 2.24% 62% 

Netherlands 1.49% 130% South Korea 2.06% 87% 

New Zealand 0.20% 72% 

   Norway 0.65% 77% 

   Singapore 0.36% 342% 

   Sweden 0.95% 89% 

   Switzerland 0.96% 88% 

    
Source: Authors’ calculations based on data from Penn World Tables.      
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5.3  Independent Variables 
 
Following the previous literature this paper uses proxies for measures of Common Innovative 
Infrastructure, Cluster Specific Environment and the Quality of Linkages in order to estimate 
the determinants of National Innovative Capacity. These are detailed in Table 2 which 
includes variable definitions and sources.  Table 3 details variable means and standard 
deviations. 
 
Table 2: Variable Descriptions and Sources 
 

Dependent Variable Full Variable Name Definition  Source 

Patents j,t International Patents 

Granted by Year of 

Application 

Non-US countries: 

patents granted by the 

USPTO.  

US: patents granted by 

the USPTO to 

corporations or 

government.  

USPTO Patent 

Database 

Independent Variables 

QUALITY OF THE COMMON INNOVATION INFRASTRUCTURE 

R&D PPL j,t Aggregate Personnel 

Employed in R&D 

Full time equivalent 

R&D personnel in all 

sectors 

OECD Science & 

Technology 

Indicators 

R&D $ j,t Aggregate 

Expenditure on R&D 

Total R&D 

expenditures in 

Mill of US$ (base 2000) 

OECD Science & 

Technology 

Indicators 

Property Rights 

Protection j,t 

Legal Structure and 

Security of Property 

Rights 

Average survey 

response by executives 

on a 1-10 scale 

regarding relative 

strength 

of Legal Structure and 

Security of Property 

Rights 

Economic Freedom of 

the World Index  

ED SHARE j,t Share of GDP Spent 

on Secondary and 

Tertiary Education 

Public spending on 

secondary + tertiary 

educ. as share of GDP 

World Bank: Edstats  

 

OPENNESS j,t Freedom to Trade 

Internationally 

Average survey 

response by executives 

on a 1-10 scale 

regarding relative 

strength of freedom to 

trade internationally 

Economic Freedom of 

the World Index 
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GDP/POP j,t GDP Per Capita Gross Domestic 

Product per capita, 

constant price, chain 

series, US$ 

IMF: World Economic 

Outlook 

GDP j,t GDP Gross Domestic 

Product constant price, 

chain series, 

US$, Billions. 

IMF: World Economic 

Outlook 

CLUSTER-SPECIFIC INNOVATION ENVIRONMENT 

PRIVATE R&D j,t Percentage of R&D 

Funded by Private 

Industry 

R&D expenditures 

funded by industry 

divided by total 

R&D expenditures 

OECD Science & 

Technology 

Indicators 

SPECIALISATION j,t E-G concentration 

index, excluding the 

US 

Relative concentration 

of innovative output in 

chemical, electrical 

and mechanical USPTO 

patent classes 

 

Computation from 

USPTO data using 

formulae from Furman 

et al.  (2002) detailed 

below  

QUALITY OF LINKAGES 

UNIV R&D j,t Percentage of R&D 

Performed by 

Universities 

R&D expenditures 

of universities divided 

by total national R&D 

expenditures 

OECD Science & 

Technology 

Indicators 

 
Table 3: Variable means and standard deviations 
 

Variable N Mean Standard Deviation 

Patents j,t 293 4,607 10,081 

QUALITY OF THE COMMON INNOVATION INFRASTRUCTURE 

R&D PPL j,t 293 193,276 300,649 

R&D $ j,t 293 24,687 49,779 

Property Rights 

Protection j,t 

293 8.21 1.21 

ED SHARE j,t 293 3.4 0.94 

OPENNESS j,t 293 8.1 0.63 

GDP/POP j,t 293 25,619 9,480 

GDP j,t 293 1,120 2,059 

CLUSTER-SPECIFIC INNOVATION ENVIRONMENT 

PRIVATE R&D j,t 293 61 11 

SPECIALISATION j,t 293 0.53 0.64 

QUALITY OF LINKAGES 

UNIV R&D j,t 293 22 6 
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5.4  Specialisation 
 
While most variables for our analysis were readily available, SPECIALISATION was 
estimated based on a methodology developed by Ellison and Glaeser (1997).  Since 
individual clusters will tend to be associated with technologies from specific technological 
areas, this is a measure of the degree of technological focus by a country 
(SPECIALISATION) acts as a proxy for the intensity of innovation-based competition in a 
nation’s clusters. SPECIALISATION is a “relative” concentration index based on the degree 
to which a given country’s USPTO-granted patents are concentrated across three broad 
technology classes (chemical, electronics, and mechanical) which cover all patents. While the 
measure of specialization is too general to identify specific clusters and the role of the mix of 
clusters in shaping R&D productivity, SPECIALIZATION is designed as a noisy but 
unbiased measure capturing an important consequence of cluster dynamics, the relative 
specialization of national economies in specific technologies fields. 
 
Specifically, traditional measures of specialization, such as the Herfindahl Index ignore two 
issues important for cross-country comparisons: technology classes differ in terms of their 
average share across all countries and some countries have only a small number of patents 
overall. While the Ellison and Glaeser index was developed and applied for measuring the 
specialization of industries across geographic regions, Furman et al (2002) applied in several 
other contexts, including the measurement of the degree of specialisation of research output 
following previous authors such as Lim (2000). In the present context, the Ellison and 
Glaeser formula adjusts the country observed shares for each technology class to account for 
the average share for that technology group across the sample; and for the total number of 
patents in each “country–year” observation, as shown: 
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where:   Patents i,j,t = Patents of country i in year t across each technology class j, 

s i,j,t = share of class j patents in total country patents in year t, 
xi,t = average share of patent class j over all i in any t 

 
Figure 2 below offers a sample of results of the Specialisation measure. 
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Source: Authors’ calculations based on data from UPSTO data.    

6  Empirical Results 

 
This section outlines the results from our empirical analyses enabling a dissection of the 
drivers of national innovative capacity across our sample of 23 countries and with specific 
focus on the results for the sample of SOEs, as defined earlier.   We first test all models 
presented in Section 6.2 for parameter stability. We then included slope and level dummies 
into our regressions to assess if there are specific differences in the way that SOE’s and other 
economy types produce new to world technologies. 
 
The panel regression method used is the Random Effects Method. As Baltagi (2005: 28) 
explained: 

The random effects model is an appropriate specification if we are drawing N 
individuals randomly from a large population 

As this study focuses on a sample of SOEs and non-SOE economies, this is an appropriate 
method.  In addition, each regression is tested using the Breusch and Pagan Lagrangian 
Multiplier test of Fixed versus Random Effects to assess the appropriateness of the method: 
all regressions are found to be suitable for Random Effects estimation. 
 
6.1.1 Chow Tests for Parameter Stability: Methodology 
 
All models estimated in Section 6.2 were tested for parameter stability using the Chow test. 
This test assesses if there is a difference in the structure of the relationship between the 
dependant variable and the independent variables, when estimated for the SOE’s or larger 
economies. 
 
This is done by estimating each model 3 times: Equ.1 with all country observations, Equ.2 
with just SOE countries and Equ.3 for the non-SOE countries. Equ.1 assumes that the 
intercept as well as the slope coefficients remains the same for both economy types; that is, 
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there is no structural difference in how the two economy types produce patents. Equ’s 2 and 3 
assume there is a structural difference. 
 
To carry out the chow test we run all three regressions to find the residual sum of squares 
(RSS). From Equ.1 we find the restricted RSS (RSSr) as we are forcing the coefficients to 
have the same value for both economy types. We now assume the other two regressions to be 
independent and add their RSS’s to get the RSSur. If there is no structural change, then the 
RSSR and RSSUR should not be statistically different. Therefore, if we form the following 
ratio: 
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Where: 
 
k  = No. of parameters estimated 
n2 + n3  = Number of observations in regression 2 and 3 respectively 

 
We do not reject the null hypothesis of parameter stability (i.e., of no structural change) if the 
computed F value in an application does not exceed the critical F value found in the F tables 
at a given level of significance. 
 
6.1.2 Chow Tests for Parameter Stability: Results 
 
All models estimated and tested for parameter stability showed that there was no change in 
the structure of the relationship between the dependant variable and the independent 
variables, when estimated for SOE’s or larger economies. This means that based on these 
findings SOEs innovation is driven by the same set of factors as other economy structures.  
 
Section 6.2 will investigate where there are specific factors that a have statistically 
significantly different effect on innovative output. Full results of regressions using a full 
sample of countries and the SOE sample are shown in Appendix 2.   
 
6.2 Dummy Regressions: Results 
 
Results for regressions including an SOE slope dummy for each of the variables national 
innovative capacity are shown in Table 3, 4 and 5 below, along with an intercept dummy. 
Regression coefficients from each single regression line are shown in two columns with the 
independent variables in the right hand column and the equivalent dummy in the left hand 
column. 
 
Regressions are grouped into three categories. Ideas Production Functions (Table 1), 
Common Innovative Infrastructure and National Innovative Capacity (Tables 3 and 4). 
Tables 3 uses GDP, Population and GDP per capita as proxies for a countries knowledge 
stock while in Table 4 the stock of patents built up by the country is used as a proxy. 
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Table 3: Determinants of New to World Technologies (GDP/POP as 

Knowledge Stock)  
Ideas Production Functions 

 Equ. 1.1 Equ. 1.3 
 Independent 

Variables 

Equivalent 

Dummy 

Independent 

Variables 

Equivalent 

Dummy 

Constant -2.6044 -1.6688 1.2125 -6.1050 

 (0.036) (0.289) (0.444) (0.002) 

L GDP -0.0026 -0.0885   

  (0.983) (0.588)   

L GDP PER CAPITA   0.03111 0.01014 

   (0.811) (0.544) 

L POP 1.6762 -2.120   

  (0.000) (0.000)   

L R&D PPL 0.2696 0.6972 0.4919 0.3668 

  (0.002) (0.000) (0.000) (0.004) 

R2 0.6673 0.5954 

 

Table 4: Determinants of New to World Technologies (GDP/POP as Knowledge Stock)  
 Common Innovative Infrastructure National Innovative 

Capacity 
 Equ. 1.4 Equ. 1.5 Equ. 1.6 
 Independent 

Variables 
Equivalent 

Dummy 

Independent 

Variables 
Equivalent 

Dummy 

Independent 

Variables 
Equivalent 

Dummy 

Constant -6.3061 -1.1061 -6.0268 -3.9321 -8.2346 -1.7041 

 (0.000) (.0556) (0.000) (0.088) (0.000) (0.459) 

L GDP 0.0674 0.2552     

  (0.600) (0.120)     

L GDP PER    0.0504 0.2608 0.2682 0.0168 

CAPITA   (0.697) (0.102) (0.072) (0.924) 

L POP 0.4300 -0.6694     

  (0.146) (0.046)     

L R&D PPL -0.05881 0.9280 -0.0779 0.1631 0.0151 0.0523 

  (0.584) (0.686) (0.461) (0.437) (0.887) (0.798) 

L R&D $ 1.0101 -0.1767 1.1898 -0.3597 1.2692 -0.4024 

  (0.000) (0.407) (0.000) (0.069) (0.000) (0.055) 

ED SHARE 0.0050 0.0782 -0.0189 0.1050 -0.0016 0.0701 

  (0.938) (0.305) (0.796) (0.165) (0.979) (0.338) 

IP 0.1790 0.0378 0.1904 0.0375 0.1648 0.0679 

  (0.000) (0.629) (0.000) (0.628) (0.001) (0.372) 

Openness 0.1379 0.1890 0.1246 0.2028 0.2401 0.0793 
  (0.069) (0.043) (0.102) (0.030) (0.003) (0.415) 

Private R&D     -0.0293 0.0283 

     (0.000) (0.003) 

Specialisation     0.3730 -0.7489 

     (0.289) (.0.077) 

University      -0.0381 0.0510 

R&D     (0.000) (0.000) 

R2 0.9380 0.9487 0.9517 
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Table 5: Determinants of New to World Technologies (Patent Stock 

as Knowledge Stock)  

 Common Innovative 

Infrastructure 

National Innovative 

Capacity 

 Equ. 3.1 Equ. 3.2 
 Independent 

Variables 
Equivalent 

Dummy 

Independent 

Variables 
Equivalent 

Dummy 

Constant -5.7483 0.8037 -4.0317 -0.7616 

 (0.000) (0.667) (0.018) (0.722) 

L Patent  0.3586 -0.1770 0.4138 -0.2075 

 Stock (0.001) (0.089) (0.000) (0.098) 

L R&D PPL -0.048 -0.2499 0.0461 -0.2405 

  (0.613) (0.297) (0.657) (0.220) 

L R&D $ 0.6445 0.2499 0.5803 0.2832 

  (0.001) (0.297) (0.015) (0.310) 

ED SHARE -0.0484 0.0921 -0.0689 0.0864 

  (0.434) (0.208) (0.261) (0.233) 

IP 0.1092 0.1089 0.1055 0.0770 

  (0.031) (0.155) (0.038) (0.320) 

Openness 0.0878 0.1376 0.1465 0.0800 
  (0.207) (0.113) (0.042) (0.363) 

Private R&D   -0.0210 0.0189 

   (0.017) (0.058) 

Specialisation   0.0859 -0.7476 

   (.808) (0.084) 

University    -0.0333 0.0345 

R&D   (0.000) (0.005) 

L GDP 1993 0.3553 -0.1901 0.1861 -0.0865 

 (0.038) (0.367) (0.056) (0.716) 

R2 0.949 0.953 

 
As pointed out above, a country’s Patent Stock has been shown to be a major factor in 
determining its current and future patent output. This analysis agrees also finds that it plays a 
statistically significant role with a 10% non-SOE’s sample. The SOE dummy variable is 
significant and shows that patent stock has roughly half the effect in an SOE.  
 
This may point to the fact that Patent stock not only captures the accumulated knowledge 
stock of the country but also the fact that a country with a large stock of patents may well 
have a more fully developed innovative infrastructure. The sample of SOE’s tends to contain 
the lesser developed of the sample countries with notable exceptions. 
 
The level of economic development was proxied by GDP and GDP per Capita. When these 
factors were examined without reference to patent stock it was found that results were neither 
statistically or economically significant in general but had a positive relationship with patent 
output. This could be explicable as it was essentially measuring whether changes in the level 
of economic development resulted in changes in patent output. But as the countries in this 
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sample are all well developed it is possible that improvements in an already advanced 
economy had only a marginal effect. 
 
When Patent Stock was included, rather than test for changes in the level of development 
from year to year only the level of development in 1993, the beginning of the sample, was 
used to give a different and static level of development for each country. For the whole 
sample of advanced economies this was significant and large with a 10% difference in a 
country’s level of development in 1993 resulting in a 3.5% increase in patenting. For SOE’s 
it is a less important determinant being both economically and statistically significant.  
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

Appendix 1: Countries sampled in this paper and Furman et al.  (2002), with time scale. 

Furman et al.  (2002),  
Sample countries (1973–1995) 

Doyle et al. (2009), Sample 
Countries (1993–2005) 

Australia Australia 
Austria Austria 
Canada Belgium 
Denmark Canada 
Finland Czech Republic 
France  Denmark 
Germany Finland 
Italy France  
Japan  Germany 
Netherlands Hungry 
New Zealand Ireland 
Norway Italy 
Spain Japan  
Sweden Netherlands 
Switzerland New Zealand 
UK Norway 
United States Singapore 

 
South Korea 

 
Spain 

 
Sweden 

 
Switzerland 

 
UK 

 
United States 
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