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Abstract—This paper considers the tractability of parametric
solvers for predictive control based optimisations, when future
target information is incorporated. it is shown that the inclusion
of future target information can significantly increase the implied
parametric dimension to an extent that is undesirable and likely
to lead to intractable problems. The paper then proposes some
alternative methods for incorporating the desired target infor-
mation, while minimising he implied growth in the parametric
dimensions, at some possibly small cost to optimality.

Index Terms—Parametric predictive control, advance knowl-
edge, computational efficiency.

I. INTRODUCTION

One of the most significant advances in predictive control

of the past 20 years has the been the recognition that one

can define the solution of a quadratic programme (QP), in

full, using off-line computations [1], [12]. As long as this off-

line (or so called parametric) solution is not to complex, then

coding and implementing this on-line may be far simpler than

implementing an on-line QP optimiser. The parametric solu-

tion offers the potential for reliability, transparency (important

for validation and certification) and most importantly, very fast

sample rates for some systems.

Nevertheless, parametric solutions also have their disadvan-

tages and the literature is full of possible solutions to counter

these [10]. For example: (i) in some cases the parametric

solution can be difficult to compute reliably due to poor

conditioning; (ii) where the parametric solution requires large

numbers of regions it may not longer be computationally

efficient.

This brief paper makes a minor contribution to one aspect

of computational complexity. To define what this contribution

will be, it is first useful to define a generic QP optimisation

and its parametric solution.

min
z

zTSz + zTPw s.t. Nz +Mw ≤ d (1)

where w is a system state and z are the degrees of freedom

(d.o.f.) and parameters S, P,N,M, d define the cost function

and linear constraints. A parametric solution (often denoted

MPQP) partitions the space into a number of non-overlapping

regions for the system state such that the optimal solution for

(1) is equivalent to:

Niw ≤ di ⇒ z = Kiw + pi, i = 1, 2, · · · , n (2)

for suitable Ni, di,Ki, pi.
It is recognised that there is a strong link between the

dimension of the state w and the required number of regions

n to capture the entire solution. Hence, in general, parametric

solutions are favoured for systems with a low state dimension

but less likely to be useful for high state dimensions. Moreover,

the higher the state dimension, the more likely one is to

encounter conditioning problems in the MPQP solver. The

main aim of this paper therefore is ask the question, can we

reduce the state dimension for some specific predictive control

problems? In particular, the focus here is on the handling

of feedforward information such as future target information

which, in principle, can be embedded systematically into

predictive control algorithms.

Section 2 will outline the predictive control problems to

be discussed and sections 3 will demonstrate how the state

dimension can be reduced using some elementary algebra and

re-parametrisation for the optimisation degrees of freedom.

The paper finishes with some examples and conclusions.

II. BACKGROUND ON PREDICTIVE CONTROL

This section summarises briefly the optimisation implicit in

two popular predictive control algorithms, generalised predic-

tive control (GPC) [4] and optimal predictive control (OMPC)

[14], [18]; some fine details are omitted as both algorithms

are well known and some details are not central to this paper.

A specific and important point is to consider how set point

information is incorporated [5], [6], [19] as this detail is often

omitted or neglected in the mainstream literature.

For simplicity this paper assumes a state space model of the

following form.

xk+1 = Axk +B∆uk; yk = Cxk (3)



with xk, uk, yk the states, input and output respectively with

dimensions nx,m,m and ∆uk = uk − uk−1. The system is

subject to constraints, typically (others are possible):

u ≤ uk ≤ u; ∆u ≤ ∆uk ≤ ∆u; y ≤ yk ≤ y (4)

Furthermore, define the future target r
→k+1

as follows:

r
→k+1

= [rTk+1, r
T
k+2, · · · , r

T
k+ny

]T (5)

A. Generalised predictive control [4], [15]

GPC uses a finite horizon performance index of the follow-

ing form:

J = ‖ r
→k+1

− y
→k+1

‖22 + λ‖∆u
→

‖22 (6)

where the definitions of y
→k+1

,∆u
→k

are analogous to (5)

except that ∆u
→k

has nu terms with nu ≪ ny in general. The

predictions can be shown to obey equations of the following

form, for suitable matrices Px, H:

y
→k+1

= H∆u
→k

+ Pxxk (7)

Expanding the performance index in full using the predictions

of (7) gives:

J = ∆u
→

T

k
(HTH + λI)∆u

→k
+∆u

→

T

k
HT (Pxxk − r

→k+1
)

+α; α = ( r
→k+1

− Pxxk)
T ( r

→k+1
− Pxxk)

(8)

Satisfaction of constraints (4) over the horizon ny can be

shown to be equivalent to a set of linear inequalities captured

as follows (for suitable M,N, d):

N∆u
→k

+Mxk ≤ d (9)

Note, it is implicit here that the model (3) includes a state

with information about uk.

Algorithm 2.1: GPC is defined as follows. At each sample,

perform the quadratic programming optimisation

min
∆u
→k

J s.t. N∆u
→k

+Mxk ≤ d (10)

Implement the first value of ∆u
→k

, that is ∆uk.

Next a lemma and corollary illustrate the major difficulty

which is the focus of this paper.

Lemma 1: Optimisation (10) can be recast in the same form

as (1).

Proof: Removing the term α which does not depend upon the

degrees of freedom, and then combining parameters which

may vary with time (that is r
→k+1

, xk) the performance index

can be reformatted as:

J ≡ ∆u
→

T

k
(HTH + λI)
︸ ︷︷ ︸

S

∆u
→k

+∆u
→

T

k
HT [Px,−I]
︸ ︷︷ ︸

P

[

xk

r
→k+1

]

︸ ︷︷ ︸

wk

(11)

In a similar way, the constraints (9) can be reformatted as

follows:

N∆u
→k

+ [M, 0]wk ≤ d (12)

⊔⊓
Corollary 1: Including advance knowledge r

→k+1
in the

performance index augments the implied parametric state

dimension by the dimension of r
→k+1

to give a dimension

of nx +m× ny . This is obvious from the replacement of xk

by wk in (11,12).

Now we are in a position to state the obvious dilemma.

Where a user would like to incorporate advance knowledge of

the target into their predictive control problem, this massively

increases the dimension of the parametric state wk. Even just

including a fixed target and integral action [17] increases the

required parameter dimension to nx + m which is already

undesirable, to include more advance information could make

the dimension of the parametric optimisation impractical in

general.

Hence one objective of this paper is to suggest ways of

modifying optimisation (11,12) so that one retains some of the

benefits of including advance information while at the same

time keeping the dimension of the implied parameter space

small.

B. Optimal or dual-mode predictive control

GPC is a finite horizon approach which, if tuned carefully,

can be effective. However, it is now well known [11] that

dual-mode approaches have better properties in general. Con-

sequently, it is worth considering how a parametric solution

can be determined for a dual-mode approach. For convenience

the standard OMPC algorithm of [14] is utilised.

OMPC uses a infinite horizon performance index of the

following form:

J =
∑

∞

i=0
(xk+1+i − xss)

TQ(xk+1+i − xss)
+(uk+i − uss)

TR(uk+i − uss)
(13)

along with an input parametrisation of the form:

uk+i − uss = −K(xk+i − xss) + ck+i i = 0, 1, · · · , nc − 1
uk+i − uss = −K(xk+i − xss) i ≥ nc

(14)

so the variables ck+i are the degrees of freedom and (xss, uss)
are the expected steady states to track a fixed target rk+1; typi-

cally [15] one can show that xss = T1rk+1, uss = T2rk+1 for

suitable T1, T2. Substituting from (14) into (13), minimising

the performance index can be shown to be equivalent [14] to

minimising the following form:

J = c
→

T

k
S c
→k

(15)

Combining model (3), input predictions (14) and constraints

(4) inequalities representing constraint satisfaction of the pre-

dictions can be reduced to:

N c
→k

+Mxk +Qrk+1 ≤ d (16)

for suitable N,M,Q.

Algorithm 2.2: OMPC is defined as follows. At each sample,

perform the quadratic programming optimisation

min
c
→k

c
→

T

k
S c
→k

s.t. N c
→k

+Mxk +Qrk+1 ≤ d (17)



Implement the first value of ck in (14) to determine the current

input, that is uk.

Lemma 2: Optimisation (17) can be recast in the same form

as (1). This is obvious.

Corollary 2: Extension of dual-mode strategies to take

account of more future values of the target such as available

in r
→k+1

is not widely discussed in the literature [5]. In aid

of brevity, here it will simply be noted that the performance

index and inequalities and thus required optimisation can take

the following form:

min c
→k

c
→

T

k
S c
→k

+ c
→

T

k
S2 r

→k+1

s.t. N c
→k

+ [M,Q]

[

xk

r
→k+1

]

≤ d
(18)

As in the previous section, it is noted that the incorporation

of advance information has vastly increased the dimension

of the associated parametric optimisation. In essence, for the

equivalent of optimisation (1), and exactly as in the previous

subsection, the implied state is now w = [xT , r
→

T

k+1
]T .

C. Summary and proposals

It has been shown that a simplistic inclusion of future target

information r
→k+1

into a predictive control algorithm leads to

an increase in the dimension of the parametric space for the

associated multi-parametric quadratic programme. In general,

for anything other than the most trivial case [17] where it is

assumed that rk+i = rk+1, ∀i so that the effective dimension

of r
→k+1

reduces to that of just rk+1 , then this increase in

dimension is likely to be unmanageable and thus a parametric

approach is unlikely to be feasible. In consequence, this paper

considers for which scenarios can this information be incor-

porated without leading to unnecessarily large dimensional

increases.

III. REDUCING THE DIMENSION OF THE PARAMETER

SPACE WITH FINITE HORIZON ALGORITHMS

This section will show how small changes to the formulation

of a GPC optimisation can reduce the dimension of the implied

parameter space. Some suggestions lead to a small degree

of sub-optimality, but in fact, within parametric predictive

control, the use of sub-optimality is often a key tool for

reducing complexity [2], [3] and thus this may be considered

an acceptable compromise in order to gain some of the benefits

of using the feedforward information rather than ignoring it.

A. Reducing the amount of advance knowledge

Recent work on the use of advance information [6] within

predictive control has considered questions about how much

advance information is useful, that is, really makes a noticeable

difference to closed-loop performance. It was established that

ignoring far future (beyond na samples) values of the target

usually led to a minimal deterioration in performance as long

as nu < na < (nu + nr)/2 with nr being the notional rise

time. Larger na were usually unhelpful as the control d.o.f.

were not contemporaneous enough and therefore inappropriate

control moves for the relevant target changes. Therefore, as

in the context of parametric approaches some sub-optimality

is accepted in the pursuit of simplicity, this section looks at

what can be achieved by summarising future target information

r
→k+1

into fewer values

The most obvious and easiest way to reduce the dimension

of the parameter space in vector w is the rather obvious one

of reducing the dimension of r
→k+1

. It is commonplace in the

predictive control field to use the following approximation,

assume rk+na+i = rk+na
, ∀i > 0 (here given in SISO case to

simplify algebra). Then:

r
→k+1

=











rk+1

...

rk+na

...

rk+na











=










rk+1

rk+2

...

rk+na−1

Lny−na
rk+na










; Lny−na
=








1
1
...

1








(19)

where Lp is a p−dimensional vector of ones. This assumption

reduces the dimension of r
→k+1

from ny components to na

components. Moreover, it has been shown [5], [19] that in

many cases using relatively small values of na give almost

equivalent, and sometimes better, closed-loop performance

compared to using values close to ny . Thus using the ap-

proximation implicit in a choice of small na is reasonable for

GPC.

Remark 1: Even though one can reduce the overall pa-

rameter dimension of w = [xT , r
→

T

k+1
]T to nx + na × m

with na < ny , one might still argue that anything much

beyond na = 2 is likely to increase the parameter space

beyond normally accepted limits for parametric solutions.

While na = 2 usually gives better closed-loop performance

than na = 1, nevertheless it may still be significantly worse

performance than achievable with an even larger na and thus

such a solution may not be sufficient in general.

B. Reducing the amount of advance knowledge further

Existing literature has largely focussed on the structure of

(19) and argued that na ≪ ny often leads to improved closed-

loop behaviour [5], [19]. However, there is another alternative

that has not been explored carefully and is the subject of a

current investigation. Another interesting avenue is the extent

to which transient values such as rk+1, rk+2 are really useful

as most systems cannot respond significantly within a few

samples, hence having a particular target during fast transients

may not be meaningful. The proposal here therefore is to

ignore specific information about the targets for the next few

samples and instead assume that rk+i = rk+na2
, i ≤ na2 and



thus use a structure such as the follows.

r
→k+1

=
















rk+na2

...

rk+na2

...

rk+na

...

rk+na
















=










Lna2
rk+na2

rk+na2+1

...

rk+na−1

Lny−na
rk+na










(20)

It is clear that the dimension of the corresponding vector r
→k+1

has now been reduced to having na − na2 + 1 independent

components, which is a significant reduction compared to ny

components.

C. Using insights from reference governors and PFC

Reference governors [8] are primarily focussed on highly

efficient constraint handling whereby one ensures that the

target to the feedback loop changes slowly enough not to cause

the internal signals to violate constraints. To some extent,

performance takes second place to computational efficiency

and simplicity so some sub-optimality is accepted. In the

context of this paper, a key observation is the use of small

amounts of feed forward information of the target rather than

the entire trajectory. Specifically, this paper notes one possible

simplification which is implicit in PFC [13], that is assume

the future target trajectory takes the following form (a smooth

transition from current output to long term target):

rk+i = (rk+na
−yk)(1−λi)+yk; r

→k+1
= W1rk+na

+W2yk
(21)

where the definitions of W1,W2 are obvious and rk+na
is the

best representation of the long term target value.

Clearly, this suggestion has close analogies to the previ-

ous two subsections in that the future target information is

approximated in some fashion to reduce the dimension of the

implied parametric space. The proposal here has the advantage

that the parametric space is the same dimension as would be

needed for routine inclusion of integral action [17], although

of course the use of the feedforward information is now much

less precise than it could be due to the approximation implicit

in (21).

Remark 2: All three suggestions in the previous subsections

reduce to the following generic approximation.

r
→k+1

= W1γ +W2xk (22)

where γ constitutes the degrees of freedom to encapsulate

future values of rk+i and W1,W2 are defined appropriately.

In consequence, the parametric dimension required to include

future target information is exactly the dimension of γ. As

noted earlier, to include integral action [17], at the very least

this must match the output dimension.

D. Utilising the unconstrained optimal

A key observation with finite horizon algorithms such as

GPC is that the target values r
→k+1

do not appear in the

constraint set (12). Consequently, if one can reduce the implied

dimension of w in the cost function J , then this reduction in

parameter space will apply for the QP as a whole.

One obvious mechanism for altering a QP optimisation is

to re-parametrise relative to the unconstrained optimal [14],

[16], [18]. Consequently, define the unconstrained optimal as

follows:

∆u
→nom

= −(HTH + λI)−1HT [Px,−I]wk (23)

Next, write the actual future inputs as deviations from the

unconstrained optimal.

∆u
→k

= ∆u
→nom

+∆ ũ
→

(24)

Finally, substitute (24) into (11) and hence:

J = (∆u
→nom

+∆ ũ
→

)TS(∆u
→nom

+∆ ũ
→

)+(∆u
→nom

+∆ ũ
→

)TPwk

(25)

Lemma 3: The minimisation of J in (25) is equivalent to

the minimisation of the following performance index.

J = (∆ ũ
→

)TS(∆ ũ
→

) (26)

Proof: This follows directly from ∆u
→nom

being the un-

constrained optimal. Therefore in the unconstrained case, the

optimal value of ∆ ũ
→

= 0, and therefore a cost written in

terms of ∆ ũ
→

cannot have a linear term as this would imply a

non-zero unconstrained optimum. ⊔⊓
Lemma 4: The parametrisation of (24) modifies the inequal-

ities of (12) as follows. Proof omitted as obvious.

N∆ ũ
→

+ [N,M ]

[
∆u

→nom

xk

]

≤ d (27)

Theorem 1: Using parametrisation (24) changes the dimen-

sion of the parameter space from nx+ny×m to nx+nu×m.

Proof: This is obvious from (25,27) as the parameter

∆u
→nom

has dimension nu×m and the constraints also include

parameter xk.

Remark 3: Because the future target information can be

subsumed into the unconstrained optimal, if nu < na then

one can reduce the implied parameter space for a MPQP

solution below that suggested in subsection III-A. Nevertheless

it is still transparently clear that the inclusion of advance

knowledge will inevitably lead to a larger increase in the

implied parameter space than is likely to be desirable as

common tuning guidance suggests that both nu ≫ 1 and

na ≫ 1. Of course, any form of offset free tracking must

as a minimum deploy na = 1 so all parameter dimensions are

relative to that baseline.

E. Re-parametrising the input degrees of freedom

The previous subsections accepted the GPC algorithm in

its basic form and asked questions about the implications of

adding advance knowledge of targets into an MPQP solver.

A key observation was that the dimension of the parameter



space can be linked directly to the number of d.o.f. in the

optimisation, while still including all far future feedforward

information.

This section pursues the alternative route of changing the

algorithm at the outset in the hope that this will lead to a

simpler MPQP problem and specifically, asks the question

whether the number of optimisation d.o.f. can be reduced, thus

benefiting from the insights gained in theorem 1. Specifically,

consider the potential benefits of orthonormal parametrisations

[9], [16], [20] as these have been shown to effective at enabling

a reduction in the number of optimisation d.o.f. while retaining

good performance.

The basic suggestion [20] is to write the future control

moves as follows:

∆u
→k

=






l1,0 l2,0 · · ·
l1,1 l2,1 · · ·

...
...

...






︸ ︷︷ ︸

HL






η1
...

ηnη−1






︸ ︷︷ ︸

η

(28)

where li,k are coefficients of the expansion of the ith orthonor-

mal function, for example:

li(z) = li,0 + li,1z
−1 + li,2z

−2 + · · · (29)

The conjecture is that in many cases, with appropriate choices

of orthonormal functions, one can use nη < nu and still

obtain similar performance and thus reduce the computational

complexity of the MPC algorithm.

Lemma 5: Using (28) in the cost function (11) one can

derive the unconstrained optimal as:

ηnom = −(HT
LHL + λI)−1HT

L [Px,−I]wk (30)

This is obvious so not proved.

Theorem 2: One can formulate a performance index and

constraint inequalities based on deviation variables for η as

follows:

J = (η̃)TSL(η̃); NHLη̃ + [NHl,M ]

[
ηnom
xk

]

≤ d (31)

Proof: This is exactly analogous to the derivations in

lemmata (3,4).

In summary, the dimension of the corresponding parameter

space in an MPQP problem of (31) is nx+m×nη and thus, in

cases where nη < nu, this could be advantageous as compared

to the approach in section III-D.

IV. DUAL-MODE APPROACHES

The QP optimisations for dual mode approaches have one

notable difference from those for finite horizon approaches

which is evident from viewing the inequalities of (12,16).

In one case the values of r
→k+1

appear explicitly within the

constraint inequalities whereas in the other they do not. The

consequence of this is that while one can do a reparameteri-

sation in the finite horizon case (see section III-D) to capture

the impact of future targets on the cost function within a lower

dimensional optimal input trajectory, this is not the case in the

dual-mode case because r
→k+1

still exists in its entirety in the

constraints.

In consequence, the main options available to a dual-mode

approach correspond to those detailed in sections (III-A to

III-C). In aid of brevity, these developments are not restated

as they will be exactly equivalent, that is one can use an

approximation of the form:

r
→k+1

= W1γ +W2xk (32)

where γ constitutes the number of degrees of freedom used to

approximate target information, with W1,W2 defined appro-

priately.

V. NUMERICAL EXAMPLES

This section will give a few numerical examples to demon-

strate the impact on parametric complexity of including ad-

vance knowledge, using OMPC approach.

Consider example with 2 states.

A =

[
0.8 0.1
−0.2 0.9

]

; B =

[
0.3
0.8

]

;

C =
[
1 0

]
, D =

[
0
]

(33)

−0.2 ≤ u ≤ 0.5;







1 0.2
−0.1 0.4
−1 −0.2
0.1 −0.4






xk ≤







8
8
1.6
5







The parametric solutions are computed with a range of values

of na, and the following information is captured.

• Number of inequalities.

• Number of parametric regions in solution.

1) Algorithm in section (III-B). Table I shows the impact of

the dimension of the reduced future information (γ) on

the parametric solution for different R, using Algorithm

in section (III-B).

It is clear from the result that the number of regions and

inequalities increase as the the dimension of the reduced

future information (γ) increases.

2) Algorithm in section (III-C). Table II shows the impact

of the dimension of the reduced future information

(γ) on the parametric solution for different R, using

Algorithm in section (III-C).

Similarly, It is clear from the result that the number of

regions and inequalities increase as the the dimension

of the reduced future information (γ) increases.

VI. CONCLUSIONS AND FUTURE WORK

First and foremost it is clear that including advance informa-

tion about targets (and equivalently measureable disturbances)

increases the dimension of the parameter space for an MPQP

approach to predictive control. It is recognised that MPQP

is often impractical for large parameter spaces and thus one

may infer that usually MPQP would be difficult to use in

conjunction with advance knowledge scenarios.

Nevertheless, this paper has introduced some reformulations

of a typical finite horizon MPC algorithm which can, to a



TABLE I
COMPARISON OF MPQP SOLUTION COMPLEXITY FOR DIFFERENT

DIMENSIONS OF γ FORALGORITHM OF SECTION (III-B)

System (33) with na = 3, R = 0.1 ∗ I

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 70 85 97

Number of inequalities for all regions 39 32 42

System 1 with na = 3, λ = 0, R = I

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 91 123 130

Number of inequalities for all regions 30 32 34

TABLE II
COMPARISON OF MPQP SOLUTION COMPLEXITY FOR DIFFERENT

DIMENSIONS OF γ FOR ALGORITHM OF SECTION (III-B)

System (33) with na = 3, λ = 0.2, R = 0.1 ∗ I

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 75 106 104

Number of inequalities for all regions 41 41 35

System 1 with na = 3, λ = 0.2, R = I

Dimension of γ = na − na1 + 1 1 2 3

Number of regions 91 124 129

Number of inequalities for all regions 31 34 34

limited extent, overcome problems with dimension growth.

In the case of finite horizon approaches, one can exploit

the fact that target information appears only in the cost

function, but not the constraints. Hence, it is shown that even

where a moderately large advance information is used, by

reformulating the optimisation in terms of deviation variables

about about the unconstrained optimal input trajectory, the

parameter space increase can be limited to the control horizon

or equivalently the number of optimisation variables. However,

a second and perhaps more helpful observation is to exploit

the ’added value’ in the future target information and capture

this value in fewer variables; in essence the increase in the

parameter space is linked to the number of variables needed

to capture the useful information in the target trajectory and,

if needed, one can capture this with very few variables and

thus reduce the dimension to that required for incorporating

integral action (section III-C). Obviously any simplification of

the target information results in some suboptimality, but that

is likely to be a price worth paying for improvements in the

simplicity of the MPQP solution.

While finite horizon MPC algorithms still dominate indus-

trial practice, nevertheless, it is recognised that dual-mode

approaches have significant theoretical and potentially perfor-

mance advantages and thus it is important to consider the

extent to which advance target information can be included

in parametric solutions for these. However, it is immediately

clear that some of the simplifications possible for finite horizon

approaches are no longer possible because the embedding of

terminal control laws into dual-mode predictions means that

the target information appears in both the cost function and the

constraints, and thus one cannot exploit the unconstrained op-

timal, thus the options of sections III-D,III-E are not available.

Hence, in this case, the main option is the approximation of

r
→k+1

, and thus the parameter space increase is linked directly

to the number of variables used to capture the future target

information.
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