
This is a repository copy of Augmenting Live Coding with Evolved Patterns.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/113747/

Version: Accepted Version

Book Section:

Hickinbotham, Simon John orcid.org/0000-0003-0880-4460 and Stepney, Susan
orcid.org/0000-0003-3146-5401 (2016) Augmenting Live Coding with Evolved Patterns. In:
International Conference on Evolutionary and Biologically Inspired Music and Art;
EvoMusArt 2016. Lecture Notes in Computer Science (LNCS) . Springer , 31–46.

https://doi.org/10.1007/978-3-319-31008-4_3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Augmenting Live Coding with Evolved Patterns

Simon Hickinbotham and Susan Stepney

YCCSA, University of York, UK
sjh518@york.ac.uk

Abstract. We present a new system for integrating evolvutionary pro-
cesses with live coding. The system is built upon an existing platform
called Extramuros, which facilitates network-based collaboration on live
coding performances. Our evolutionary approach uses the Tidal live cod-
ing language within this platform. The system uses a grammar to parse
code patterns and create random mutations that conform to the gram-
mar, thus guaranteeing that the resulting pattern has the correct syntax.
With these mutations available, we provide a facility to integrate them
during a live performance. To achieve this, we added controls to the Ex-
tramuros web client that allows coders to select patterns for submission
to the Tidal interpreter. The fitness of the pattern is updated implic-
itly by the way the coder uses the patterns. In this way, appropriate
patterns are continuously generated and selected for throughout a per-
formance. We present examples of performances, and discuss the utility
of this approach in live coding music.

1 Introduction

We explore the use of evolutionary techniques to generate new musical constructs
during live coding performances. Live coding is the use of domain-specific lan-
guages (DSLs) to improvise new musical pieces in a live concert setting. We
present a new evolutionary system which augments this process by generating
and maintaining a population of coded musical patterns that are interactively
expressed as audio during the performance. The system allows the actions of
the human coders to be fed back to the population as adjustments to the fitness
of patterns, resulting in a novel musical interactive genetic algorithm (MIGA,
[8]). The system is sufficiently flexible to allow the generation of pieces using
evolved patterns alone, or any mix of evolved patterns and manually configured
patterns.

Using artificial evolution to generate music has a long history. The core ap-
proach is usually to generate populations of complete musical pieces and to
assign fitness values to each individual piece via human perception [8]. This pro-
cess requires that each generated piece is heard at least once, and so causes a
significant bottleneck in the evolutionary process. In addition, there is the issue
of listener fatigue, in which the human assignment of fitness values varies as the
listener wearies of listening to large numbers of generated pieces. There are ways
around this problem, usually by either only presenting a subset of the gener-
ated pieces to the listener [9], or making the pieces very short [2]. Both of these

solutions have obvious drawbacks both in terms of the evaluation of each piece
and the eventual result. In addition, the positive side of changes in the human
evaluation of a musical pattern throughout a performance has received relatively
little attention in previous work. Recognising when a repeating pattern should
be changed is an important part of the composition process.

Our approach differs from the above methodologies as follows. Firstly, we are
using the paradigm of live coding [3] as our musical framework. Here, rather than
evolve entire pieces of music ab initio, the evolutionary process is interactive, and
takes place while the piece is being performed. This allows for a more natural
interaction between the evolutionary mechanism and the composer/performer.
The recent development of live coding systems affords a new opportunity for
researchers in evolving systems because new musical patterns must be generated
many times during a performance. We give the artist (here referred to as the
live coder or just coder) a new facility to augment their hand-designed patterns
with ones that are generated by the evolutionary algorithm, and to blend the
two together as they see fit. The evolutionary system augments the process of
improvisation by generating novel patterns which the live coder can integrate and
respond to. The population of evolved patterns changes gradually with the piece,
and provides a reference point and storage for a changing bank of aesthetically
pleasing patterns.

The recent development of the Extramuros [4] system has made the imple-
mentation of this idea more generic, and easier to achieve. Extramuros is a system
that allows browser-based collaboration of a group of performers on live-coded
pieces of music and graphics across a network. The availability of this system
makes it easier to use automation to suggest patterns for use and further ma-
nipulation by the coder. An evolutionary process is an ideal candidate for the
automatic generation of new coding patterns within this context.

Tidal [3] is the live coding language that we use in this work. Other live cod-
ing languages exist, such as Sonic Pi [1] and Chuck [10]. We selected Tidal as our
live coding language because it is relatively well documented and straightforward
to install in an Extramuros framework. The live coding approach allows more
immediate interaction between human and automaton. Live coding languages
are more like conventional computer code than other musical notation systems
but with more emphasis on brevity and ease of editing than is common in pro-
gramming languages, sometimes at the expense of clarity. Live coding requires
a text-based grammar to encode the musical sounds, designed to be constantly
manipulated rather than simply written once and interpreted many times. This
grammar is amenable to a genetic programming (GP) approach to evolving sys-
tems.

The experimental work we present here tests this idea as a proof of concept.
We have augmented the Extramuros system with an interactive evolutionary
algorithm, which maintains a population of patterns on the client, and uses a
separate server to carry out the process of parsing and mutating individuals in
the population.

Extramuros/GA
 Client

Browser

Extramuros ServerTidal ParserMutator Server

Dirt Synth

Extramuros/GA
 Client

Extramuros/GA
 Client

Fig. 1. Overview of the system

Evolutionary systems require a mechanism for mutation. A naive mutation
model would substitute a single ASCII character in the pattern for another, but
this would rarely yield a pattern that could be parsed by the interpreter. Clearly,
a more sophisticated mutation scheme is required which preserves the syntax of
the coded pattern. One approach would be Genetic Programming (GP), in which
a tree representation of a program is used to organise the options of mutation.
However, GP still has limitations, because it must be possible to interchange
any node on the tree representation.

2 Methodology

We first describe the workflow of a performance, as this will give a clear under-
standing of the complete system and how it is used in a live performance setting.
Following from this, we present a more detailed description of the evolutionary
aspects of the system that we have implemented to test the concept.

Our evolutionary system is built around the Extramuros platform, figure 1.
In a standard Extramuros system, each performer controls their contribution to
the performance by entering Tidal code into text-boxes in a web-browser-based
client (see https://www.youtube.com/watch?v=zLR02FQDqOM). The client can
be configured to have any number of input boxes, and each user writes their
code in one or more of them. The Extramuros server uses ShareJS, a library for
concurrently editing content over a network. This means that each performer can
see the code that every other performer in the ensemble is creating in near-real
time in every browser. Indeed, it is only by agreed convention between performers
that they do not attempt to edit each other’s code, although there are no barriers
to doing so.

When a performer has completed the latest edit to their code, they submit
it to the Tidal interpreter by pressing the ‘eval’ button next to the text box, or
by using a keyboard shortcut. (There were versions of Tidal which did not need
this ‘submission’ step, but it was found that this led to jarring audio as the new

pattern was being typed in.) A piece of edited code is called a pattern. The Tidal
interpreter parses the pattern and sends the resulting code to a synthesiser, usu-
ally the Dirt synthesiser that Tidal was developed to control. Other compatible
synthesisers can also be used, and recent developments in Tidal also allow it to
send MIDI data.

In order to allow evolution of patterns, we developed a client-side genetic
algorithm and an additional server, shown in figure 1 as the ParserMutator
server, which checks the syntax of each pattern as it is added the population,
and rejects patterns which do not conform to the grammar. When requested, the
ParserMutator server also generates mutated patterns which are syntactically
correct. A population of patterns is held in the Document Object Model (DOM)
of each client page. Each user can maintain their own population of patterns
in this way without interfering with other coders in the performance, although
a coder can push code that appears in another coder’s text box to their own
population if they want to. The core idea is that aesthetically pleasing patterns
are ‘pushed’ to the GA population, and mutants of these patterns are ‘pulled’
from it later on. The fitness of a pattern is increased or decreased according to
the way it is used in the performance. Since the system is designed to operate
in a live performance, it is important to let the performer(s) decide when to do
this. To facilitate this flexibility, we added five new buttons to each text-entry
box, giving a total of six operations:

1. eval: Send the pattern to the Tidal interpreter
2. push: Send the pattern to the population (via the ParserMutator)
3. pull: Pull a pattern from the population
4. pullmut: Request a mutation of the current pattern from the ParserMutator
5. up: Increase the fitness of the current pattern (if it exists in the population)
6. dn: Decrease the fitness of the current pattern; remove it from the population

if fitness < 0

We describe how these operations are used to change the fitness of a pattern
below (section 2.3) In addition to the extra controls, we added a small notifica-
tions area to each box so that the client can communicate to the user the effect
of the last action in each box. For the layout of a each text entry box, see the
lower panel of figure 2.

The actions that these buttons encapsulate are connected into a performance
workflow as shown in figure 3. The commands for these actions were written in
JQuery and JavaScript. The workflow proceeds as follows. One (or more) Tidal
patterns are typed into the text entry box(es) by the coder, and edited until
a pleasing pattern is produced. When this happens, the patterns are ‘pushed’
to the GA population. The population is initially zero, and has a maximum of
20 individuals. This limit on population size is large enough to allow sufficient
varibaility in the population, but small enough to provide some selection pressure
within the timescale of a performance. When a pattern is initially pushed to the
population, its fitness is set to 1. The system checks whether the pattern already
exists, and if it does then its fitness is increased by 0.5. The ‘up’ and ‘dn’ buttons

Fig. 2. The evolving Extramuros platform (top), and closeup view of pattern entry
box 5(bottom) (colours inverted for clarity).

allow fitness to be respectively increased or decreased by 0.25 at any time. This
allows fine-tuning of the fitness of the whole population.

Once there are some patterns in the population, it becomes possible to copy a
pattern from the population into a text box using the ‘pull’ button. An indiviudal
pattern is selected randomly from the population, with the chance of being
selected weighted by the fitness of each individual. One copied to a text box, the
pattern can be submitted to the Tidal interpreter, edited manually or mutated
by pressing the ‘pullmut’ button.

When the maximum permitted number of patterns are in a population, new
patterns that are submitted to the population take the place of the least fit
existing pattern. If there is more than one pattern with the minimum fitness
value, then one of these low-scoring patterns is selected for deletion at random.

Having described the overall function of the system, we now turn to the
mechanism by which we maintain a population of Tidal patterns, and how we

Enter a pattern

Evaluate

Pull a pattern

Mutate (or Edit)

N

Y

Uprate Push to pop'n

N

Y

N

Downrate

Delete least fit

Y

YY

N

N

Patterns
 in pop'n?

In pop'n?

Good
pattern?

Good
pattern?

Pop'n
full?

Fig. 3. Flowchart of the operation of the genetic algorithm. “Population” is abbreviated
to “pop’n”

are able to mutate them. This is achieved by reference to a grammar, from
which we construct a pattern parser and a mutation operator to build our genetic
algorithm (GA). These are described below, after a brief description of the Tidal
pattern language.

2.1 Tidal

In order to evolve music, an abstract representation of the sounds is needed upon
which the evolutionary operators can act. Here, we use Tidal, the Haskell-based
live coding pattern language. For a complete description of Tidal, see [3] and
tidal.lurk.org. The language is designed to facilitate ease of composition in
live performances, and allows the user to quickly generate complex manipulations
of synthesised sound. To get a flavour of how patterns are coded in Tidal, we
describe the components of the pattern from the bottom of figure 2:

d3 $ palindrome $ rev $ every 4 (iter 12) $ iter 2

$ jux (jux (striate 9)) $ slow 8

$ sound "sundance*30" |+| vowel "a o a"

The d3 at the beginning specifies that sound will be sent to the 3rd of the
9 channels in the Dirt synthesiser. A series of pattern transformer operations

are applied. Each $ sign applies the operator to everything that follows, as if
the whole of the remainder of the pattern were in parentheses. These operators
change the speed, order and sub-sampling of the pattern of samples that is
specified by the sound operator, which is the only mandatory command. The
sound command has a single argument: a pattern of samples enclosed within
quote marks. In this example, the sample sundance is repeated 30 times. There
are many different ways to specify when the sample will be played within a
prespecified time period (default 1 cycle per second). Following from the sound
command, a series of synthesiser parameters can be used, separated by the |+|
operator. In this example, the vowel command uses a formant filter to mask the
sample with a vowel-like sound. The vowels used are also specified by a pattern,
in this case "a o a". The pattern of samples is controlled by a pattern of vowel
shapes, and each pattern is organised in time independently of the other. This
combination of transformations can radically change the way these samples can
sound to the human ear.

2.2 Grammar and Parser

There are strong arguments for running the evolutionary algorithm externally
to the Tidal process. Firstly, it is good design practice to keep the code gener-
ation/manipulation functionality independent from the code execution – this is
safer because it the former will not interfere with the scheduling of the latter.
Secondly, it means we can run the grammar tools as if they were acting as an-
other composer. Finally, it means that we have a separate representation of the
grammar that we can manipulate in order to yield attractive patterns.

Constructing the grammar There are many ways to represent a language
in a grammar. Note that our aim here was not to create a grammar that could
parse all possible Tidal patterns, but rather to create a functional grammar that
could parse the majority of patterns and allow us to implement some mutation
functions to act upon that reduced grammar, mainly because we wanted to test
the whole system before expending too much time refining the grammar. Ac-
cordingly, we created a grammar that was sufficiently representative of patterns
that live coding use. This is not an exhaustive grammar, but the majority of the
structures in the test corpus patterns could be parsed. It was more important
that syntactically illegal patterns were excluded from the evolutionary system.

We used two sources of pattern data to construct the grammar: the Tidal
reference pages at tidal.lurk.org; and a set of example patterns available
from yaxu.org/tmp/patternlib/. The former was used to ensure that all the
documented commands in Tidal were represented in the grammar, and that the
syntax from the examples was correctly implemented. The latter was used to
test the ability of the grammar to parse the more sophisticated constructs that
can be created in Tidal. We call this data set the test corpus.

We used Antlr [6] to generate a java library from the grammar we devel-
oped. A subset of the parsing rules are shown in figure 4 in the Antlr grammar

trans_spec
: trans_0arg
| LBRK trans_spec RBRK (POINT LBRK trans_spec RBRK)*
| slow_pattern
| STUT INTEGER zero2one (zero2one | LBRK MINUS zero2one RBRK)
| SUPERIMP LBRK trans_spec RBRK
| cont_frag
| (DEG_BY|TRUNC) zero2one
| (number)? (BEATR|BEATL)
| int_arg_trans intint
| EVERY INTEGER ((LBRK trans_spec RBRK)| trans_spec)
| FOLDEVERY LSQB INTEGER (COMMA INTEGER)+ RSQB LBRK trans_spec RBRK
| (SOMETIMESBY_ALIASES | SOMETIMESBY zero2one) trans_spec
| WHENMOD INTEGER INTEGER LBRK trans_spec RBRK
| WITHIN LBRK zero2one COMMA zero2one RBRK LBRK (trans_spec|(KNIT cont_frag)) RBRK
| JUX LBRK trans_spec (POINT trans_spec)* RBRK
| ZOOM LBRK zero2one COMMA zero2one RBRK
| STRIATE1 INTEGER LBRK (ONE|INTEGER) DIVID (ONE|INTEGER) RBRK
| SMASH intint LSQB number (COMMA number)* RSQB
| slowspread_pattern ;

Fig. 4. Example of rules used to construct the Tidal parsing grammar

format. This library was then used to build the parse functions needed to gen-
erate patterns automatically, and also to build the mutation operators for the
evolutionary algorithm.

One of the advantages of working with live coding systems is that they are
designed to be ‘crash-proof’: badly formed patterns do not break the system,
they merely generate an error message as feedback to the composer. This is
analogous to biological systems, where expressed enzymes cannot change the
laws of chemistry (c.f. crash the system), but can be sufficiently harmful (c.f.
generate an error message) to alert the organism that evolved them to respond
appropriately.

2.3 Evolutionary algorithm

Our goal is to prove the concept of evolving DSL-based pattern music in a
live setting. Accordingly, we developed a minimal genetic algorithm, capable of
generating mutated patterns from a population of patterns on demand.

Our grammar-based genetic algorithm uses the parser described above to
evolve the population. Since the parser can tokenise any legal Tidal pattern, it
is possible to use the patterns themselves as the genotype of the evolutionary
process, since mutation is also handled by the parser. In this respect, our ap-
proach differs from Grammatical Evolution [5], which uses a sequence of integers
to generate a pattern from the parse tree. Our approach is more akin to Genetic
Programming, but is able to handle different values of terminal nodes due to the
use of specific mutation operations for particular node classes.

Default values for the parameters of the evolutionary algorithm are shown
in figure 5. Genetic algorithms have five stages. The first is an initialisation

stage, followed by an iteration through stages of selection, crossover, mutation

and evaluation. Finally, a termination step is introduced to decide when to stop.

Variable Value Notes

Mrate 0.4 Mutation rate
maxpop 20 Maximum number of individuals in the population

Fig. 5. Default values for the parameters in the system

Each of these stages requires special consideration in a live coding setting. For
ease of reference, we detail each of these stages below.

Initialisation Although there are many potential strategies for automatically
initialising a population, we felt that it was important for the coder to select
patterns to submit to the algorithm from the outset. There are two reasons for
this. Firstly, it means that mutations will always have basis in the tastes of
the coder. Secondly, it means that we did not have to implement a full pattern
generator via the grammar (this will be the subject of future work).

Selection Our selection strategies work in two ways. Positive selection is based
on the fitness of the individual. When the coder uses the ‘pull’ command to
select a pattern from the population, the chance of a pattern being selected is
proportional to fitness. When a new pattern is added to the population, one of
the patterns with the minimum current fitness is automatically deleted.

Crossover Crossover is a controversial topic in genetic algorithms, and it was
not necessary to implement it in our current algorithm. We don’t do crossover
automatically yet, but we propose that if we only swap over identical node types,
then crossover can never be fatal. That is the advantage of a grammar-based
mutation strategy. Coders have the opportunity to cut and paste fragments of
mutated patterns should they see fit, but there is no pressure to do so.

Mutation To test our approach, we implemented three mutation mechanisms
which operated on three different regions of a Tidal pattern: insertion of pattern
and sample transformers (e.g. the phrase $ every 4 (iter 12) for the pat-
tern in figure 2); substitution of sample patterns (e.g.sundance cold be changed
for jvbass or [bd cp jvbass]; and insertion of synthesiser parameters (e.g.
|+| vowel "a e o i"). (For more details of this syntax, see tidal.lurk.org).
Mutations were positioned in the pattern by identifying the appropriate nodes
in the parse tree that the mutations could be applied to. This guarantees that
the mutations are always syntactically correct, and allows complicated nesting
of sample patterns and transformations to emerge through evolution. Given the
lack of crossover, it was important that the mutation opeartor could insert new
branches into the parse tree. This is achieved in two ways: insertion of trans-
formations and synthesiser patterns; and insertion of new groups of pattern
events in a single event (for example, mutating the pattern "sn sn bd sn" to
"sn [hc ho hc] bd sn").

As in standard GAs, ‘harmful’ mutations are bound to emerge. The ‘damage’
that they will do in this application is evaluated by the coder - they are sounds
which are in some way incompatible with the performance at the current time.
Also, some mutations are neutral. For example, if a ‘delayfeedback’ command
is created, it will have no effect unless the ‘delay’ parameter is set. Since this
will do no harm (other than to make the pattern text more obscure), there is
no real problem if these things emerge. The coder, observing such mutations,
might consider to turn these features ‘on’ by adding the necessary text, feeding
this back in to the evolving pattern population.

It is possible to produce many modifications of the same class, for exam-
ple |+| vowel "a e i" |+| vowel "a e o u i". The Tidal interpreter will
superimpose these transformations on each other, placing them at appropriate
positions through the time period. In this example, the first pattern will be
spread out at a period of 1/3 of the cycle time and the second pattern will be
spread out over 1/5 of the cycle time.

Mutation is a stochastic event. Since our genetic algorithm is interactive, and
mutations are requested by the user, it is important that a change usually hap-
pens. However, it is also important that the mutation is not so great that there
is no relationship between parent and offspring. When a coder presses ‘pullmut’,
they are requesting a new mutation, so they don’t want to get something back
that they’ve seen already – there is much more emphasis on novelty. We experi-
mented with a range of mutation rates, and further work here is needed, but we
found that setting the probability of 0.4 per mutable node gave a good balance
of stability and innovation. The number of mutable nodes varies depending upon
the sample pattern, so the mutation rate will change between different patterns.
Every pattern contains at least one message node, and at least one sample

terminal node, so the probability ppof mutation per pattern is pp ≥
√
0.4.

Although we have shown how mutation happens when the ‘pullmut’ button
is pressed, it is important to emphasise that the coder continues to edit the
evolving patterns throughout the performance, and could be considered to be
another sort of mutation or crossover operator. This is one of the strengths of
the approach we have developed, as it allows a more flexible interaction between
the coder and the algorithm.

Evaluation Evaluation is the assignment of fitness to patterns. The perceived
fitness of a pattern is dependent on the current patterns being interpreted into
audio at any one time. In this application, fitness is determined by the but-
tons that the coder presses to evaluate a pattern and interact with the current
population of patterns. For any pattern in an input box that also exists in the
genome, when a button is pressed the fitness will be changed by the following
values:

– eval: +0.5
– push: +0.5 (if pattern already exists in the population)
– pull: 0
– pullmut: +0.49

– up: +0.25
– dn: -0.25

Termination The choice of when to end a performance is up to the ensemble
of coders. It is possible that the ensemble will stop using the GA towards the
end of a performance in order to craft a satisfying ending to the performance by
hand.

3 Evalutation

Source code for our evolvable version of Extramuros is available at
github.com/anon/Extramuros. Source code for the ParserMutator server, which
runs on Tomcat 7, is avalable at github.com/anon/ParserMutator. For clarity,
the concept we are testing is the use of evolved patterns during a live coding
performance, which proceeds as follows:

1. the Extramuros system is initialised as normal
2. the ParserMutator web server is initialised
3. the coder(s) specifies the web client url in the browser
4. the coder(s) enters the password.
5. Begin live coding with evolution as in figure 3

The following sections detail the evaluations we have carried out on the
system

3.1 Is the system generating legal Tidal patterns?

Yes. The mutations we designed were a subset of all possible instances of the
grammar, and could always be parsed by the Tidal interpreter. Note though
that not all hand-coded patterns can be parsed as legal by the ParserMutator,
as it only recognises a subset of all possible Tidal patterns. For example, pat-
terns using Haskell’s applicative functor notation are not currently recognised
by our parser, but they can still be submitted to the Tidal interpreter during
a performance. We plan to extend our parser in the future so that (almost) all
Tidal patterns can be recognised.

3.2 What is the relative level of complexity of the generated

patterns?

Figure 6 (top) shows the parse tree for the following evolved pattern:

d3 $ palindrome $ every 5 (degrade) $ palindrome $ striate 8 $

sound "feelfx speechless seawolf [tech tink [birds3 gabbalouder tabla2

incoming]] f" |+| delaytime "0.39 0.64 0.33" |+| speed "10.7 0.62"

|+| end sinewave1

Fig. 6. Parse tree of an evolved pattern (top) and a hand-coded pattern from the Yaxu corpus (bottom).

Fig. 7. Change in fitness for evolved patterns. x-axis is the performance time
(hh:mm:ss), y-axis is fitness. The fitness of the individual patterns is shown in blue
and mean fitness is in red.

Figure 6 (bottom) shows the parse treee for the following hand-coded pattern:

d1 $ every 2 (slow 2) $ superimpose (iter 4) $ slow 2 $

every 8 (striate 9) $ sound "future*3 bd*2 wobble [cp bd bd]"

|+| speed "[2 , 3, 4]" |+| cutoff (slow 16 sine1)

|+| resonance (slow 12 triwave1)

These diagrams of the parsing process show that the structures are intutively
similar. Both are representative of the level of complexity that live-coded pat-
terns tend to reach, particularly if they are the only patterns that the synthesiser
is processing at the time (i.e. no other channels are being processed simultane-
ously). Patterns are usually in three sections: transition specifications, pattern
specifications, and continuous modifiers. Our mutation mechanisms create parse
nodes in each of these areas, and so yield similar parse trees to hand-coded
patterns. (A more rigorous comparison will be the subject of future work).

3.3 How does the generated audio compare with Tidal?

Several videos of the system are available on the (anonymous) YouTube channel
www.youtube.com/channel/UCu0 2dIhFvfKV-c975snmXQ. In each of these, the
‘pullmut’ function was the main source of innovation in the patterns, with the
occasional hand-coding or editing of evolved patterns by the user.

These performances compare favourably with hand-coded Extramuros-based
performances such as www.youtube.com/watch?v=zLR02FQDqOM, especially if it
is considered that the users of the evolved system have little or no previous ex-
perience of live coding. We currently have no means of quantitatively comparing
live coding performances, which will be the subject of future work.

3.4 How does the fitness of the population change?

A plot of the change fitness values of a population of evolved patterns is shown
in figure 7. Early on in the run, there are few patterns in the population because
the coder has not added many at this point. Average fitness increases until the
5th minute and then drops off as more new patterns with low initial fitness values
are added to the population. An individual pattern rapidly increases in fitness as
it is used to create new patterns via mutation. The population reaches the size
limit of 20 at around the 15th minute. From this point when a new individual is
added, unfit genomes are removed. Fitness rises from this point onward.

4 Conclusion

We have demonstrated a new system for evolving live coded music in collab-
oration with human coders. The novelty of the system is that it exploits the
networked sharing of live code to allow interaction with an evolutionary music
generation module. Having linked a live coding framework to an evolutionary
algorithm, we have a convenient system for experimentation with a range of
evolutionary algorithms. Several avenues for further research naturally present
themselves.

At the moment, a population of patterns exists on each browser client. Whist
this is convenient, and allows different coders to maintain their own population
of patterns, it might be better to maintain a larger population on the server side,
or to allow “horizontal gene transfer” between populations of patterns.

The method of assigning fitness values based on the interaction of the coder
with the mutated patterns deserves further attention. We plan to evaluate a
range of different fitness scoring strategies within this approach. A key problem
that needs to be addressed is the relatively low fitness of newly-generated pat-
terns compared with patterns that exist in the population. One could envisage
‘inheriting’ a proportion of fitness from the parent pattern to counteract the
relatively high fitness of patterns that have been established in the population
for some time. This is a challenging problem.

The current ParserMutator server carries out a small set of mutation types
on the parsed patterns, which needs to be extended further to investigate the
utility of the system in a more general setting. Firstly, we need to have mutation
operators for a wider range of node types in the parse tree. We could also ex-
periment with weighting the distribution of mutations at different nodes in the
grammar. This would allow us to make certain changes occur more frequently
and push the evolution in particular directions for particular applications.

4.1 On the experience of live coding with evolved patterns

Our experience as users of the system is worth some comment. There are usually
nine channels into the Dirt synthesiser, and during a live Extramuros perfor-
mance, each coder usually sends patterns to a pre-agreed channel. Patterns that

are pushed to the GA population have the channel encoded in them, and there
is no mutation operator that can change the channel. It is left to the coder to
change the channel specification by manual editing. It might be better to for-
malise the way that the channels are organised. At the moment they are stored
on the genome, but this may not be the best way to arrange things.

Working with the GA as a single user, one tends to spread out patterns
across multiple windows - it is as if we are using the GA as one or more extra
performers, and allowing it to populate several text boxes with evolved patterns
(see video, linked in section 3.3). Although this is different to the convention used
by coders in Extramuros, the two approaches can be made to be compatible by
prior consent.

Audiences at live coding events are very open-minded, and used to ‘glitches’
appearing as the performance continues. As long as unsympathetic patterns are
removed, than that is accepted as part of the experience. These are the ideal
conditions for experiments with music evolution.

The only technical problem we encountered with the evolved patterns was
due to differences in sample length in the library of samples available to the
Dirt synthesiser. Some samples were short such as the bass drum "bd", whereas
other samples were longer, for example "bev", which samples a few seconds of
singing. The problem arises when the pattern repeats the long sample in such
a way that overloads the memory available to Dirt, resulting in buffer overruns.
This reveals one issue where the live coder has an advantage over the genetic
process - familiarity with the sample library prevents the coder making these
errors. With experience, it is possible for the coder to spot where an evolved
pattern is beginning to flood the Dirt buffer, and edit the pattern before the
buffer is full. Related to this, our system is useful for novice Tidal coders unused
to the nuances and range of functions available in the Tidal language, as the
system generates examples of how the various features of Tidal can be used.

4.2 On the need for a quantitative evaluation

Our goal with this contribution was to evolve Tidal patterns for use in a live
coding performance. We have offered a qualitiative evaluation of this work, but
recognise that a quantitative evalution is desirable, particularly as we imple-
ment the improvements discussed above. There are two routes to obtaining a
qualitative evaluation, which we sketch out here. The first approach is to make
a comparison of the statistics of the patterns. For example we could compare
the graphs of the evolved patterns with hand-coded patterns quantiatively using
graph statistics, as we did subjectively in section 3.2. The second approach is
more challenging, which is to somehow evaulate the artistic qualities of the gen-
erated piece. One could apply audio statistics to this problem, but this does not
truly capture artistic merit unless it is done by reference to high-quality pieces
of music in a similar style. As Fernandez and Vico [8] point out, this is a chal-
lenging problem for all automated music generation. It is worth remembering
that a quantitative evaluation also offers a route to unsupervised generation of
live coding patterns, since it can be used as a fitness function.

4.3 Closing remarks

By making the connection between the musical process and evolution, we have
necessarily made a more direct connection between the parser, the patterns them-
selves, and the audio that is produced. The audio is in effect part of the pheno-
type of the pattern. This is very Pattee-like [7] – the actual specification is spread
across all representations - function, pattern and parser. It is also worth stating
the analogy with biological systems. Biology exists in time. It is not static, and
must respond to a dynamic, changing environment. One of the attractions of
working in musical systems is that time must be considered implicitly, and the
dynamics of the performance must be accommodated.

5 Acknowledgements

This work was funded by the EU FP7 project EvoEvo, grant number 610427.

References

1. Aaron, S., Blackwell, A.F.: From Sonic Pi to overtone: creative musical experiences
with domain-specific and functional languages. In: Proceedings of the first ACM
SIGPLAN workshop on Functional art, music, modeling & design. pp. 35–46. ACM
(2013)

2. MacCallum, R.M., Mauch, M., Burt, A., Leroi, A.M.: Evolution of music by public
choice. Proceedings of the National Academy of Sciences 109(30), 12081–12086
(2012)

3. McLean, A.: Making programming languages to dance to: live coding with Tidal.
In: Proceedings of the 2nd ACM SIGPLAN international workshop on Functional
art, music, modeling & design. pp. 63–70. ACM (2014)

4. Ogborn, D., Tsabary, E., Jarvis, I., Cardenas, A., McLean, A.: extramuros: making
music in a browser-based, language-neutral collaborative live coding environment.
In: McLean, A., Magnusson, T., Ng, K., Knotts, S., Armitage, J. (eds.) Proceedings
of the First International Conference on Live Coding. p. 300. ICSRiM, University
of Leeds (2015)

5. O’Neill, M., Ryan, C.: Grammatical evolution: evolutionary automatic program-
ming in an arbitrary language, vol. 4. Springer Science & Business Media (2012)

6. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, Dallas Texas
(2013)

7. Pattee, H.H.: Cell psychology: An evolutionary approach to the symbol-matter
problem. In: LAWS, LANGUAGE and LIFE, pp. 165–179. Springer (2012)

8. Rodriguez, J.D.F., Vico, F.J.: AI methods in algorithmic composition: A compre-
hensive survey. Journal of Artificial Intelligence Research 48, 513–582 (2013)

9. Unehara, M., Onisawa, T.: Composition of music using human evaluation. In: Fuzzy
Systems, 2001. The 10th IEEE International Conference on. vol. 3, pp. 1203–1206.
IEEE (2001)

10. Wang, G., Fiebrink, R., Cook, P.R.: Combining analysis and synthesis in the chuck
programming language. In: Proceedings of the International Computer Music Con-
ference. pp. 35–42 (2007)

	Augmenting Live Coding with Evolved Patterns

