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Current computational theory deals almost

exclusively with single models: classical, neural,

analogue, quantum, etc. In practice, researchers use

ad hoc combinations, realizing only recently that

they can be fundamentally more powerful than the

individual parts. A Theo Murphy meeting brought

together theorists and practitioners of various types

of computing, to engage in combining the individual

strengths to produce powerful new heterotic devices.

‘Heterotic computing’ is defined as a combination of

two or more computational systems such that they

provide an advantage over either substrate used

separately. This post-meeting collection of articles

provides a wide-ranging survey of the state of the art

in diverse computational paradigms, together with

reflections on their future combination into powerful

and practical applications.

1. Overview
Practical computation has long used different types of

computational components in combination. Everyday

examples include the graphics co-processing unit that

has cooperated with the central processing unit in

desktop and laptop computers for two decades, and

the GPS chips included in most mobile phones and

digital cameras.

Our vision for hybrid computational systems [1–3]

is far broader than this, however, encompassing novel

substrates: from the exquisitely controlled quantum

systems prototyping a new breed of faster computation

based on quantum logic, to the biological and chemical

computational experiments in laboratories around

2015 The Author(s) Published by the Royal Society. All rights reserved.
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the world. One thing these systems have in common is the use of more conventional classical

computers to provide controls for the experiments. On closer inspection, these conventional

computers often contribute a crucial part of the computational power of the exotic devices. We

use the term ‘heterotic’ to mean the composition of two or more potentially widely differing

kinds of physical computational substrates to produce a computer that has certain computational

advantages over an individual system alone.

Most theory of computation deals with single computational paradigms, so we lack a formal

basis to analyse these compositions of very different systems. This Theo Murphy meeting

issue provides a step on the route to developing such a basis. It brings together a collection

of papers dealing with a wide range of unconventional computational substrates. The papers

address experimental and theoretical systems, individual and composed systems. Understanding

the computational capabilities of individual substrates, and understanding how they can be

composed to perform novel kinds of computation, is essential for the next generation of

special-purpose, embedded, post-Moore’s law devices.

The issue starts with Kendon et al. [4], in which we extend our definition of physical computing

[5] to include multiple substrates composed, in series or in parallel, into hybrid computational

systems. We then flesh out what we mean by ‘heterotic’ computing through a collection of

examples from quantum to biological. Among the recurring features of our examples, we note

the importance of including transduction between these substrates in any analysis, because extra

computation can be hiding in the transduction process. Indeed, in a paper in this issue, Nehaniv

et al. [6] explicitly model transduction as ‘transformers’ connecting automata into networks, and

their ‘transformers’ are themselves a special type of automaton. Another aspect common to many

of our examples is the incomplete understanding of such systems due to their hybrid nature being

little studied as such. Hence, we also lay out the requirements for future work to address this.

2. Biological computing
Nature has provided us with a rich diversity of exquisitely honed biological systems that can

support computation in many forms. Taking inspiration from nature, our next three papers

exemplify the huge range of opportunities biological computation provides, and also lay out some

of the challenges in the way of realizing this potential.

Despite nature providing rich systems that we can exploit as the basis for computation, such

systems still need to be engineered into devices to perform our desired computations. Amos

et al. [7] provide an overview of the results from their EU FET BACTOCOM project, addressing

this issue. Their aim is to develop a method to design bacterial component computers, through

exploiting the exchange of plasmid genetic material through biological conjugation, which can be

regarded as a communication protocol. Classical computing is embedded in the design loop, with

simulation of various bacterial properties.

One of the more exotic systems used for laboratory-based computational experiments is

slime mould, described by Adamatzky [8]. Exploiting the behaviour of this living organism by

providing food and barriers to growth allows simple computations to be performed, including

the lovely image on the journal cover. Place food at the entrance and exit of a maze, and the slime

mould will configure itself along the (approximate) shortest path between them. The heterotic

nature of this computation consists of the slime mould organism, its container designed to enable

the particular computation to be performed, and the image processing required to extract the

resultant path. Elementary logic gates using slime mould can be designed. However, designing

gates is one thing; persuading the slime mould to compose them into circuits is another: the

slime mould connects end to end in its structures, and multiple gate sequences turn out not to

work as predicted. This illustrates the importance of using an appropriate model for the physical

computer: binary logic is not the best fit for slime mould. This also illustrates why it is insufficient

to demonstrate that an unconventional substrate can implement logic gates in order to show

classical computational universality: it must also be possible to solve the wiring problem, and
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implement circuits out of those gates. Slime mould’s intrinsic capabilities force us to think more

creatively about computation, as this article amply illustrates.

Bacteria and slime moulds are complete organisms, albeit single-celled ones. Biological

computation can also exploit parts of organisms, such as neurons. Hughes et al. [9] review and

discuss a particular form of heterotic computing: neural systems interfacing silicon substrates.

Although both systems use electricity in some form to communicate, they have great differences

in function and form. The authors describe some specific technologies for combining neurons

and silicon, discuss the pros and cons, and draw out the very practical potential applications if

the problems of implementing the interface in vivo can be overcome.

3. Molecular computing
Biological substrates exhibit a rich diversity, but these will have all of the unpredictable

complexities of any biological system. Nature also provides simpler molecular substrates that

still have suitably complex computational capabilities. The four papers in this section address

various molecular-based computational substrates, both inorganic systems, and biomolecules.

Neural-like behaviour does not necessarily need neurons. Gorecki et al. [10] use the Belousov–

Zhabotinsky chemical reaction as an analogue of important behaviours of neural systems, namely

thresholds and spiking. They note how their systems are heterotic: the main computation is

performed in the chemical substrate, but external systems are additionally needed for input,

output and reaction rate control. These systems include illumination to control excitability in

different regions of the medium, and microfluidics to engineer and control droplet systems.

Enclosing the reactants in droplets that allow exchange with the environment via diffusion adds

another layer of structure to the system, and paves the way for applications to sensors that can

compute with the same substrate as they detect, instead of using a conventional computer chip

that needs to be protected from the environment and interfaced with the detector.

Computation can occur not just when a fixed body of material changes state, but also when

material (self-)assembles into some desired form. Woods [11] surveys theoretical models of

‘tile assembly’, small structures joining together according to local rules to form specific two-

dimensional patterns; such tiles can be implemented using DNA as a construction material. With

judicious design of the tiles (the ‘program’ defining what can stick to what), a ‘universal’ tile

set can be achieved. Indeed, there is even a single (albeit rather complicated) universal tile. The

computational power (which structures can be built) of different systems is defined in terms of

simulation: which tile sets can assemble the same patterns (maybe at different scales) as other sets.

Here the theory is discussed; in a physical implementation, much imaging and processing would

be required to observe the assembled patterns.

Jonoska & Seeman [12] also use DNA tiles to perform computation, but in a rather different

manner from the previous paper. Above we have pure self-assembly with local assembly rules

embodied in the tile designs. Here, the tile system is arranged to execute a two-dimensional

cellular automaton (CA) with synchronization (controlling when tiles can bind and unbind)

implemented with clocked external light sources. A fixed layer of tiles forms the background

CA grid; a set of floating tiles can selectively bind and unbind at grid positions. The grid is

designed to signal which tiles should bind and unbind, depending on the current local state of

bound tiles, thus implementing the CA logic; the currently bound tiles form the CA pattern. This

approach, instead of building up to a programmed structure, results in a dynamic process of tile

rearrangement as the system proceeds though its states.

These two DNA-based articles are using DNA as a readily available and highly configurable

base system to explore the generic concepts of assembly. The ideas and results are applicable

to any substrate capable of sufficiently complex self-assembly, allowing the fields of material

self-assembly and computational self-assembly to overlap and interoperate. This also illustrates

another basic attribute of physical computation that is easily forgotten with the ubiquity of binary

encoding: the fungibility of representation. The same computation can be embedded in different

computational substrates and even embedded in different ways in the same substrate [5].
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Henson et al. [13] describe a system comprising a computer, a robot and a chemical reaction

system, linked together in a fully automated experimental system to search for chemical products

that exhibit interesting complex spatio-temporal dynamics (motile and dividing droplets).

Importantly, the procedure provides reproducible synthetic pathways to such products. The

complete integration of the computation with the synthesis, including feedback loops, is crucial

to produce an effective exploration of the chemical state space. The chemicals so discovered are

themselves potential candidates for an unconventional droplet computation. This substitution

of highly programmed search over top-down design will be a feature in the construction of

many unconventional devices, particularly while we lack a well-developed design approach for

these complex and ill-understood substrates. The tight integration between the computer and the

system it is controlling also suggests we are approaching territory in which self-reproduction of

computational machines is not tied to replication of the physical system; rather, the computation

being represented becomes the connecting factor between generations.

4. Models and theories
Our conventional, classical models of computation were developed for specific purposes. The

diversity in novel computational substrates and their behaviours requires new theoretical

computational models that fully represent the possibilities offered by the physical substrates. The

four papers in this section address a broad range of such theoretical and modelling issues.

Software engineering requires tools and techniques to support the programming process.

Heterotic systems will require adaptations of conventional techniques and inventions of new

approaches. Stannett & Gheorghe [14] describe how the well-established X-machine testing

paradigm can be extended to cover a particular case of heterotic computing, that of a controlling

state machine communicating with a second, unconventional, system acting as an ‘oracle’. They

discuss what further research is needed to extend this approach to full heterotic systems, with

continuous and continual time evolutions. Such testing will be essential for deploying novel

computational devices in any mission critical (i.e. useful) role.

Taking multi-device computation to the logical limit, Beal & Viroli [15] review the main

aspects of field computing, a model where computation is distributed across space and time.

Although the authors do not explicitly address heterotic systems, their collective computation

of aggregates is an important component of many spatially distributed substrates. The unifying

theory they develop draws on ideas from computational physics, and has broad application, from

computation in a spatially extended continuous chemical substrate communication via diffusion

(e.g. [10]), to a network of conventional devices communicating wirelessly with local neighbours.

An overarching framework for programming distributed networks of computational devices

provides the tools required for effective and widespread use of such systems.

Building on many years of prior work, Nehaniv et al. [6] present a mathematical model based

on finite automata for diverse biological systems, that can be extended hierarchically to any level

of aggregation of constituent parts. They identify the symmetries and the substructures that lead

to interesting behaviour and interpret how control and dependencies flow through the network.

As already noted, they explicitly include transduction (here called transformers) between finite

automata when they connect them into networks. Most interesting from a biological perspective is

their extension to dynamically changing networks, where constituents can be added or removed

as required. These models can handle cell division as naturally as a new digit representing ‘tens’

appears when we add 7 and 8 to get 15. Among many important applications, this provides a

path to modelling computational self-assembly and construction, such as discussed by Woods

[11]. The connections to computation are elucidated through the deep role of groups in the

mathematical structure of these networks, where ‘SNAGs’—simple non-Abelian groups—imply

the finite automata are capable of the finite equivalent of universal computation. Such SNAGs are

present even in simple biological systems, such as the p53-mdm2 genetic regulatory system that

governs a cell’s response to radiation damage. The results and insights in this article represent
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a significant advance in our understanding of complex systems and will have applications far

beyond the examples presented to illustrate the ideas.

Deciding whether biological entities are computing, or are maybe ‘universal’ in some other

biological sense, requires a notion of what it means for a physical system to compute. Horsman

et al. [5] have recently developed abstraction/representation theory, to formalize when a physical

system is indeed computing, rather than merely ‘doing its thing’. Horsman [16] summarizes

that theory, then shows how it can be applied to multiple substrates in the case of hybrid

and heterotic computational systems. This reveals new structure and possibilities in the case

of composed systems, and the author uses the approach to distinguish two different forms of

composition: of substrate (computational medium) and of representation (essentially, how the

results of the computation are observed and interpreted). Substrate composition results in a

system that is straightforwardly the sum of its parts, whereas representation composition yields

a novel kind of system whose computational behaviour cannot readily be decomposed into the

separate actions of its substrates. As different physical substrates can support wildly different

kinds of representation, this work demonstrates how novel forms of computation, above and

beyond single substrate results, can be achieved in heterotic systems.

5. Summary
This issue contains a wide selection of highlights from the vibrant diversity of research in

unconventional computation. From laboratory-based experiments with mainstream applications

in sight, to foundational theory that deepens our understanding of the nature of computation and

computation in nature, this is only ‘unconventional’ in contrast with our current digital silicon-

based devices. Many of these diverse systems and creative ideas are destined for mainstream

significance in the future of computation in the twenty-first century. If this issue collectively

has one message, it is how vast the possibilities are that are waiting to be explored. We invite

you to feast on the articles herein, and to be inspired to generate your own contributions to the

flourishing arena of heterotic computing.

Conflict of interests. We declare we have no competing interests.

Funding. S.S. acknowledges partial funding by the EU FP7 FET Coordination Activity TRUCE (Training and

Research in Unconventional Computation in Europe), project reference no. 318235. V.K. is funded by EPSRC

fellowship EP/L022303/1.

Acknowledgements. We thank the Royal Society for the support of the Theo Murphy international scientific

meeting on Heterotic computing: exploiting hybrid computational devices, held at the Kavli Royal Society

International Centre for the Advancement of Science at Chicheley Hall, 7–8 November 2013, which was

the origin of this Theo Murphy meeting issue. We thank all the meeting attendees, and particularly the

rapporteurs, for engaging in excellent stimulating open debates. Their thought-provoking ideas helped form

this issue. We thank all the authors for their splendid contributions, and the referees for their hard work in

ensuring the main articles are all of the highest standard.

References
1. Kendon V, Sebald A, Stepney S, Bechmann M, Hines P, Wagner RC. 2011 Heterotic

computing. In Unconventional computation (eds CS Calude, J Kari, I Petre, G Rozenberg).
Lecture Notes in Computer Science, vol. 6714, pp. 113–124. Berlin, Germany: Springer.
(doi:10.1007/978-3-642-21341-0_16).

2. Stepney S, Abramsky S, Bechmann M, Gorecki J, Kendon V, Naughton TJ, Perez-Jimenez MJ,
Romero-Campero FJ, Sebald A. 2012 Heterotic computing examples with optics, bacteria,
and chemicals. In Unconventional computation and natural computation (eds J Durand-Lose,
N Jonoska). Lecture Notes in Computer Science, vol. 7445, pp. 198–209. Berlin, Germany:
Springer. (doi:10.1007/978-3-642-32894-7_19).

3. Stepney S, Kendon V, Hines P, Sebald A. 2012 A framework for heterotic computing. In 8th
Workshop on Quantum Physics and Logic (QPL 2011), Nijmegen, The Netherlands. EPTCS, vol. 95,
pp. 263–273.

 on March 16, 2017http://rsta.royalsocietypublishing.org/Downloaded from 



6

rsta.royalsocietypublishing.org
P
h
il.
Tra
n
s.
R
.So

c.
A
373:20150091

.........................................................

4. Kendon V, Sebald A, Stepney S. 2015 Heterotic computing: past, present and future. Phil.
Trans. R. Soc. A 373, 20140225. (doi:10.1098/rsta.2014.0225)

5. Horsman C, Stepney S, Wagner RC, Kendon V. 2014 When does a physical system compute?
Proc. R. Soc. A 470, 20140182. (doi:10.1098/rspa.2014.0182)

6. Nehaniv CL, Rhodes J, Egri-Nagy A, Dini P, Rothstein Morris E, Horváth G, Karimi F,
Schreckling D, Schilstra MJ. 2015 Symmetry structure in discrete models of biochemical
systems: natural subsystems and the weak control hierarchy in a new model of computation
driven by interactions. Phil. Trans. R. Soc. A 373, 20140223. (doi:10.1098/rsta.2014.0223)

7. Amos M, Axmann IM, Blüthgen N, de la Cruz F, Jaramillo A, Rodriguez-Paton A, Simmel F.
2015 Bacterial computing with engineered populations. Phil. Trans. R. Soc. A 373, 20140218.
(doi:10.1098/rsta.2014.0218)

8. Adamatzky A. 2015 Slime mould processors, logic gates and sensors. Phil. Trans. R. Soc. A 373,
20140216. (doi:10.1098/rsta.2014.0216)

9. Hughes MA, Shipston MJ, Murray AF. 2015 Towards a ‘siliconeural computer’: technological
successes and challenges. Phil. Trans. R. Soc. A 373, 20140217. (doi:10.1098/rsta.2014.0217)

10. Gorecki J, Gizynski K, Guzowski J, Gorecka JN, Garstecki P, Gruenert G, Dittrich P. 2015
Chemical computing with reaction–diffusion processes. Phil. Trans. R. Soc. A 373, 20140219.
(doi:10.1098/rsta.2014.0219)

11. Woods D. 2015 Intrinsic universality and the computational power of self-assembly. Phil.
Trans. R. Soc. A 373, 20140214. (doi:10.1098/rsta.2014.0214)

12. Jonoska N, Seeman NC. 2015 Molecular ping-pong Game of Life on a two-dimensional DNA
origami array. Phil. Trans. R. Soc. A 373, 20140215. (doi:10.1098/rsta.2014.0215)

13. Henson A, Gutierrez JMP, Hinkley T, Tsuda S, Cronin L. 2015 Towards heterotic computing
with droplets in a fully automated droplet-maker platform. Phil. Trans. R. Soc. A 373, 20140221.
(doi:10.1098/rsta.2014.0221)

14. Stannett M, Gheorghe M. 2015 Integration testing of heterotic systems. Phil. Trans. R. Soc. A
373, 20140222. (doi:10.1098/rsta.2014.0222)

15. Beal J, Viroli M. 2015 Space–time programming. Phil. Trans. R. Soc. A 373, 20140220.
(doi:10.1098/rsta.2014.0220)

16. Horsman DC. 2015 Abstraction/Representation Theory for heterotic physical computing.
Phil. Trans. R. Soc. A 373, 20140224. (doi:10.1098/rsta.2014.0224)

 on March 16, 2017http://rsta.royalsocietypublishing.org/Downloaded from 


	Overview
	Biological computing
	Molecular computing
	Models and theories
	Summary
	References

