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1. Light-current-voltage (LIV) characteristic, and spectrum, of the QCL 

Fig. S1 shows the light-current-voltage (LIV) characteristic, and spectrum, of the right QCL 

at 10 K. The left QCL shows similar LIV curves, and a spectrum that is only slightly modified. 

The devices operate up to 120 K under pulse mode operation (500 ns pulse width, 10 kHz 

repetition rate), which is comparable to that of a conventional (double-metal waveguide) ridge 

laser fabricated from the same QCL wafer, which had a maximum operating temperature of 

136 K under the same operating conditions. 
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Figure S1. (a) Light-current-voltage characterization of the right hand QCL at 10 K. (b) Spectra of 

the device with increasing current. 

 

  



2. Selection of the antenna dimensions and lateral separation  

The dimensions of the antennas are chosen to let the antennas resonate at the targeted 

frequency (~3.0 THz) so as to strengthen their scattering efficiency. The resonance frequency 

is mainly determined by the length and width of the antenna. The effect of the thickness is 

minor as it varies from 200 nm to 500 nm, so it is let the same as the thickness of the top 

contact of the laser (~400 nm) so that the antennas and the laser contact can be deposited at 

the same time in fabrication (Fig. S3(c)). To suppress the electric field component polarized 

perpendicular to the antenna length, the width should be kept as narrow as possible. However, 

considering the micro-fabrication limitations and to allow for some fabrication tolerance, we 

chose a width of 3 ȝm. The length of the antenna was then determined to be 21 ȝm assisted 

by FDTD simulations (Fig. S2(a)). As for the lateral separation, it should be large enough to 

avoid the coupling between adjacent antennas, i.e., the electric field of a certain antenna will 

not be interfered by the adjacent ones. Fig. S2(b) shows the antenna resonances with various 

lateral separations. The shift of the resonant peak around 3.0 THz is due to the coupling of the 

adjacent antennas for the lateral separation smaller than 37 ȝm. When the separation is larger 

than 37 ȝm, the antenna resonant peak is unaffected, indicating that the adjacent antennas are 

not coupled anymore. Note that for the second resonant peak around 4.1 THz, which 

corresponds to the resonance in the GaAs pedestal, it is shifting even for lateral separation 

larger than 37 ȝm. This is because this resonant mode is more spatially extended (lower right 

inset in Fig. S2(a)). 

 



 

Figure S2. (a) The scattering efficiency of the antennas with different dimensions. The red solid 

line corresponds to the design in our work, which has a resonant frequency at ~3.0 THz. The first 

peak in the curves corresponds to the antenna dipole resonance, which will produce a linearly 

polarized light, while the second peak is related to the resonance in the underneath GaAs pedestal, 

which is not desirable. (b) The resonance of the antennas with various lateral separations. The shift 

of the resonant peak around 3.0 THz is due to the coupling of the adjacent antennas for lateral 

separations smaller than 37 ȝm. When the separation is larger than 37ȝm, the antenna resonant 

peak is unaffected, indicating that the adjacent antennas are not coupled anymore. 

 

 

3. Coupling efficiency of the half racetrack structure  

Fig. S3(a) shows the Finite-difference time-domain (FDTD) simulation configuration of the 

half racetrack structure. Approximately, for the THz light injected from the upper right port, 



~60% of the light will be reflected back by the gap, ~10% will be coupled into the half 

racetrack structure, with the remaining being scattered out. Finally, ~1% of the light will be 

injected into the lower right port, after propagating through the half racetrack structure. The 

specific values of the reflection and injection efficiency is frequency-dependent, as shown in 

Fig. S3(b).  

 

Figure S3. (a) FDTD simulation configuration of the half racetrack structure, the THz light is 

injected from the upper right port. The simulation domain is surrounded by perfectly matched 

layers (PML) to absorb any outgoing light. (b) The calculated slit reflectance (left axis) and the 

percentage of light injected into the other laser (right axis). 

 

 

 

 



4. Relatively independent control of the intensity from each laser  

As the coupling is relatively weak (1% injection efficiency compared to the 60% reflectance 

of the gap), the amplitude of each laser can be tuned quite independently. Fig. S4 presents the 

measured optical power of the device passing through a wire-grid polarizer as a function of 

the injection current to the left QCL, while fixing the current of the right QCL at 3.68 A (Fig. 

S4(a)) and 3.95 A (Fig. S4(b)). The black curves correspond to the cases when the polarizer is 

at 45º so that mainly the light from the right QCL can pass through the polarizer. The red 

curves correspond to the cases when the polarizer is at 45º and mainly the light from the left 

QCL can pass through. As it is shown, when changing the current of the left QCL, the powers 

from the right QCL (black curves) remain relatively unchanged. Therefore, the ratio of the 

amplitude from the left and right QCL can be freely tuned so that the polarization of the 

resulting beam is widely tunable. 

 

Figure S4. The measured optical powers of the device through a wire-grid polarizer as a function 

of the injection current to the left QCL, while fixing the current of the right QCL at 3.68 A (a), and 

3.95 A (b). The black curves correspond to the cases when the polarizer is at 45º so that mainly the 

light from the right QCL can pass through the polarizer. The red curves correspond to the cases 

when the polarizer is at 45º and mainly the light from the left QCL can pass through. As it is 

shown, the power from the left and right QCL can be tuned rather independently. 

 

 

 

5. The Vernier effect of the system 



As mentioned above, the system favors the longitudinal modes of the individual QCL cavity 

that gain maximum external injection. Fig. S5(a) plots the longitudinal modes of the 

individual laser (upper blue curve) and the injection efficiency through the half racetrack 

structure (lower red curve), obtained by 3D full-wave simulations using Lumerical FDTD. 

The longitudinal modes that coincide the peaks of the injection efficiency will be excited. 

This mechanism determine the mode spacing of the device. As it is shown, the calculation and 

the experimental result matches well. It is worth noting that the final mode spacing is not 

equal (96 GHz and 71 GHz), this is due to the waveguide dispersion which makes the original 

peaks of the blue and red curves not equally spaced. 

 

Figure S5. (a) Calculated optical modes in the individual laser cavity (upper blue curve) and the 

injection efficiency thought the half racetrack structure (lower red curve). (b) Measured spectrum 

of the device (replot of the curve in Fig. 4(d) of the main text). 

  



6. Schematic illustrations of the fabrication process 

 

Figure S6. Schematic illustrations of the fabrication process. 


