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Peter Claes, Brett R. Cowan, Jan D’hooge, Nicolas Duchateau, Jan Ehrhardt, Alejandro F. Frangi, Ali Gooya,

Vicente Grau, Karim Lekadir, Allen Lu, Anirban Mukhopadhyay, Ilkay Oksuz, Nripesh Parajuli, Xavier Pennec,
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Abstract—Statistical shape modeling is a powerful tool for
visualizing and quantifying geometric and functional patterns
of the heart. After myocardial infarction (MI), the left ventricle
typically remodels in response to physiological challenges. Se-
veral methods have been proposed in the literature to describe
statistical shape changes. Which method best characterizes left
ventricular remodeling after MI is an open research question.
A better descriptor of remodeling is expected to provide a
more accurate evaluation of disease status in MI patients. We
therefore designed a challenge to test shape characterization
in MI given a set of three-dimensional left ventricular surface
points. The training set comprised 100 MI patients, and 100
asymptomatic volunteers (AV). The challenge was initiated in
2015 at the Statistical Atlases and Computational Models of the
Heart workshop, in conjunction with the MICCAI conference.
The training set with labels was provided to participants, who
were asked to submit the likelihood of MI from a different
(validation) set of 200 cases (100 AV and 100 MI). Sensitivity,
specificity, accuracy and area under the receiver operating
characteristic curve were used as the outcome measures. The
goals of this challenge were to (1) establish a common dataset
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for evaluating statistical shape modeling algorithms in MI, and
(2) test whether statistical shape modeling provides additional
information characterizing MI patients over standard clinical
measures. Eleven groups with a wide variety of classification and
feature extraction approaches participated in this challenge. All
methods achieved excellent classification results with accuracy
ranges from 0.83 to 0.98. The areas under the receiver operating
characteristic curves were all above 0.90. Four methods showed
significantly higher performance than standard clinical measures.
The dataset and software for evaluation are available from the
Cardiac Atlas Project website1.

Index Terms—Cardiac modeling, statistical shape analysis,
classification, myocardial infarct.

I. INTRODUCTION

THE heart constantly changes its shape and function to

maintain normal cardiac output. This process, known

as remodeling, can be either adaptive or maladaptive [1].

Adaptive remodeling is a natural process during physiological

growth [2] and also commonly seen in athletes [3]. Adverse

remodeling, on the other hand, is indicative of the worsen-

ing progression of disease. However, the acute response of

cardiac remodeling to an insult is usually beneficial, before

cardiac function deteriorates into adverse remodeling. Hence,

automated characterization and quantification of adverse re-

modeling would be a valuable tool for clinicians to quantify

the progression of heart disease or to estimate the benefit of

a medical treatment.

In patients with myocardial infarction (MI), pathophysiolog-

ical processes of ventricular remodeling are well studied [4]–

[7]. At the early stage of infarction, wall stress increases due

to infarct expansion, which forces the left ventricle (LV) to

dilate to maintain the supply of blood to the circulatory system.

This compensatory LV dilatation is observed by enlargement

of cavity volume, both at end-diastole (EDV) and end-systole

(ESV). The amount of blood being pumped at each heart

beat, which is clinically measured by ejection fraction (EF),

is maintained at nearly normal level, irrespective to the infarct

size [8]. The amount of LV dilatation, however, depends on

the initial infarct size; the greater the infarct size, the greater

increase in both EDV and ESV [9].

1http://www.cardiacatlas.org
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Prolonged infarction can cause the LV to undergo a more

insidious process of dilatation when compensatory remodeling

fails to maintain the cardiac output. The loss of myocytes

determines further remodeling processes, i.e. a reduction of EF

and an increase of ESV [10], [11]. Heart shape also becomes

more spherical and less conical [12]. Previous clinical studies

have shown that increased ESV and more spherical shapes are

predictive of increased mortality after MI [13].

Thus, cardiac remodeling is a continuous process and

follow-up monitoring of LV shape and function for MI patients

is required to determine the efficacy of treatment or time

interventions [14]. Standard measurements commonly used to

assess cardiac shape and function (termed baseline in this

paper) are LV cavity volumes, particularly EDV and ESV,

LV mass and EF [15]. MRI is the gold standard method for

quantification of these measures [16]. However, these simple

shape features ignore much of the shape information available

in modern MRI examinations. We hypothesized that statistical

shape modeling methods, using supervised or unsupervised

dimension reduction methods, could provide additional infor-

mation for the evaluation of MI patients over the baseline

measures. We initiated an open challenge to automatically

estimate shape features, and compare their performance in

a blinded test to distinguish MI patients from asymptomatic

volunteers. Eleven research groups participated in the chal-

lenge, as part of the 6th Annual Workshop of Statistical

Atlases and Computational Models of the Heart (STACOM)

held in conjunction with MICCAI 2015 conference [17]. This

paper collates the challenge results together with the baseline

prediction model, and discusses the main advantages and

disadvantages of the different approaches.

A. Motivation of the challenge

Although there has been a lot of work on statistical shape

analysis over the last 10-20 years in our community, clinical

applications are only now being explored [18], as clinical

indices are still mostly measured in 0D, 1D or 2D. There is

therefore a growing interest in the medical imaging community

to apply machine learning algorithms to assist clinical evalu-

ation of real patient data. Open challenges using substantial

clinical data, comparing many different methods, are crucial

to convince clinicians of the benefit of using the full shape

information with statistical shape features [19].

In this challenge, we focused on the statistical analysis

of LV shape and function after MI. Previous studies have

demonstrated the efficacy of statistical shape analysis to

automatically predict, locate and quantify abnormal cardiac

shapes and function in different pathological groups. Zhang et

al. [20] classified patients with myocardial infarction by using

information maximization component analysis applied to the

LV surface points. Ardekani et al. [21] analysed statistical

variations of LV surface deformations in hypertensive and

hypertrophic heart disease. Zhang et al. [22] used surface

point distributions from active shape and appearance models,

while Ye et al. [20] applied regional manifold learning, to

quantify congenital heart disease remodeling relative to normal

volunteers. Manifold learning was also used by Duchateau et

al. [21] to identify patients that responded to resynchronization

therapy and by Piras et al. [23] to extract features of normal

LV motion. Other statistical cardiac shape methods have also

been proposed [24]–[28].

Apart from statistical shape features, there has been con-

siderable work in modeling cardiac shape and motion, which

can be used to extract shape descriptors. A deformable su-

perquadric model fit by a free-form deformation can reveal

differences in LV shape deformation [29]. A spherical har-

monic model was applied to extract shape descriptors for

3D heart surface [30]. A general deformable model can be

used to characterize different motion of the heart [31]. A

review of shape models can be found in [32]. With a growing

number of algorithms for the analysis of pathological heart

shapes, therefore it is an urgent need to create a benchmarking

platform to compare the relative efficacy of different methods.

B. The challenge objectives

We hypothesized that automated shape characterization

methods perform better than the baseline measures, since

multidimensional information about the LV shapes and their

variations within a pathological group can be incorporated into

the shape model. We aimed to discover what shape features

best describe the adverse remodeling of the LV after MI in

comparison with the baseline measures.

The challenge data consisted of 200 cases from a cohort

study that studied MI patients [33] and another 200 cases

from a different cohort that studied asymptomatic volunteers

(AV) [34]. In total, there were 400 LV shapes made available

for this challenge. Participants were asked to provide the

degree of disease from these cases in terms of the likelihood

that the LV shape describes an MI patient. The dataset was

randomly divided into training and validation sets; each par-

ticipant was able to use the training set with open labels for

learning. No other information was provided.

Although the primary challenge objective was to examine

methods for quantifying degree of pathology, classification

of MI is not typically performed solely from shape and

motion in clinical practice. Common methods include tro-

ponin levels, late gadolinium enhancement, stress perfusion or

motion abnormalities, and angiography. However, this chal-

lenge represents an extremely valuable opportunity to build

a reduced space in which more complex phenomena like

longitudinal evolution can be studied. Therefore, the main

clinical application of these statistical shape analysis methods

will be in quantifying the progress of remodeling, for example

as a z-score showing how the patient ranks against progressing

severity of disease. Participants were therefore asked to pro-

vide a likelihood for the presence of MI, which could be used

to evaluate the severity of disease against population norms, or

in longitudinal studies to evaluate the progression of disease.

The remainder of this paper is organized as follows.

Section II describes the data and evaluation design of this

challenge. In Section III, we briefly describe each participa-

ting method. Full details of their methodology are explained

in [17]. Section IV compares the classification results. Finally,

Section V discusses several aspects of this challenge, including
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TABLE I
DEMOGRAPHICS OF THE CHALLENGE DATASET. CONTINUOUS VARIABLES

ARE EXPRESSED AS MEAN (STANDARD DEVIATION). STATISTICAL TESTS

WERE PERFORMED WITH WILCOXON SIGNED-RANK TEST FOR

CONTINUOUS VARIABLES AND χ2 TEST FOR CATEGORICAL VARIABLES. A
SYMBOL FOR † DENOTES p < 0.05 FOR TESTS BETWEEN TRAINING AND

VALIDATION SETS. SBP = SYSTOLIC BLOOD PRESSURE, DBP =
DIASTOLIC BLOOD PRESSURE, HR = HEART RATE, HYP = HYPERTENSION,

DBT = DIABETES, SMK = SMOKING.

AV (n=200) MI (n=200)

Training Validation Training Validation

n=100 n=100 n=100 n=100

Sex 41M/59F 49M/51F 81M/19F 81M/18F

Age 62.5 (9.4) 59.3 (9.4) 63.3 (10.8) 62.8 (12.3)

Height 167.5 (9.6) 164.5 (9.4) 173.6 (10.1) 174.1 (9.9)

Weight 80.8 (16.0) 76.6 (15.1) 88.2 (18.3) 90.3 (19.2)

SBP 129.9 (24.7)† 120.0 (22.1) 122.2 (19.7)† 130.1 (19.7)

DBP 72.3 (10.8) 69.7 (9.9) 72.4 (11.7) 73.4 (11.9)

HR 62.1 (12.2) 60.4 (10.7) 66.0 (11.6) 65.9 (10.9)

EDV 114.2 (22.8) 117.4 (23.6) 188.3 (45.2) 202.2 (55.2)

ESV 45.5 (14.3) 45.9 (13.4) 109.3 (41.5) 125.6 (54.5)

LVM 137.1 (38.6) 136.8 (31.4) 161.8 (37.5) 174.2 (44.4)

EF 60.6 (5.8) 61.3 (5.5) 43.4 (10.4) 39.9 (11.9)

Hyp 48% 39% 71% 70%

Dbt 18% 24% 37% 38%

Smk 45% 51% 73% 70%

the most misclassified cases, useful features, and some limita-

tions of this challenge. Conclusions and future directions are

given in Section VI. Data and evaluation software will remain

open to researchers at the Cardiac Atlas Project website [35].

II. DATA AND EVALUATION

A. Patient Data

We randomly selected 400 cases from two main cohorts:

MESA (Multi-Ethnic Study of Atherosclerosis) and DETER-

MINE (Defibrillators to Reduce Risk by Magnetic Resonance

Imaging Evaluation). Data were retrieved from the Cardiac

Atlas Project database [35]. The MESA cohort [34] consisted

of asymptomatic volunteers (n=200), since they did not present

any clinical symptoms of cardiovascular disease at recruitment.

The DETERMINE cohort [33] consisted of patients with

clinical evidence of myocardial infarction (n=200). The dataset

was randomly split into 200 cases for training and 200 cases

for validation (Table I).

We provided classification labels only for the training set

(0 = AV, 1 = MI). Therefore, for training purposes, participants

could only estimate their cut-off threshold value for binary

classification from the training dataset. However, there was

no requirement to use the training dataset in their algorithm.

Participants were asked to provide either classification labels

or probability values that a case is an MI from the validation

set.

ED ES

Fig. 1. Example of the supplied data points in patient coordinate system.
Finite-element models were subdivided using a high-resolution lattice result-
ing in 1,089 points per surface. The epicardial surface is shown in red, the
endocardium in black/green. The contractile motion can be observed from the
difference between end-diastole (ED) and end-systole (ES).

B. Shape Data

In this challenge, we aimed for participants to only focus

on shape features and classification. Therefore, we provided a

set of 3D points in Cartesian coordinates from the surface of

LV shapes, which has point-to-point correspondences between

shapes. First, we used custom-made software package (CIM

version 6.0, University of Auckland, New Zealand) to fit a

finite element LV model [47] onto cine MR images. The fitting

was performed interactively by two expert analysts using

guide-point modeling technique with inline feature track-

ing [48]. Since the models were registered to the anatomical

landmarks of each heart, the finite element model coordinates

were treated as homologous points in the LV.

Evenly spaced homologous points were generated covering

ventricular surfaces, resulting in 2,178 Cartesian points in pa-

tient coordinates. Only surface points from end-diastole (ED)

and end-systole (ES) frames were given to the participants.

Figure 1 shows an example of mesh triangulation visualization

for the endocardial and epicardial surfaces from the supplied

data points. Since images for the AV group were acquired

using a different imaging protocol (Gradient Recalled Echo

or GRE) than the MI group (Steady-State Free Precession or

SSFP), the AV shape models were corrected for protocol bias

using the method described in [49]. This method corrected for

acquisition bias on a regional point-by-point basis, and has

been shown to not only correct for regional shape bias but

also global bias in mass and volume. The sensitivity analysis

performed in [49] confirmed that enough training cases were

included to robustly identify the mapping parameters, since

the correction only pertains to the asymptomatic group. After

the correction, the transformed AV shape models were then

directly comparable to the MI shape models.

C. Baseline

A baseline prediction model was introduced to provide a

benchmark to assess the clinical benefit of the participating

algorithms. We selected EDV, ESV, LVM and EF from Table I

because these are widely-used clinical indicators and are

known to be markedly changed due to MI. We applied a binary
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TABLE II
SUMMARY OF EACH PARTICIPATING METHOD. SVM = SUPPORT VECTOR MACHINES, PLS = PARTIAL LEAST SQUARES, RF = RANDOM FOREST, SVR =

SUPPORT VECTOR REGRESSORS.

Method Features Classifier Training

Accuracy

Ref.

GMPT point distributions SVM NA [36]

SSM-PLS point distributions PLS 0.98 [37]

IC-ShapeMotion displacement, wall thickness SVR 0.98 [38]

MS wall thickness SVM 0.96 [39]

ASMSVM point distributions SVM 0.94 [40]

FM distortion map SVM 0.96 [41]

JCCA point distribution Clustering 0.94 [42]

RF volumes, cardiac function, sphericity, wall thickness, point sets RF 0.93 [43]

PT displacement, wall thickness SVM 0.95 [44]

HeAT-RDF volumes, cardiac functions, wall thickness RF 0.93 [45]

L2GF point distributions SVM 0.99 [46]

multiple logistic regression [50] to model the effects of these

clinical parameters on the probability that a case belongs to

the MI group.

By using the 200 cases from the training set, the baseline

model was given by

ln

(

p(X)

1− p(X)

)

= β0+β1XEDV+β2XESV+β3XLVM+β4XEF

(1)

where the intercept β0 = 12.35 and the contributions of

each variable were β1 = 0.11, β2 = −0.09, β3 = −0.03
and β4 = −0.31. The largest effect was given by LVM

(P < 0.001), followed by EDV (P < 0.05). The prediction

model (1) was estimated by using the glm (generalized linear

model) function from the standard R package. To perform the

logistic regression with glm, a binomial distribution was set

as the distribution family parameter.

D. Evaluation

Method performance was meassured by means of specificity

(spec), sensitivity (sens), and accuracy (acc) [51]. Let TP, TN,

FP and FN be the number of true positives, true negatives, false

positives and false negatives, respectively. These performance

measurements are then defined as

sens =
TP

TP + FN
(2)

spec =
TN

TN+ FP
(3)

acc =
TN+ TP

TN+ TP + FN+ FP
(4)

In this study, a positive denotes an MI shape, while a negative

is an AV shape. Hence, the sensitivity measures how good

a classifier correctly identifies MI shapes from the MI group,

while specificity eliminates AV shapes from being identified as

MI. The combination of sensitivity and specificity determines

the accuracy of a classifier.

Receiver Operating Characteristic (ROC) curves were gen-

erated by the ROCR package [52]. The area under the ROC

curve (AUC) is a useful measure of the overall method

performance. To calculate individual performance, the optimal

cut-off value for classification was estimated by using the

Youden index J [53], [54], which is defined as

J = max
c

{sens(c) + spec(c)− 1} (5)

where c is the cut-off value ranging from 0 to 1. The Youden

index basically maximises both sensitivity and specificity

values, resulting in a point on an ROC curve, which gives

the maximum distance to the diagonal line. This method was

performed to provide an objective measure of the ROC curve,

which was calculated from the likelihoods provided by the

participants. Since the objective was to provide an objective

measure of remodelling, rather than identify MI, we did not

impose a priori thresholds in the test dataset. Statistical tests

between methods were performed by using one-sided paired

non-parametric test for AUC values [55], implemented in the

pROC package [56]. A p < 0.05 defines a statistically higher

AUC value than the baseline model.

III. PARTICIPATING METHODS

There were a total of 11 participant groups [17]. Table II

summarizes and compares attributes of the different algo-

rithms. Some methods used similar feature sets and classi-

fiers, but there were differences in how they pre-processed,

trained and extracted features from the datasets. The following

subsections briefly describe each algorithm. In each case we

have a provided a reference for readers to find a more detailed

explanation of the methodology and parameters used.

A. GMPT: Systo-diastolic LV shape analysis by Geometric

Morphometrics and Parallel Transport

Description: This method combined geometric morphomet-

rics approach with parallel transport to extract features from

ED and ES shapes. Geometric morphometrics is a common

framework in statistical shape analysis, which exploited sta-

tistical variations of homologous points on 2D/3D shapes
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Fig. 2. PCA results from the GMPT method. Top: 3D shapes corresponding
to PC1 and PC2 modes, coloured according to the distance with respect to
the average mean shape (blue: minimum; red: maximum). Bottom: Shapes
in the PC1-PC3 space in ED (left) and ES (right); green=AV from training,
black=MI from training, red=validation set.

after the removal of shape preserving transformations by

using Generalized Procrustes Alignment (GPA) [57]. Principal

component analysis (PCA) was applied to the aligned shapes

to extract the shape features.

Features: Surface point sets in the form of a shape vector

[x1, y1, z1, . . . , xN , yN , zN ]
T

. ED and ES shapes were treated

as different shapes, resulting in total of 800 shapes. Different

combinations of GPA, PCA, parallel transport, scale removal,

shape centering, endocardium, epicardium, and the full shape

(endocardium + epicardium) were explored during training.

Classifiers: Five classifiers were explored: linear discrimi-

nant analysis, logistic regression, quadratic discriminant ana-

lysis, random forests and support vector machines. With the

combination of features, 30 different types of analysis were

reported in [36]. No information was given about parameters

used in these classifiers.

Submission: The best combination of feature extraction and

classifier method was given by support vector machines using

a sequence of GPA + parallel transport + PCA on the full LV

surfaces (both endocardium and epicardium) centered at the

average shape in the shape space (see Fig. 2). This method

was contributed by PP and LT [36].

B. SSM-PLS: Statistical Shape Modeling using Partial Least

Squares

Description: This method applied partial least squares

(PLS) regression approach for statistical shape models (SSM)

to extract axes of shape variation that correlated most with

the MI classification. This SSM-PLS method was able to

decompose clinically meaningful axes, which were statistically

optimal for prediction purposes. Furthermore, to increase the

accuracy of the MI classification, several PLS classifiers were

Fig. 3. First mode of PLS variation obtained for the endocardium at ED from
the SSM-PLS method.

fused together by varying the number of new axes of variation

during the PLS decomposition.

Features: PLS regression coefficients of the surface point

sets with a binary label. During regression, the LV surface

points were set as the predictor matrix X, which were then

regressed into a single binary variable Y as the response

matrix. This variable is the labelling values of either AV or

MI shape.

Classifiers: PLS regression with varying numbers of latent

variables. The final classifier was determined by calculating

the median value from a set of PLS classifiers.

Submission: The training achieved accuracy of 0.98, speci-

ficity of 0.99 and sensitivity of 0.97. Fig. 3 shows the first

mode of PLS variation for the endocardium at ES. The figure

describes variation from significant cardiac motion (−2σ),

typical in healthy subjects to less pronounced cardiac motion

due to infarcted muscle (+2σ), where σ is standard deviation.

This method was contributed by KL, MP, XA, and AFF [37].

C. IC-ShapeMotion: Classification of myocardial infarction

by combining shape and motion features

Description: This method combined shape and motion as

a feature set for a support vector regressor (SVR) classifier.

Instead of raw surface point set, the shape features were

extracted from 3D surface mesh. The motion feature was

defined in terms of wall thickness, wall thickening and vertex

displacement.

Features: 1) Shape: ED surface mesh models were aligned

using a rigid registration method, and then this transformation

was applied for the ES mesh model. PCA was performed

on the aligned ED and ES meshes separately to extract

the principal coefficients PED and PES. The concatenated

P = [PED, PES] was also introduced. 2) Wall thickening:

absolute Ta = (wES − wED) and relative Tr = Ta/wED.

3) Wall displacement, defined as vertex displacement from

ED to ES meshes. The displacement was measured in radial

(Dendo,r, Depi,r), longitudinal (Dendo,l, Depi,l) and circumfer-

ential (Dendo,c, Depi,c) directions.

Classifiers: Support vector machines with radial basis

function kernel. Training was performed on 10-fold cross

validation scheme.

Submission: The best feature set was given by

{P, Ta, Dendo,c, Depi,r}, which resulted in 0.98 accuracy,

0.98 sensitivity and 0.97 specificity. This algorithm was

contributed by WB and DR [38].
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D. MS: Detecting MI using Medial Surfaces

Description: A medial surface is a skeleton representation

of a 3D object defined by a set of maximal inscribed disks

within the object. The medial representation of an LV shape is

therefore a mid surface between endocardium and epicardium,

which was modeled as a fixed single sheet topology [58]. This

was calculated by using a voxelization technique. The resulted

medial surface contained radius values at each voxel. Medial

surfaces at ED and ES were subsequently aligned using the

coherent point drift algorithm, and then each registered pair

was further aligned to a reference heart.

Features: Radial values (wall thickness). ED and ES radial

values were concatenated for each shape. PCA was used to

reduce the number of features from 10000 to 100.

Classifiers: 1) Support vector machines with radial basis

function kernel. Training was performed on 40-fold cross

validation scheme. 2) Random forest.

Submission: The support vector machines classifier

achieved the best result with 0.96 accuracy, which was then

selected for submission. The random forest classifier only

achieved 0.88 accuracy. This method was contributed by KS

and PA [39].

E. ASMSVM: Active shape model and support vector ma-

chine

Fig. 4. The ASMSVM method: (a) Alignment of an LV shape (right) to the
reference LV shape (left) (b) PCA decomposition (c) SVM classification into
AV ans MI.

Description: This method applied the active shape

model [59] approach combined with support vector ma-

chines for classification. First, ED LV shapes were aligned

to a common reference LV. Since points were already reg-

istered anatomically, point-to-point correspondence step was

not needed. The same transformation that aligned ED LV was

applied to the corresponding ES LV shape to maintain relative

differences.

Features: PCA coefficients from the aligned surface point

sets.

Classifiers: 1) Support vector machines with radial basis

function kernel and 2) linear support vector machines. The

kernel weight was modified to be inversely proportional to

the distance of a shape from the mean shape. Training was

performed on 10-fold cross validation scheme.

Submission: The radial basis function kernel was chosen

for submission as it achieved a slightly better sensitivity

than the linear kernel. The overall training performance was

0.94 accuracy, 0.94 sensitivity and 0.93 specificity. Figure 4

Fig. 5. Distortion maps from the FM method over the whole population of
AV and MI groups from the training dataset at various scales k.

summarizes the overall method. This method was contributed

by NP and AL [40].

F. FM: Supervised learning of functional maps

Description: This method was based on the observation that

changes in the LV shape resulted in a distortion of the 2D

surface area embedded in 3D space. Features were then deter-

mined from the LV surface parameterized by a functional map,

which represents a mapping between two bijective shapes. By

using harmonic analysis, a set of Fourier coefficients can be

used to represent the correspondence between two shapes. This

correspondence representation can further be approximated

using k basis functions, encoded in k × k functional matrix.

Figure 5 shows the distortion maps at ED and ES from both

groups at different k scales. The goal was to isolate the regions

where the map has induced significant distortion at various

scales by performing spectral analysis of this representation.

Features: Surface areas from the functional maps that

produced significant distortions between ED and ES. This

was computed by subtraction of the total areas of ED from

ES. Each endocardium and epicardium surface was treated

separately.

Classifiers: Support vector machines. No information about

the kernels and parameters were provided. Training was per-

formed on 10-fold cross validation scheme.

Submission: The training achieved accuracy of 0.96±1.26.

This method was contributed by AM, IO and SAT [41].

G. JCCA: Joint Clustering and Component Analysis of

spatio-temporal shape patterns

Description: This method used a hierarchical generative

model [60] with two layers to extract features for classification.

At the lower level, a Gaussian Mixture Model was used to

estimate the probability density functions of the surface point

sets. The mean values of each model were then concatenated to

create a vector. A probabilistic principal component analyzer

method [61] was applied to create two clusters (AV and MI

clusters) from these vectors at the higher level.
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Features: Resampled point sets from the estimated clusters

at the higher level. The LV shapes were first aligned by using

the coherent point drift algorithm. ED and ES shapes were

concatenated.

Classifiers: Both unsupervised and supervised learning

were explored. Variational Bayesian was used for the unsuper-

vised clustering to estimate mean and variance of the clusters.

Submission: The performance between unsupervised and

supervised clustering were 0.90 vs 0.94 for accuracy, 0.97

vs 0.97 for sensitivity and 0.83 vs 0.91 for specificity. The

supervised clustering was therefore chosen for submission.

This method was contributed by AP, SÇ, AG and AFF [60].

H. RF: MI detection from LV shapes using Random Forest

Feature Index
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Fig. 6. Important feature selection by the RF method.

Description: This method combined standard clinical func-

tion (volumes, ejection fraction, sphericity) and novel atlas-

based metrics (shape, myocardial thickness) as features for a

Random Forest (RF) classifier. Figure 6 shows the importance

values of each feature, showing a clear predominance of ejec-

tion fraction but also the presence of important classification

information in certain shape and thickness modes.

Features: A total of 72 features were included: ejection

fraction, the first 15 PCA shape modes, sphericity, mean

thickness, mode thickness, mean thickness, wall thickness

variance and its differences, mean and variance of thickness

values based on segments (apex, middle and base), epicardial

and endocardial volumes, the log volumes and the first 15 PCA

modes of thickness.

Classifiers: Random forest with 5-fold and 20-fold cross

validation schemes.

Submission: The 15 features with the largest importance

were chosen as features to build the final random forest. The

training accuracy was 0.93. This method was contributed by

JA and VG [43].

I. PT: Combination of polyaffine transformations and super-

vised learning

Description: This method relies on a parametric model of

diffeomorphic deformations of the heart based on polyaffine

transformations. Polyaffine transformations represent the heart

motion by the combination of a limited number of affine

transformations defined locally on a regional division of the

space (in the case of the heart the American Heart Association

(AHA) myocardial segmentation definition [62] was chosen).

These transformations not only serve as a first (non-learnt)

dimension reduction, but can also be linked to known clinical

parameters (strain and displacement along the 3 dimensions).

Features: Polyaffine parameters (strain and displacement,

each in radial, circumferential and longitudinal directions) and

regional thickness at both ED and ES.

Classifiers: Decision trees, random forest, logistic regres-

sion, nearest neighbours, linear and radial basis function kernel

support vector machines. For each classifier, two different

reduction algorithms were used: PCA and PLS regression. The

training used 10-fold cross validation scheme.

Submission: The best classifier was given by support vector

machines with radial basis kernel functions on PLS regression

that achieved 0.95 accuracy. This method was contributed by

M-MR, ND, MS and XP [44].

J. HeAT-RDF: Automatic detection of cardiac remodeling

using global and local clinical measures and random forest

classification

Description: This method explored different shape and

clinical parameters for cardiac shape classification in the Heart

Analysis Tool (HeAT) framework, combined with random

forest classifier (HeAT-RDF). A large range of global and

local clinical parameters were extracted based on endocardial

and epicardial contours using custom-made software tool. The

software has been primarily developed for analysis of contours

extracted from image data. The triangulated shapes from this

challenge data were first converted to contours by placing

10 short-axis planes between the most basal and the most

apical points on the ED shapes. The resulting contour points

were interpolated to generate smooth continuous contours per

slice. A 97 segment model with higher resolution was used

for local analysis. Corresponding points in the middle of the

septum were utilized to define corresponding segments across

all patients.

Features: Five global and 388 local LV functions were

extracted as features during training. The 10 most important

features selected for the challenge validation set were ESV,

myocardial thickness (segment 95), EDV, EF, motion ampli-

tude endocardium (segment 94 and 85), contraction of the

endocardium (segment 85), change in wall thickness (segment

85, 80 and 50).

Classifiers: Random forest with parameters of 400 decision

trees and a maximum of 50 depth.

Submission: The training achieved 0.93 accuracy, 0.93

specificity and 0.92 sensitivity. This method was contributed

by JE, MW, and DE [45].

K. L2GF: Automatic detection of MI through a global shape

feature based on local statistical modeling

Description: This method combined global and local shape

decomposition with PCA to extract features for the LV shape

classification. The rationale for local shape analysis was:

1) to better identify abnormalities that lead to local shape

remodeling and, 2) to decrease the number of shape variables

by using a limited set of points. The LV was first divided

into regions of interest (ROI) to learn local shape components
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Fig. 7. L2GF method. Independent PCA models were built with the local
shape components and a subset of the trained parameters with significant
discriminatory information was taken from each local model in a feature
selection stage. The selected parameters were then concatenated to train a
support vector machine classifier.

where each ROI was composed of endocardial and epicardial

shapes at ED and ES. PCA was subsequently used to reduce

the dimension. A subset of the PCA-derived parameters that

provided significant discriminatory information was selected

from each local model using the P -metric feature selection

method [63]. The selected parameters were then concatenated

to form a global representation of the LV. In this way,

global shape parameters were encoded and the spatial relation

between the local zones was also taken into consideration. This

approach is shown in Fig. 7.

Features: Global and local PCA coefficients. Local PCA

decompositions were calculated from three different sizes of

region of interest: 4, 8 and 16 surface faces.

Classifiers: Support vector machines with linear kernels.

Training was performed on 10-fold cross validation scheme.

Submission: The training achieved 0.99 accuracy. This

method was contributed by MT, MA, PC, and JD [46].

IV. RESULTS

Table I shows the demographics, traditional risk factors

(hypertension, history of smoking and diabetes) and cardiac

functional parameters including end-diastolic volume (EDV),

end-systolic volume (ESV), LV mass (LVM) and ejection

fraction (EF) of both datasets for both groups. We tried

to match the distribution of training and validation sets for

both asymptomatic volunteers (AV) and myocardial infarction

(MI) groups as close as possible. No significant differences

were found between training and validation dataset, except

for systolic blood pressure (Bonferroni corrections applied).

Significant differences were present in many risk factors,

male/female distribution, and age between AV and MI, since

these were two different population groups and we were not

able to control for these factors. While these factors are

known to have effects on LV mass and volume, these are

expected to be outweighed by disease processes [20], [28].

Also, controlling for risk factors may not be desirable since

these could be linked to clinically important manifestations of

disease.

All methods, with the exception of one (L2GF), provided

MI shape probability values for the validation dataset. Table III

compares classification performances between the participa-

ting methods after the optimal cut-off value (5), except for

L2GF where the cut-off value was defined by the participant.

All methods achieved excellent classification results with

accuracy ranges from 0.83 to 0.98. The area under the ROC

TABLE III
CLASSIFICATION PERFORMANCE RESULTS. THE POSITIVE VALUES WERE

MI SHAPES, WHILE THE NEGATIVE VALUES WERE AV SHAPES. NA
DENOTES NOT AVAILABLE VALUE. † DENOTES A METHOD THAT THE AUC

IS STATISTICALLY HIGHER THAN THE BASELINE AT p < 0.05.

AUC cutoff spec sens acc FP FN

GMPT† 0.994 0.76 0.96 0.95 0.95 4 5

SSM-PLS† 0.996 0.56 0.99 0.97 0.98 1 3

IC-ShapeMotion† 0.989 0.42 0.96 0.98 0.97 4 2

MS 0.901 0.53 0.83 0.83 0.83 17 17

ASMSVM 0.977 0.85 0.99 0.92 0.95 1 8

FM 0.931 0.58 0.90 0.84 0.87 10 16

JCCA 0.939 0.12 0.93 0.91 0.92 7 9

RF 0.977 0.55 0.93 0.91 0.92 7 9

PT† 0.991 0.29 0.92 1.00 0.96 8 0

HeAT-RDF 0.976 0.72 1.00 0.86 0.93 0 14

L2GF NA NA 0.89 0.97 0.93 11 3

Baseline 0.970 0.74 0.99 0.87 0.93 1 13

curves (AUC) were above 0.90, which can be confirmed by

the ROC curves in Fig. 8. AUC values from four methods:

GMPT, SSM-PLS, IC-ShapeMotion and PT were statistically

higher than the Baseline (p < 0.05). SSM-PLS achieved the

highest accuracy with only four misclassifications. Only SSM-

PLS and ASMSVM outperformed the Baseline in all perfor-

mance measurements at the optimal cut-off value. The highest

sensitivity was achieved by PT without any misclassified MI

shapes, while HeAT-RDF did not misclassify AV shapes but 13

MI shapes were incorrectly detected. Note that the Baseline

model achieved accuracy of 0.93, but the sensitivity of the

model is only 0.87 (with 13 FN and 1 FP).

Figure 8 visually compares the participating methods with

the Baseline model (shown as a black curve). The performance

of FM and MS were all under the Baseline throughout the

range of cut-off values. The optimal cut-off value for method

JCCA is slightly above the Baseline ROC curve, but the area

under the JCCA ROC curve was lower than the Baseline.

The ROC curves of SSM-PLS, IC-ShapeMotion, ASMSVM,

PT and GMPT were generally above the Baseline curve,

indicating some benefits of shape information for predicting

MI. The performance of two random forest classifiers (HeAT-

RDF and RF) were similar with the Baseline.

Figure 9 shows the frequency of misclassified cases by

the participating methods. The total number of distinct mis-

classified cases was 72, where 35 of them (48.6%) were

false negatives (MI shapes were misclassified as AV). At

least seven methods and also the Baseline model failed to

predict two cases, which were both MI shapes. These two

difficult cases are shown in Fig. 10. Both cases have cardiac

volume and function within the normal range, but detailed

geometrical shape visualization shows reduced contraction

in local area (pointed by green arrows). GMPT and L2GF

methods correctly identified the case of Fig. 10(a), while SSM-

PLS and HeAT-RDF correctly identified Fig. 10(b). Only IC-

ShapeMotion and PT methods classified both cases correctly.
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Fig. 8. ROC curves of the participating methods. True positive rate is equal
with sensitivity, while false positive rate is (1 - specificity). Top figure enlarges
the top part of the ROC space (marked by dotted grey rectangle).

V. DISCUSSION

This challenge provides an open benchmark for testing

statistical shape characterization methods describing remod-

eling after MI. Although identification of MI by shape alone

would not be used clinically (since stress, scar and perfusion

imaging [64], [65] are used for this purpose), the classification

metrics used in this paper help rank methods in terms of

their ability to characterize shape remodeling. One clinical

application of these methods would be to track and score

patients against a reference population, enabling precise quan-

tification of disease severity and effect of treatment. Infarct

expansion increases the wall stress and decreased myocardial

contraction forces physiological changes in the LV shape

and function to maintain sufficient blood supply throughout

the circulation [4]–[7]. This is particularly demonstrated by

the ventricular enlargement in terms of increased volume

and mass [9]. Increased ESV is commonly seen in patients

after MI [66] and when prolonged the LV shape becomes

more spherical [66]. Hence, the Baseline prediction model,

Fig. 9. Histogram of misclassified cases. False negatives, i.e. MI shapes that
were mistakenly identified as AV, are shown to evaluate the sensitivities of
the participating methods to identify MI shapes.

which used only EDV, ESV, LVM and EF, could identify MI

patients with good accuracy (acc: 0.93, sens: 0.87, spec: 0.99).

However, this model was not able to correctly identify all MI

patients.

A. Outperforming methods

From 14 misclassified cases from the Baseline method, at

least 2 participating methods identified them correctly. This

shows that shape information can increase the accuracy of

MI characterization compared to the Baseline. In fact, five

methods had higher accuracies than the Baseline: GMPT,

SSM-PLS, IC-ShapeMotion, ASMSVM and PT. Four of these

methods contained common elements, i.e. a traditional statis-

tical shape analysis [57], where shape preserving transforma-

tions (isotropic scale, rotation and translation) were removed

using Procustes alignment. The feature set was subsequently

extracted by PCA. This algorithm, which has been made

popular by the Active Shape Model for image segmenta-

tion [67], turned out to be the best approach to outperform

the Baseline model for classifying shapes. The only other

alternative approach that had higher accuracy than the Baseline

was PT, which used the combination of wall thickness and

motion deformation derived from a polyaffine motion model.

The ASMSVM method applied the most simple approach

of statistical shape analysis by using principal component

coefficients as inputs for the SVM. However, this was already

sufficient to outperform the Baseline at the optimal cut-off

value (see Table III). The GMPT method added Euclidean

parallel transport before PCA and its result was also higher

than the Baseline. A more effective approach was demon-

strated by the SSM-PLS. Instead of aligning feature axes based

on geometrical variations in the surface point distribution, it

estimated the axes of shape variation that correlated most

with the MI classification. SSM-PLS features were therefore

clinically meaningful variations optimized for MI prediction,

which resulted in only four misclassifications (1 FP and 3 FN).

A useful trick to improve performance was to run the method
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using several different hidden variables, and then choose the

most common result.

All methods used the provided training set to develop a pre-

diction model. The JCCA method investigated both supervised

and unsupervised approaches and found that the supervised

training accuracy was better [42].

Support vector machine was the most popular classifier.

However, this does not mean that their classification results

were similar. As shown in Fig. 9, most misclassified cases

were produced by only one or two methods, indicating large

variations in the classification processes. The differences be-

tween these methods were in the feature space definition and

feature extraction methods.

B. What are the best features for LV shapes?

Features used by the participating methods in this challenge

can be grouped into three types: point, shape and displacement

features. The point-based feature was determined from the

spatial distribution of surface 3D points. The shape features

were derived from the LV shape geometry, such as volume,

mass, wall thickness and sphericity. The displacement feature

is a functional measure between ED and ES shapes, including

ejection fraction, wall thickening and surface displacement.

Point-based feature was the most popular type of feature set,

which was used by seven methods. Three of them: GMPT, IC-

ShapeMotion and ASMSVM used the same feature extraction

approach on the surface point set for the same SVM classifier.

ASMSVM used only PCA on the point set distributions

and achieved 0.95 accuracy. GMPT added parallel transport

and it achieved the same accuracy level. IC-ShapeMotion

added absolute wall thickness, circumferential displacement

of endocardium and radial displacement of epicardium, which

increased the accuracy to 0.97.

Adding displacement features appeared to be beneficial

for MI shape characterization, as was shown by the IC-

ShapeMotion and PT methods. The PT method also included

wall thickness feature, which was combined with a set of affine

transformations. Both PT and IC-ShapeMotion performance

values were higher than the Baseline and both were able to

identify the two difficult cases in Fig. 10 correctly. Further-

more, the PT method correctly detected all MI shapes, but

eight AV shapes were mistakenly identified as MI.

Shape based features produced mixing results. Wall thick-

ness defined as radius values in the medial surface (MS) pro-

duced lower accuracy than the Baseline, while absolute wall

thickness improved the performance in PT. More complicated

feature extractions, such as the two-layer generative model of

JCCA and surface distortion map of FM, did not demonstrate

better performance than the Baseline.

The L2GF method was the only participant that incorporated

regional features. A local feature to detect MI shapes is based

on the fact that infarction starts locally. Although both were

equally accurate, L2GF was more sensitive than the Baseline

to detect MI shapes.

C. Are random forests helpful?

Two methods used a random forest classifier: RF and

HeAT-RDF. The RF used EDV, ESV and 70 other features,

(a) EDV=109ml, ESV=37ml, LVM=103g, EF=66%

(b) EDV=127ml, ESV=50ml, LVM=116g, EF=61%

Fig. 10. The two most difficult cases where the Baseline and seven
participating methods failed to correctly classify them. Both cases are MI.
The left figures show ED shapes, while the right are ES shapes. The green
arrows point to less contractile area of the myocardium, indicating infarction.

while HeAT-RDF used 10 features including EDV, ESV and

EF. With such rich feature sets, it was expected that these

methods would perform better than the Baseline. However,

their performance was similar (see their ROC curves in Fig. 8),

indicating that this bag of features did not give additional

benefit. Other methods, such as GMPT and PT, also considered

the random forest classifier during training, but the classifier

did not produce the best results.

This challenge problem may not be suitable for the random

forest classifier, due to the difficulty in selection of good fea-

tures. Both RF and HeAT-RDF have achieved good accuracies

(0.92 and 0.93), but random forests suffer if there are too few

good variables relative to noisy ones [50]. EDV, ESV and EF

are already good features in the Baseline model. Therefore

adding too many variables to the random forest appears to be

counter-productive.

D. Limitations

There are some limitations in this current challenge. Only

ED and ES frames were given in the dataset, but as shown by

IC-ShapeMotion and PT methods, incorporating motion infor-

mation from other remaining cardiac frames may increase the

classification performance. In this challenge, the distributions

of risk factors and cardiac function parameters between the

two groups were already well separated, which yielded high

classification performance by the Baseline prediction model.

Quantification of the effects of risk factors and demographics
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on remodelling requires a large scale epidemiology study

(for example, as is currently being performed in the UK

Biobank [68]). Such large scale studies will benefit greatly

from the methods evaluated in this study. A more difficult

dataset with less separated shape differences may provide more

insight into how statistical shape modeling can assist clinical

diagnosis. The metric used in this challenge was to automati-

cally identify myocardial infarction shapes from asymptomatic

volunteers. However, this study does not demonstrate that

the methods are able to detect myocardial infarction among

other pathological groups. Hence, shape features should be

trained on datasets that can control for these confounding

factors, before clinical application. Further studies are also

needed to investigate different metrics for the quantification of

the degree of disease, quantification of regional wall motion

abnormalities, predicting the location of scar, or characterizing

infarction types (hibernating, remote or stunned).

VI. CONCLUSIONS

This challenge was the first to examine statistical shape

analysis methods in the domain of cardiac disease (specifically

myocardial infarction). The challenge attracted relatively high

community participation and covered a wide range of different

approaches, both in statistical analysis and design of shape

features. This reflected the variety of approaches being actively

investigated by the community at the present time. We believe

that the current challenge provides a number of benefits to the

community, specifically:

(i) many methods demonstrated that they can be immediately

applied in clinical practice to quantify of the degree

of adverse remodelling against population norms, and

monitor and evaluate patients with myocardial infarction,

(ii) specific aspects of some methods have been identified

which would benefit future applications,

(iii) specific shape features have been identified which best

describe adverse remodeling of the left ventricle after

myocardial infarction.

All the participating methods achieved high accuracy, sen-

sitivity and specificity. Although many methods fell short

of the Baseline performance, all cases misclassified by the

Baseline could be correctly classified by some of the partici-

pating methods. Hence, this study demonstrates that statistical

shape methods can add information to the understanding of

LV remodeling. Shape feature extraction, solely based on

geometric morphometric analysis, can outperform traditional

clinical measures. Adding motion information increases the

performance of these methods. This resource provides a

valuable mechanism to benchmark additional algorithms for

characterization of myocardial infarction in the future.
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[44] M.-M. Rohé, N. Duchateau, M. Sermesant, and X. Pennec, “Com-
bination of Polyaffine Transformations and Supervised Learning for
the Automatic Diagnosis of LV Infarct,” in Statistical Atlases and

Computational Models of the Heart. Imaging and Modelling Challenges

- 6th International Workshop, STACOM 2015, Revised Selected Papers,
ser. Lecture Notes in Computer Science, O. Camara, T. Mansi, M. Pop,
K. S. Rhode, M. Sermesant, and A. A. Young, Eds., vol. 9534. Springer,
2016, pp. 190–198.

[45] J. Ehrhardt, M. Wilms, H. Handels, and D. Säring, “Automatic Detection
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