
This is a repository copy of Connectionist simulation of attitude learning: Asymmetries in 
the acquisition of positive and negative evaluations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1137/

Article:

Eiser, J.R., Fazio, R.H., Stafford, T. et al. (1 more author) (2003) Connectionist simulation 
of attitude learning: Asymmetries in the acquisition of positive and negative evaluations. 
Personality and Social Psychology Bulletin, 29 (10). pp. 1221-1235. ISSN 0146-1672 

https://doi.org/10.1177/0146167203254605

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Eiser et al., 2003 1
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positive and negative evaluations.
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Abstract

Connectionist computer simulation was employed to explore the notion that, if attitudes guide ap-

proach and avoidance behaviors, false negative beliefs are likely to remain uncorrected for longer than

false positive beliefs. In Study 1, following standard backpropagation of error training, a three-layer

network with a state unit reflecting cumulative discrimination success (energy) perfectly discriminated

good and bad inputs distributed across a two-dimensional space. Under contingent feedback, connec-

tion weights were only updated when the network produced outputs representing approach behavior.

In this condition, bad inputs were still discriminated but some good inputs were not recognized as

such. In Study 2, the network architecture distinguished a system for learning evaluations from a

mechanism for selecting actions. Biasing action selection toward approach even when energy was high

eliminated the asymmetry between learning of good and bad inputs under contingent feedback. We

discuss implications for various attitudinal phenomena and biases in social cognition.
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1 Introduction

Although the concept of attitude has remained central to social psychology for as long as the discipline

has existed, there has been remarkably little research directly concerned with how attitudes are acquired.

Despite Allport’s (1935, p.810) famous definition of attitude as a mental and neural state of readiness,

organized through experience, the role that experience actually plays in attitude organization has re-

mained comparatively under-researched compared with other topics, such as the influence of attitudes on

behavior. Although textbooks refer frequently to attitude formation and change, the studies described

under this heading tell us far more about how we can be influenced to change our existing attitudes than

about how we come to have such attitudes in the first place.

Despite this emphasis in the literature, several major theoretical approaches contain explicit or implicit

assumptions about the kinds of learning processes that may underlie the acquisition of attitudes. Several

models of attitude-behavior relations (e.g., Ajzen, 1991) view behavior as guided by acquired expectancies

(Edwards, 1954; Tolman, 1959). More recently, the concept of associative memory is central to a number

of models looking at the cognitive and behavioral consequences of attitudes (Fazio, 1990, 1995; Petty

& Krosnick, 1995). According to Fazio (1995), attitudes are object-evaluation associations, specifically

implying that attitude formation depends on processes of associative learning.

This widespread incorporation of learning notions at a theoretical level, however, has not been matched

by much recent empirical work on attitude learning. An early impetus had been provided by Hildum

and Brown (1956) and Insko (1965) using operant conditioning notions and by Staats and Staats (1958)

within a classical conditioning paradigm. This research, however, ran out of steam, partly because of

concerns over participants awareness of the reinforcement or associative contingencies (Page, 1974), and

possibly because, for many social psychologists at the time, learning theory paradigms appeared redolent

of an outdated behaviorism and incompatible with the current cognitive Zeitgeist. Recent social cognition

research, however, increasingly acknowledges the importance of priming and other automatic processes

occurring below the level of conscious awareness (Bargh, 1997; Fazio, 2001; Wegner, 1994). Classical

conditioning of attitudes without explicit detection of covariation has also recently been demonstrated

by Olson and Fazio (2001). We therefore believe that the time is ripe for a renewed analysis of the

learning processes underlying the acquisition of attitudes.

A priority for such an analysis is to specify the assumptions about learning implicit in more general

notions. The idea that we acquire attitudes through associating objects with good and bad experiences

is intuitively plausible. For this idea to be the basis of a theory, however, we need to be able to say more

precisely how such associations may be formed under different conditions. In particular, we need to ask

if there is anything that distinguishes attitude learning from associative learning in general. In other

words, is there anything special about learning associations between objects and evaluations as distinct

from associations between objects and any other kind of event?
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Part of the difficulty with the concept of association is that it can imply a process based merely on the

co-occurrence of events. Attitudes can be acquired through passive exposure (see, e.g., Fazio & Zanna,

1981; Olson & Fazio, 2001). However, we decided here to examine the intuition that many of our attitudes

may be developed through active exploration of our environment. In such cases, we learn whether we

like or dislike different objects, activities or individuals through interacting directly with them. Through

such learning, we will choose to engage in activities we find enjoyable and avoid unpleasant activities as

far as possible. Our attitudes are shaped by experience, but our attitudes can guide our exploration and

hence shape our experience. Attitude learning thus involves a dynamic interaction with the environment,

in which our attitudes both guide approach and avoidance behaviors, and are updated by the feedback

that such exploration provides. In short, the process underlying the acquisition of such object-evaluation

associations may be better defined as a form of reinforcement learning, whereby evaluations are dependent

on feedback from the environment, but no feedback is received unless the environment is explored.

Much of this is implied in earlier perspectives on attitude structure, psychological development and

group processes by such as Lewin (1936) and Heider (1946). Within Lewin’s scheme, goal-oriented behav-

ior is guided by individuals psychological field or life space at a given time, including perceptions of social

relationships, while learning (including though social interaction) can lead to restructuring, re-evaluation

and differentiation of this life space over time. In a similar vein, Heider’s theory of cognitive balance

predicts reciprocal interdependence between perceived social relationships and perceived agreement and

disagreement, so that, according to the theory, mutual liking increases mutual agreement, and mutual

agreement increases mutual liking.

All this implies an asymmetry between how we acquire positive and negative attitudes toward other

people and valued objects – at least within a non-coercive environment in which our approach and

avoidance behaviors are guided by our expectations of outcome contingencies. In a simple application of

the Law of Effect, we will attempt to repeat pleasant experiences and avoid unpleasant ones. Other things

being equal, therefore, we should have more experience of positively valued than negatively valued objects

(cf. Parducci, 1984). This suggests, however, that most negative attitudes will be more weakly grounded

in direct experiential learning than positive ones. Yet at the same time, the evidence from animal learning

(Solomon & Wynne, 1954) is that avoidance responses can be very resistant to extinction. For example,

a rat that has learnt to move to a different end of its cage when a tone sounds in order to avoid an

electric shock will continue to do so, even if the schedule has been changed and no more shocks are given.

A cognitive interpretation of this effect is that avoidance prevents the rat from ever experiencing the

absence of a shock following a tone in that part of the cage. By contrast, if the rat received a shock

in a part of the cage previously experienced as safe, its previous tendency to approach this part would

relatively quickly be inhibited. Extended to the human context, this implies that we are more vulnerable

to error in our negative attitudes than positive ones. In other words, if we hold a positive attitude toward

an object, we will be more likely to approach it and hence have our expectation confirmed or corrected
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by experience. However, if we hold a mistakenly negative attitude toward an object and consistently

avoid it, we will never, except by chance, discover what we are missing.

1.1 Aims of computer simulation

The present paper attempts to explore these ideas through the methodology of connectionist computer

simulation. It is important to declare at the outset what the use of such methodology can, and cannot,

be expected to achieve. First and foremost, simulation is a technique for clarifying theoretical concepts

and predictions. It allows us to ask the question: If such-and-such assumptions are correct, what would

be predicted under such-and-such conditions? All forms of theory-building and hypothesis-generation in

psychology do this, but computer simulation allows us to do so more precisely, especially when dealing

with complex situations and processes evolving over time. Indeed, simulation not merely allows us to be

more precise, but demands it of us. In other words, we are forced to define our theoretical assumptions

in precise and internally coherent terms, or the program will simply fail.

None of this, by itself, establishes that our theoretical assumptions (or the way we have just specified

them) are correct. Simulation is not a substitute for empirical evidence in that sense. However, it helps

specify what our assumptions imply, including for situations which would be difficult and/or expensive to

reproduce in the laboratory. An example of this is the simulation of social influence processes in groups

consisting of many members; the predictions of Heider’s (1946) balance theory have been simulated by

Eiser, Claessen and Loose (1998) and those of Latané’s (1981) social impact theory by Nowak, Szamrej

and Latané (1990). Such simulations do not prove, or even confirm the respective theories. However,

they help to clarify the theories and extend our understanding of what the theories predict.

The second advantage of simulation is almost the mirror image of the first. All computer simulation

depends on a number of inbuilt assumptions, procedural decisions and parameter settings. Many of these

find their way into programs as arbitrary or ad hoc fixes, but many others are based on principled theoret-

ical positions concerning the kind of processes being simulated. Even to talk about simulating processes

is to take a subtly different position from the view that modeling consists of constructing a rule-based

or algorithmic system for finding solutions to problems. Connectionism (e.g. Ellis & Humphreys, 1999;

Gurney, 1997; McLeod, Plunkett & Rolls, 1998) refers to a branch of cognitive science that seeks to

understand (and simulate) cognitive processes on the basis of rather particular, but simple, assumptions

about how knowledge is acquired, organized, retained and recalled within complex systems crudely anal-

ogous to a natural brain. Approached in this way, computer simulation can offer process explanations

beyond those contained in more traditional theories.

1.2 Connectionist principles

The basic idea of connectionism is that brains consist of huge numbers of neurons that can receive

information (in the form of electrical activation of varying strength) and then pass this information on to
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other neurons. Each neuron, however, is a relatively simple device — essentially a conductor or switch —

but brains achieve immense complexity at the system level through the essentially infinite number of ways

different sets of neurons can become interconnected with each other. The extent to which information or

activation can pass from one neuron to another is determined by the strength of the (synaptic) connection

between them.

In order to simulate such processes, connectionist modeling employs systems of simple nodes or units,

crudely analogous to (sets of) neurons, that are interconnected to form networks. Different network

’architectures’ constrain the way the units pass information to each other. For instance, three-layer nets

(as employed here), incorporate a layer set of input units, analogous to sensory receptors, whose levels of

activation directly encode the stimuli presented. These input activations are then transmitted to hidden

units, that form condensed representations of the input patterns. These then pass activation on to output

units, representing the response of the system. The activation of each unit is a function of the sum of

the activations it received from other units, weighted by the strengths of the connections to it from each

of these units. These connection weights can be either of positive or negative sign, i.e. facilitatory or

inhibitory. Simulations involve ’training’ the net by adjustment of the connection weights, commonly so

as to minimize the discrepancy between the outputs and some designated target values.

Underlying these procedures is the assumption that learning, i.e. experience of covariation between

events and feedback from the environment about the goodness of fit or mismatch between predictions and

outcomes, results in different patterns of interconnectivity. Connectionist systems thus have no need of a

distinct ’memory store’. All the information acquired through learning is stored in the connection weights.

These same weights control processes such as categorical perception (Harnad, 1987), generalization and

recall of information from partial cues (Hopfield, 1982). This can expressed by saying that there is no

distinction between memory and cognitive processing in connectionist systems (McLeod, et al., 1998).

At least in the hands of many of its practitioners, therefore, connectionism offers, not simply a set of

modeling techniques, but an unapologetically theoretical perspective on cognition and learning (McLeod

et al., 1998; Seidenberg, 1993). This is potentially generalizable to several topic areas, and not least

to social psychology (Eiser, 1994; Nowak, Vallacher, Tesser, & Borkowski, 2000; Read & Miller, 1998;

Shultz & Lepper, 1996; Smith, 1996; Smith & DeCoster, 2000). Connectionist simulations do not simply

require us to be more precise in specifying our assumptions about the processes underlying, say, balance

or social impact theory. Instead, we face the question of whether the core assumptions of our social

psychological theory can be translated into, and reformulated within, the more general and often more

parsimonious conceptual language of connectionist learning. In this respect, a simulation can be viewed

as an invitation to consider principles of connectionist learning as a plausible general theoretical account

of the phenomena in question.
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1.3 Supervised learning and reinforcement learning

There is an important distinction in connectionist theory between supervised learning systems that

receive full feedback from the environment as to the correctness of the output generated for each and

every input, and reinforcement learning systems that receive only partial feedback. Feedback may be

partial in several respects, however, most importantly for the current study, reinforcement feedback is

generally contingent on the learning system’s outputs interpreted as actions in the environment. If a

learning system needs to act in the world in order to receive feedback, then it also needs to explore the

alternative actions available in different contexts in order to observe what consequences ensue. A crucial

issue for reinforcement learning then, that does not arise for supervised learning, is the need to find

an appropriate balance between the exploration of alternative actions, in order to make better future

choices, and the exploitation of existing knowledge about feedback contingencies in order to achieve good

immediate outcomes. This issue is often termed the exploration/exploitation trade-off (Sutton & Barto,

1998).

Current approaches in reinforcement learning have developed through the combination of connec-

tionist learning techniques with optimal control theory. As this work has progressed, identities, or close

similarities, have been discovered between these advances in machine learning, and psychological theories

of the processes underlying classical conditioning, instrumental conditioning, and learning with delayed

rewards. Since attitude formation can be understood as a process of associative learning that is dependent

on exploration and contingent feedback, then it should also be amenable to analysis using this powerful

theoretical framework.

1.4 Aims of the study

The aim of this paper is therefore to examine, within the methodological and theoretical framework of

connectionism and reinforcement learning, possible asymmetries in the acquisition of positive and negative

beliefs. We assume that asymmetries may arise from the fact that positive attitudes lead to approach

behaviors and hence to increased experience of the attitude object, whereas negative attitudes lead to

avoidance and hence less direct experience. We hypothesize that, since such experience is necessary for

a learner to build up a correct representation of the environment, false-negative errors (i.e. assuming a

good object is bad) will tend to be more frequent than false-positives. Since effective learning requires

exploration, we further hypothesize that manipulating the willingness of the system to deviate from its

currently preferred action (its exploration strategy), will directly affect its experience of negative objects,

and consequently impact on the accuracy of acquired attitudes, and on its overall effectiveness as a

learner.

In order to address the problem of choosing actions during learning, it is useful to distinguish two

elements of a system that learns from contingent feedback: (i) the learning system, which encodes the
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currently preferred actions of the system for any context, and (ii) the action selection mechanism, that

chooses an action, at any given time, based on both the currently preferred action (for the current

context) and the current exploration strategy. In the paper, we compare two classes of models. In Study

1, the action selected is determined completely by the learning system. In Study 2, the action selection

mechanism is separate from, and only probabilistically guided by, the learning system. The performance

of the network is influenced by its cumulative record of correct and incorrect responses (here termed

energy), but differently in the two studies. In Study 1, energy is connected to the learning system,

whereas in Study 2 it only affects the action selection mechanism.

The simulations to be reported attempt to replicate a paradigm developed by Fazio and Eiser (2000)

with human participants. In this paradigm, participants are introduced to a computer game in which

their task is to survive in a virtual world consisting entirely of beans. Some of these beans are good

and provide energy. Others are bad, and eating them results in a loss of energy. Participants are told

that if they eat too many bad beans rather than good beans (or go too long without eating at all), they

will die. To survive, they need to learn to identify and eat enough good beans, while avoiding the bad

beans. The game involves participants being presented with different beans one at a time, and having

to choose whether or not to eat them. The beans themselves vary along two attribute dimensions in

terms of number of speckles and shape (circular to oblong). There are 10 potential levels on each of these

dimensions. Hence, the space of all possible objects comprises a 10 × 10 matrix. The beans actually

presented fill 36 of the 100 possible attribute combinations. These are arranged in six blocks or regions,

three containing good beans and three containing bad beans (see Figure 1). The main finding from the

human data is that participants are much less accurate at identifying good than bad beans. In other

words, false negative errors predominate over false positives (where positive means responding to a bean

as good). We therefore examine whether an equivalent asymmetry could be reproduced by a neural

network constrained to learn only through exploration.

Reproducing the human data, however, is not the sole purpose of the simulations. In the human work,

the game is such that feedback is obtained only through approach. But, unlike a net, human learning

could be affected by attentional and rehearsal mechanisms. Recent reviews (Baumeister et al., 2001;

Rozin & Royzman, 2001) illustrate various senses in which bad is stronger than good. The contribution

of the connectionist simulations is that we can examine learning through exploration in a much purer

fashion, i.e, unconfounded by any other tendencies that humans might bring to bear on this situation.
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Figure 1: Matrix of input patterns used during training. Clear squares (regions 1, 3 and 5) represent

good beans and dark grey squares (regions 2, 4 and 6) represent bad beans.
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2 Study 1

2.1 Method

2.1.1 Network architecture

The code for the simulations to be reported was written specially using the programming software

MatlabTM, version 5.3.

2.1.2 The learning system

The learning system employed in Study 1 is a fully-connected, three-layer, feed-forward neural network

as shown in Figure 2. The input layer of the network comprises 22 units, of which 11 are used to

encode one dimension (e.g. shape) and the remaining 11 the other dimension (speckles). These input

units take values between 0 and 1, with each level of an attribute being represented by a pattern of

activation (> 0) across up to six of the 11 units. For example, one speckle would be encoded by the

vector [1, 1, 0.5, 0.25, 0, 0, 0, 0, 0, 0, 0], four speckles as [0, 0.25, 0.5, 1, 1, 0.5, 0.25, 0, 0, 0, 0], through to ten

speckles as [0, 0, 0, 0, 0, 0, 0, 0.25, 0.5, 1, 1]. The effect of this is that any two adjacent levels of an attribute

will share one input unit in common where the activation level is at its maximum (1). Because each

attribute level is encoded by more that one input unit, and the individual input units contribute to

the encoding of more than one attribute level, the network achieves a distributed (rather than localist)

representation of the different stimuli. This enables the network to encode location in the space in such

a way as to also take account of proximity. Furthermore, because of the roughly Gaussian distribution

of lesser activations to either side of the maxima, stimuli up to five steps away from each other on any

attribute would share at least one input unit with activation levels > 0. This was intended to facilitate

the generalization of learning to untrained regions of the space. The second layer of the network includes

three hidden units, each of which receives activations from all 22 input units. The number of hidden

units (reflecting the computational capacity of the network) was determined on the basis of preliminary

modeling to be the minimum sufficient for learning these sets of inputs. Also providing input (in Study

1 only) to the three hidden units is a single state unit, effectively a record of the level of energy (i.e. the

effects of eating different beans within the context of the game) at a given point in time. The activation

of this energy unit varies between 0 and 1, starting the simulation at 1. There is a steady decay in the

activation of the energy unit, at the rate of 0.0001 per bean presentation. Eating a good bean increases

the activation of the energy unit by 0.001 and eating a bad bean decreases it by 0.001 (whereas avoiding

a bad bean produces only the time-related decay of 0.0001).

Weighted activations from the three hidden units and the energy unit are then fed through a logistic

(squashing) function, restricting the output activation to a range between 0 and 1, and thence to a single

output unit. The input to the logistic function from the energy unit is not modified by learning, but
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determined by the following hunger function selected on the basis of preliminary modeling, the effect of

which is to provide a maximum input of 1 to the logistic function when energy is 0, declining to 0.33

when energy is 1. The effect of this hunger function is that the network is more inclined to eat when

energy is low, even if it has not clearly categorized a presented input as a good bean.

Hunger = 1/[γ.(Energy2 + Energy + 1)], with γ = 1. (1)

2.1.3 The action selection mechanism

In Study 1, the output of the learning system completely determines the action selected. A threshold

parameter on the output unit is set at 0.5, at or above which outputs are treated as equivalent to eating

a bean, and below which outputs are treated as equivalent to avoidance.

2.1.4 Training procedure

The network was trained using variants of the standard backpropagation of error algorithm (Rumelhart,

Hinton & Williams, 1986) to modify the connection weights. (Parameter settings were 0.02 for the

learning rate and 0.06 for momentum). This form of training requires the target values of the stimuli,

i.e. their actual valences, to be defined in advance by the researcher. This allows an error value (or delta,

∆) to be calculated. For this purpose, the output generated by the net in response to a given input

is subtracted from the target value for that input. Where the input corresponded to a good bean, the

target value was set at 0.9, where it corresponded to a bad bean, it was set at 0.1. A positive ∆ thus

represents an outcome better than the net’s prediction, a negative ∆, an outcome worse than predicted.

This ∆ is used to modify the connection weights of the hidden-to-output, energy state-to-hidden and

input-to-hidden links. The effect of these modifications is to increase the output activation produced in

response to a given input if ∆ is positive, and reduce it if ∆ is negative.

2.1.5 Supervised learning with full feedback

Three variants of this training procedure were used. In the simulations using full feedback, ∆ was

calculated and connection weights were modified both when the net chose to eat (i.e. produced an output

equal or greater than 0.5) and when it did not. In other words, the situation is conceptually equivalent

to being asked to predict whether a bean was good or bad, and then being simply told whether this

prediction was right or wrong. These simulations are an example of a standard discrimination learning

problem of the kind that has been the subject of extensive connectionist modeling using supervised

learning (e.g. McClelland & Rumelhart, 1988) and provide a benchmark to show how well the network

can learn the inputs with no restrictions
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1 state unit
(’energy’)

1 output unit

3 hidden units

22 input units
11 to encode shape (X axis)

11 to encode speckles (Y axis)

Activation compared
to fixed threshold

Figure 2: Network used in Study 1. Solid arrows indicate connections modified by learning.
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2.1.6 Reinforcement learning with contingent feedback

More interesting theoretically are the simulations using contingent feedback. In these, connection weights

are only modified if the output activation is equal to, or greater than, 0.5 – i.e. if the net has chosen to

eat. If the net produces an output of less than 0.5, this is conceptually equivalent to avoiding a bean,

and thus receiving no feedback about whether it would have been good or bad. In other words, no

learning (modification of weights) takes place on any trial where the output is less than threshold. When

this occurs, the net just proceeds to the next input pattern with no modification to the weights. Since

feedback is contingent on the action performed, this constitutes a form of reinforcement learning.

2.1.7 Reinforcement learning with contingent feedback and confirmation bias.

A further variant of the learning procedure was based on the observation, in the animal learning lit-

erature, that avoidance responses appear more resistant to extinction than would be predicted if the

non-occurrence of an expected shock following avoidance was processed simply as a non-event. One in-

terpretation (Solomon & Wynne, 1954) is that avoidance is reinforced by a reduction in fear consequential

on performance of the avoidance response.

To simulate this form of confirmation bias, we adapted the contingent feedback procedure as follows:

on all trials where the network avoided (i.e. produced an output < 0.5), regardless of the true target value

for the input, we calculated a ∆ as though the target value was 0.1 (i.e. as though it was a bad bean).

This ∆ was then multiplied by an attenuation parameter arbitrarily set at 0.1, and the connection weights

were then updated by the back-propagation algorithm in the normal way. In other words, regardless of

whether the input in fact corresponded to a good or bad bean, avoidance was reinforced, the strength

of the reinforcement (i.e. ∆) being equivalent to one-tenth of that received for correct avoidance under

full feedback training for an output activation at the same level. It was deemed necessary to set this

parameter relatively low, since otherwise there would be no distinction between correct and incorrect

avoidance in terms of their impact on learning.

In both full and contingent feedback conditions, the network was trained for 5000 epochs with all 36

input patterns (beans) being presented once in each epoch, and all weights being updated together (by

batch training) at the end of each epoch. For each simulation, the starting state of the network was defined

by setting all connections to random values within the range from 0.3 to +0.3. (There were no restrictions

on the values taken by connection weights after training). Ten independent replications of each simulation

were performed with different sets of initial random weights, analogous to running an experiment with ten

independent participants. At the end of training, the output activations corresponding to each of the 36

training input patterns (beans) were recorded. In addition, following training, the network was presented

with novel inputs or beans with attribute combinations not previously shown, and output activations

were again recorded. The purpose of these test phase trials was to see how the network’s representation
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of the problem space (instantiated in the connection weights) would produce generalization of learning,

i.e. allow input patterns not previously presented to be categorized as good or bad. In this phase, the

network was presented with inputs corresponding to all remaining 64 cells of the 10 × 10 matrix, so as

to provide complete mappings of the problem space. No ∆ was calculated on any of these test trials, so

there was no further modification of the connection weights during the test phase.

3 Results

We first inspected the output activations at the end of 5000 epochs of training in which all 36 input

patterns (beans) were presented. For each of the ten replications within each of the three feedback

conditions, we calculated (a) the number of correct choices out of 18 for the good and bad beans separately

(i.e. outputs of 0.5 or more to good beans and less than 0.5 for bad beans); and (b) the mean (absolute)

error (∆) over the two sets of beans separately (i.e. the differences, regardless of sign, between the

output activations achieved after training and the correct target values, averaged over the beans within

the good and bad sets). Table 1 shows the means over the 10 replications within each condition. In the

full feedback condition, 18 correct responses were obtained to each set of inputs. This was expected from

previous connectionist simulations of two-category learning (e.g. McClelland & Rumelhart, 1988). In

the other two conditions, the bad beans were all correctly avoided apart from within a single replication

under contingent feedback (13 out of 18 avoided). However, 29% of the good beans were also avoided, i.e.

categorized as bad. Wilcoxon signed ranks tests indicated that the difference between number of correct

choices for good and bad beans was significant under both contingent feedback (z = 2.94, p < .005) and

confirmation bias (z = 2.85, p < .005).

Table 1: Mean number of correct choices out of eighteen and mean absolute error (∆) to

good and bad input patterns, and mean evaluation of untrained patterns, as a function of

feedback (Study 1).

N Correct Choices Mean Absolute Error Mean Evaluation

Good Bad Good Bad Untrained

Full feedback 18.0 18.0 0.02 0.01 0.53

Contingent feedback 12.6 17.5 0.29 0.25 0.42

Confirmation bias 13.1 18.0 0.26 0.09 0.41

The mean absolute error (∆) scores (i.e. discrepancies from target values) provide more details of the

level of learning achieved. Under (unbiased) contingent feedback, although bad beans are consistently

avoided, ∆ remains quite high, and only marginally (z = 1.89, p < .06) below that for good beans. This
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indicates that, once the outputs to these patterns fell below threshold, they then showed little further

polarization toward the correct target value of 0.1. The reason for this is that no further updating of

weights then occurred on these trials, and any further improvement in discrimination could only occur

as a result of backpropagation of error on the remaining inputs categorized as good. Under confirmation

bias, however, the difference between the mean error scores to good and bad beans is more reliable

(z = 2.20, p < .05), indicating that the output activations for correctly avoided beans continued to

decrease toward their true target values. These data were submitted to a 3 × 2 (Feedback × Valence)

analysis of variance, with repeated measures on the second factor. This revealed a significant effect

for Feedback (F (2, 27) = 122.45, p < .001), with both the contingent feedback and confirmation bias

conditions differing significantly (p < .001) from full feedback. The effect of Valence (F (2, 27) = 10.02, p <

.001) and the interaction (F (2, 27) = 4.03, p < .05) were also significant.

We next tested generalization to input patterns not presented during training. Table 1 also shows

the average outputs over all 64 untrained test patterns. The three feedback conditions also differed

significantly (F (2, 27) = 5.32, p < .05), indicating that the untrained patterns were evaluated more

negatively under contingent feedback and confirmation bias. In other words, in those conditions where

good beans were less well learnt, the network showed a generalization effect, so that novel beans tended,

on average to be categorized as bad.

A more complete picture of how the networks generalized from the presented inputs can be seen in

Figure 3. This shows the landscapes of mean output activations produced by the network to all 100

possible input patterns in the different conditions, using a monochrome gradation with lighter shades

representing higher activations, i.e. more positive valence. For comparison purposes, the top left panel

shows the actual target values. The full feedback condition produced a reasonably accurate landscape

with hills and valleys corresponding respectively to the good and bad regions, the main difference from

the actual target landscape being the spreading (i.e. generalization) of higher and low outputs into

the neutral untrained regions. Under contingent feedback, however, the landscapes display incomplete

recognition of good beans (particularly region 5), with confirmation bias leading to stronger rejection of

regions 4 and 6.

4 Study 2

The simulations in the first study demonstrate important differences between learning under full and

contingent feedback. Specifically, for the artificial system described, objects that are in fact good (i.e.

approachable) may continue to be categorized as bad, and hence be avoided, under conditions where

avoidance prevents corrective learning from taking place. Furthermore, in the confirmation bias condition,

designed to simulate the presumed reinforcing effect of avoiding an object believed to be bad, negative

evaluations of such objects (wrongly) categorized as bad become even more extreme.
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(b) Full feedback
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(c) Contingent Feedback.
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(d) Confirmation Bias.

Figure 3: Target values (untrained patterns shown as 0.5) and mean output activations for all attribute

combinations as a function of feedback (Study 1).
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In any simulation study, the effects observed can depend on specific features of the procedure, includ-

ing, for example, the network architecture and the various parameter settings. (Of course, experimental

findings can be just as dependent on procedural details, but this dependency may be less transparent

where the methodology is less familiar). Although varying parameters arbitrarily is uninformative, two

(related) features of our original network appear particularly relevant to conceptual issues. The first

is the relationship between the learning system and the action selection mechanism. In Study 1, the

relationship was deterministic, in that the action selected depended entirely on whether the activation

of the output of the learning system was above or below threshold. Hence, there was no possibility of

exploration except in the context of a positive evaluation. The inclusion of the energy unit, together

with the function that computed hunger form its activation, was intended to encourage exploration when

energy was low. However, hunger was still located within the learning system in that it provided inputs

to both the hidden units and the threshold function on the output unit.

Arguably, a network architecture that distinguished between evaluation (or attitude) and action would

be more appealing in terms of its intuitive resemblance to human decision-making. To address this issue,

we modified the architecture for Study 2 to differentiate the action selection mechanism explicitly from

the learning system, and made the relationship between the two parts of the network probabilistic by

adding an element of random noise to the action selection mechanism. The effect of this is that the

network had a non-zero probability of approaching beans provisionally categorized as bad, as well as a

non-zero probability of avoiding beans provisionally categorized as good.

The second important modification concerns the role of energy or hunger. The energy unit was

introduced to allow for the intuition that individuals may be more likely to approach objects about

which they may be uncertain, if their temporary need to do so is greater. In short, one is more ready to

eat if one is hungry. But here we have an ambiguity. Does hunger make one think of a particular food as

more appetizing, or merely more ready to eat food that one would not normally regard as enjoyable or

even edible? In Study 1, the linkage of the energy unit to the learning system at least partly appears to

simulate the first of these interpretations. In Study 2, the energy unit was completely separated from the

learning system, being linked only to the action selection mechanism. This also enabled us to vary how

hunger was calculated from energy, so as to investigate the impact of hunger on exploratory behavior

without it having any effect on evaluative learning (i.e. attitude).

4.1 Method

Our second study therefore employs an architecture in which the (continuous) evaluation output from

the learning system produces a probability distribution from which approach or avoidance behavior is

chosen by the action selection mechanism. The energy unit was now treated as part of the action selection

mechanism rather than the learning system (See Figure 4). In addition, we varied the specific function

whereby the hunger input to the action selection unit was computed from the energy level at any given
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time. The basic function was as follows:

Hunger = ((Baseline − 1).Energy + 1)γ , with γ = 5. (2)

with the added constraint that the minimum level of Hunger was 0.

Three functions were used as shown in Figure 5. In all three, an energy level of 0 produces a

hunger value of 1. In the neutral condition (Baseline = 0), hunger approaches an asymptote of 0 at

energy = 1. In the cautious condition (Baseline = −0.6), hunger falls more quickly to 0, with the effect

that hunger can only override a negative expectancy when energy drops very low. Finally, in the risky

condition (Baseline = 0.6), the network is prepared to take more risks (i.e. eat beans expected to be

somewhat bad) when its energy level is high. The biases produced by these hunger functions were added

to the output from the learning system. The resulting judgment (i.e. the evaluation plus hunger) was

transformed using a logistic function to produce a probability of eating between 0 and 1. This means

that as the judgment of a bean moves further away from neutral (0.5), the probability of approaching

the bean rapidly comes to be close to 0 or to be close to 1, depending on the direction in which the

judgment diverges from 0.5. Beans with judgments of 0.5, such as might result early in learning with no

contribution from the hunger function, have a probability of 50% of being eaten

Finally, a stochastic probability function was introduced by comparing this result to a randomly

generated number between 0 and 1 (labeled noise in Figure 4). If the output exceeded this random

number, the action selected would be eat, otherwise avoid. As a bean’s evaluation falls it will, because of

the stochastic nature of the action selection process, still be eaten occasionally, although with less and

less frequency as the evaluation moves closer to 0. Conversely, positively evaluated beans may still be

occasionally avoided, though less frequently as their evaluation (plus hunger) approaches 1. Hence, this

additional random element weakens the deterministic link between evaluation and action present in Study

1 by allowing the network occasionally to explore some beans toward which the provisional attitude is

negative.

In all other respects, the simulations were the same as in Study 1. That is, the same set of input

patterns was used, the same form of input coding, and the same algorithm to update the weights in the

learning system, under the same three feedback conditions (full, contingent, confirmation bias).

4.2 Results

Table 2 shows the mean scores for the number of correct choices, ∆s and evaluations of untrained

patterns. Output plots (omitting full feedback conditions) are shown in Figure 6. The results of Study 1

were broadly replicated under the neutral and cautious hunger conditions, with the bad beans being even

better learnt than before (note the zero values for mean ∆s). In other words, the full feedback condition

resulted in perfect learning of both good and bad beans, whereas good beans (particularly, as in Study 1,

those in region 5) were imperfectly learnt under contingent feedback and confirmation bias. Furthermore,
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Figure 4: Network used in Study 2. Solid arrows indicate connections modified by learning.
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in these latter two feedback conditions, the untrained beans were evaluated somewhat negatively (and

even more so than in Study 1). However, a very different pattern emerges in the risky condition. Here

the asymmetry between the learning of good and bad beans is effectively eliminated, and untrained beans

are evaluated relatively positively. Analyses of variance (Feedback × Hunger × Valence for the number

of correct choices and ∆s; Feedback × Hunger for the untrained patterns) indicated that all main effects

and interactions were highly significant (p < .001).

Table 2: Mean number of correct choices out of eighteen and mean absolute error (∆) to

good and bad input patterns, and mean evaluation of untrained patterns, in relation to

hunger function and feedback (Study 2).

N Correct Choices Mean Absolute Error Mean Evaluation

Good Bad Good Bad Untrained

Full feedback 18.0 18.0 0.00 0.00 0.50

Contingent feedback 12.6 18.0 0.27 0.00 0.32

Confirmation bias 13.8 18.0 0.20 0.00 0.38

Cautious hunger

Full feedback 18.0 18.0 0.00 0.00 0.51

Contingent feedback 12.0 18.0 0.30 0.00 0.27

Confirmation bias 12.1 18.0 0.30 0.00 0.28

Risky hunger

Full feedback 18.0 18.0 0.00 0.00 0.50

Contingent feedback 18.0 18.0 0.00 0.00 0.51

Confirmation bias 18.0 17.4 0.00 0.01 0.54

These findings therefore demonstrate that the asymmetry in the learning of good and bad objects

found in Study 1 could be replicated with a different network architecture. This asymmetry remained

essentially unchanged when the hunger function was defined so as to have little or no effect except at

low energy levels. However, where the action selection mechanism receives an extra boost of activation

even when the network’s energy level is high (risky condition), this appears sufficient to get the network

to eat more beans provisionally categorized as bad, and so receive the feedback required to correct false

negative beliefs.

These findings, however, disguise one important difference between the performances of the networks

in the two studies. The data shown in Table 2 are based on 10 replications per cell at the end of 5000

epochs of training. However, the Study 2 network occasionally died early in training, i.e. reached zero
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(a) Neutral hunger, contingent feedback (b) Neutral hunger, confirmation bias

(c) Cautious hunger, contingent feedback (d) Cautious hunger, confirmation bias

(e) Risky hunger, contingent feedback (f) Risky hunger, confirmation bias

Figure 6: Mean evaluations for all attribute combinations as a function of hunger function and feedback.
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energy before it had developed an adequate representation of the input space (essentially, so as to avoid

eating too many bad beans). In the neutral condition, the numbers of deaths (i.e. extra runs required

to produce 10 successful replications per cell) were 0, 0, and 12 respectively under full, contingent, and

confirmation bias feedback, compared with 0, 0 and 8 in the cautious condition and 4, 9 and 23 in the

risky condition. In short, the elimination of the learning asymmetry in the risky condition comes at the

price of several deaths caused by indiscriminate eating. The combination of confirmation bias and the

separation of the action-selection mechanism from the learning system architecture also seems to leave

the network vulnerable to an early death. By contrast, in Study 1, there were no deaths in any of the

conditions. A plausible explanation for the greater efficiency of the original network is that its energy

unit operates almost as a part of the hidden layer with which it is connected, thus increasing the power

of the hidden layer to discriminate between the different regions.

5 Discusion

Connectionist simulation has been employed effectively to generate theoretical insights in many areas of

cognitive psychology. However, when extending this technique to social psychology, a major issue to be

faced is that of how to represent the value individuals attach to particular objects. Network simulators

are essentially programs for transforming particular abstract numerical patterns (vectors and matrices)

into others. There is nothing intrinsically good or bad, or better or worse, about some numbers rather

than others. We can, of course, choose to define (as here) activations of positive sign as standing for

approval and activations of negative sign as standing for disapproval (e.g. Eiser et al., 1998). To do this,

however, is just to adopt a mnemonic convention. There is nothing about these numbers as such that

implies that anything evaluative or even symbolic is going on (and still less that computers can have

attitudes).

Our approach, therefore, was not simply to show (as under full feedback) that connectionist networks

can be trained to differentiate patterns that we have defined as standing for good and bad objects. Rather,

we started by asking whether there may be anything in the process of learning itself that may distinguish

how favorable and unfavorable attitudes are acquired. Our simulations were guided by the intuition that

our attitudes are largely acquired by interaction with our environment and also that our attitudes guide

such interaction. More specifically, we need to explore and approach objects in order to find out about

them, but at the same time we are more likely to approach objects we expect to be good. Conversely, we

will tend to avoid objects we expect to be bad unless motivated (here, by hunger) to engage in potentially

risky exploration. Since, by avoiding such objects, we learn nothing that contradicts our initial aversion,

our provisionally unfavorable attitude toward them will persist, and may even be strengthened. This

corresponds to the classic finding in animal learning of avoidance behavior resisting extinction over time,

and may account also for many human phobic behaviors and cognitions.
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Our first aim was therefore to reproduce, in a highly restricted context, this asymmetry in the way

we believe favorable and unfavorable attitudes are acquired. In Study 1, we modified the standard

backpropagation of error algorithm by making updating of connection weights contingent on the network

having produced an output above a specified threshold (equivalent to approach, or eating a bean). The

effect of this was that, whereas the network still learnt the location of the bad beans, some good beans

were never identified as such by the network. Modifying the algorithm further by including a confirmation

bias for avoidance made this effect slightly stronger, and reduced the ∆ for the bad beans. The implication

is that our ability to identify good objects may be incomplete, but that we are less likely to hold false

positive than false negative beliefs. We also observed that the network in all conditions generalized

its learning to new input patterns not previously presented during training. This is a consequence of it

having acquired connection weights to solve the problem initially presented to it, and then applying these

connection weights to new inputs. As can be seen from the landscape plots in Figures 3 and 6, untrained

beans tended to evaluated similarly to those in nearby regions that had been presented during training.

In Study 2, we employed a different computational architecture incorporating a distinction between

a system for learning evaluations and a mechanism for selecting actions based on such evaluations. Evi-

dently, the distinction between evaluation and behavior is fundamental to attitude theory. The network

used in Study 2 makes this distinction more transparent. Variations between energy levels and response

biases were also examined without assuming that hunger directly influenced the network’s expectations

regarding the valence of specific beans. Furthermore, the deterministic link between evaluation and action

was modified by a stochastic probability function (noise). This meant that exploratory behavior could

still occur occasionally even where beans where expected to be bad. Despite this important modification,

the learning asymmetry observed in Study 1 was replicated (and, if anything strengthened) under two

of the three hunger function conditions. This suggests that it may take more than an occasional contact

with the truth to correct false negative beliefs. Part of the reason for this is that the network is not

designed to learn the valence of each bean one at a time, but to form a distributed, i.e. configurational,

representation of the input space as a whole. Put differently, the network associates valence with general

categories of objects, and such categorical expectations appear robust enough to withstand occasional

contradiction. However, when a risky hunger function was used (so that the network was still motivated

to sample beans even when it had maximum energy), this extra boost toward exploratory or approach

behavior was sufficient to eliminate the asymmetry between the learning of good and bad beans.

The effects of different hunger functions could be interpreted from the perspective of several theoretical

approaches, including sensation-seeking (Zuckerman, 1994) and regulatory focus theory (Higgins, 1998).

Our present research, however, does not attempt to simulate the processes underlying the development

of individual differences in risk acceptance-aversion or approach-avoidance motivation (e.g. Elliot &

Thrash, 2002). Rather, these effects evoke the classic distinction in signal detection theory (Swets, 1973)

between sensitivity and response bias. Sensitivity refers to the ability of a system to discriminate reliably
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between classes of objects, in this case, good and bad beans. Response bias refers to the tendency to

set a criterion or response threshold at a level that involves acceptance of a higher number of either

false positive or false negative errors, often so as to reflect the pay-off of potential benefits and costs. In

Study 2, response bias was manipulated through predetermined hunger functions. However, our approach

could be extended to consider how feedback from the environment might reinforce different exploration

strategies (and hence lead to the acquisition of preferences for risk or caution), over and above its effects

on evaluative expectancies that have been the focus of our present research. In any case, the findings from

the connectionist modeling suggest that human performance in the learning situation would be improved

by inducing participants to adopt a riskier approach to their exploratory behavior. That is, by more

readily approaching beans about whose outcomes they are uncertain, participants should obtain more

feedback and, hence, the learning asymmetry would be reduced. Effectively, such participants would be

approximating a full feedback learning environment.

The aim of our simulation was to explore the implications of particular assumptions about the

processes underlying the acquisition of attitudes. Our two studies demonstrate that asymmetries between

positive and negative attitudes follow directly from relatively simple assumptions about the context in

which people gain experience of their world. The most fundamental of these is that individuals make

choices based on their expectations of outcomes, i.e. that they will approach things they expect to be

good and give pleasure, and avoid things they expect to be bad and give pain. So long as these precondi-

tions prevail, individuals who adopt an exploration strategy resembling that simulated here will tend to

manage to identify sufficiently safe and rewarding regions of their life-space, albeit at the price of leaving

some other potentially rewarding regions unexplored. Hence, for such individuals, positive experiences

will tend to predominate over negative ones and, if we believe Parducci (1984), this will lead to feelings of

happiness. Indeed, on average, people do seem to describe themselves as above average in happiness (Klar

& Giladi, 1999) and positive traits (Hoorens, 1995), as well as less vulnerable to personal risks (Weinstein,

1989). Less encouragingly, though, people may persist in negative and prejudicial beliefs through a lack

of any learning experience to contradict such beliefs. Even quite weak priming with negative beliefs can

be self-reinforcing if individuals do not need to put the truth of their negative beliefs to the test. All

this lends plausibility to the idea that we acquire attitudes, not so much to provide ourselves with a true

and complete map of what is good and bad in our environment or life-space, but rather so that we can

navigate through selected areas of that life-space with reasonable safety and gain. Attitudes, in short,

are there to guide our behavior.

But of course, not all choices are that free. Even under ordinary circumstances, not all desirable

outcomes can be attained and not all undesirable ones avoided. Very many individuals are subject to

abusive and oppressive conditions where pain and punishment occur both frequently and inescapably.

Research on learned helplessness (Abramson, Seligman & Teasdale, 1978) testifies to the damaging effects

on individuals’ well-being, motivation and self-esteem of uncontrollable negative events. While we are
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proposing a view of attitude learning formulated at a high level of generality, we nonetheless readily

acknowledge that there will be many contexts in which this assumption of free choice is less applicable. If

individuals consistently fail to avoid negative events, positive experiences are unlikely to predominate over

negative ones in their learning history, as Parducci (1984) assumes. If individuals lack the opportunity

to achieve desired goals, they may persist in false positive beliefs that ”the grass is greener” without ever

being able directly to put these to the test. Such constraints could be modeled, but we have not done

so here. The important point is that learning experiences of any kind can shape our evaluations of our

environment and our own relation to it. Our simulations have focused on contexts where such learning

experiences are themselves a function of evaluative beliefs.
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