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Abstract: A multiple center milestone study of clinical vertebra segmentation is preseritesl [paper.
Vertebra segmentation &sfundamental step for spinal image analysis and intervention. The first half of
the study was conducted in the spine segmentation challenge in 2014 International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Cuiropat
Spine Imaging (CSI 2014). The objective was to evaluate the performanceeodl setate-of-the-art
vertebra segmentation algorithms on computed tomogrdphyscans using ten training and five testing
dataset, all healthy cases; the second half of the study was conducted after thge;haliere additional

5 abnormal cases are used for testing to evaluate the performance under abnorniceasesfficients

and absolute surface distances were used as evaluation metrics. Segmentationevtedaahas a single
geometric unit, as well as separate segmentation of vertebra substrusasesvaluated. Five teams
participated in the comparative study. The top performers in the study achieved Diagertaffi0.93 in

the upper thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spinealtny cases, and 0.88 in
the upper thoracic, 0.89 in the lower thoracic and 0.92 in the lumbar spine for osteomuddiiactured
cases. The strengths and weakess$ each method as well as future suggestion for improvement are
discussed. This is the first multi-center comparative study for vertetpnzeséation methods, which will
provide an uge-date performance milestone for the fast growing spinal image analysis and intervention.

* Corresponding author. Dr. Shuo Li, Email address: slishuo@gmail.com
The participating authors are ordered by the time their methods were submitted to the comparative study.



1. Background

The vertebral column, also known as spine, is a bony skeletal structure forming the ceghtabeasiing
axis of the human upper body. Multiple medical imaging modalities, such as radiogtapidRI and
PET, are used to evaluate spine anatomy and diagnose spinal pathology. Usinggemeeation of
scanning techniques, CT is the most spatially accurate modality to assessethealithensional
morphology of the vertebra. Spine segmentatioafisndamental step for most subsequent spine image
analysis and modeling tasks, such as identification of spine abnormalitiegeggetpral fractures[[l]),
image-based biomechanical modeling (e.g. load anal@hs dR]image-guided spine intervention
(vertebral fusion,]). The accuracy of the segmentation is demanded in soyssarfar instance,
image-guided spine intervention often requires sub-millimeter precision. Maseaglyenting a vertebra
is time consuming and subjective. Fully automated or semi-automated methods are requitest fo
clinical applications.

Vertebra segmentation is challenging due to the complex shape and variable arelofectuiebrae
across the population, similar structures in close vicinity, pathologythenspatial inter-relation between
vertebrae and ribs. In recent years, a number of spine segmentation algoritboragated tomography
(CT) images hee been proposed. In early work, segmentation of vertebrae was achieved by unaiipervise
image processing approaches such as adaptive thresholding, region growing and bounstangrdadi
(Kang et al.ml]), or region-based segmentation such as watershed (LDat al. [5]) and g(&shanudt al.
@). Level set methods had also been adopted since they can handle the complex tbpwtogiicg and
breaking in the vertebrae. Lim et @ [7] included the Willmore flow leval set framework to guide a
surface model evolution. Huang et @ [8] combined edge- and region- based level sehdufurti
vertebra segmentation on CT images. Li e@l. [9] proposed an automaticallyzattievel set method
based on hybrid morphological filter and Gaussian mixture model to dealhwitiogological variation.

In region-based techniques, Blumfield et @ [10] devised a statistichleamidtic methods to detect key
features for vertebral body segmentation. Yao e [11] presented a technsguae dpawatershed
algorithm, directed graph search, curved reformation and vertebra template to auligrpatitition and
segment the spinal column. Naegel et lapplied mathematical morphology and watershed for the
labeling and segmentation of vertebrae.

More recent methods were mostly based on geometric models, statistical arlatoodets, or
probabilistic atlas. The models incorporated prior knowledge about the vertebrayarabothermore,
the statistical models estimate the mean shape and variation of a vertebaafaonng set of segmented
vertebrae. The models were fit to the target image data either throughderaes! from the image or
via a deformable registration framewoikhese models are often sensitive to the initial pose estimation
which are done either manually or automatically. The manual initializetepnbe performed by placing
seeds within the vertebral b013] or drawing bounding box to restrict the sepreimige|[1#]
Automatic initialization had also proposed via detecting the spine curvature andeirtedral disk [1[L]
Klinder et al. @ proposed a method, by integrating detection, identification, and segmentation o
vertebrae in a single framework. The methem based on spinal curve extraction and statistical shape
models (SSM). The method proposed in Ma e. [16] was based upon bone-sedgéudetectors and
coarseto-fine registration of a deformable surface model for the thoracic spine.dBajie and pose
statistics were incorporated in Rasoulian et [17] in a multi-vertelmaeel for lumbar spine
segmentation. Kim and Kir@.S] proposed a deformable fence model to separate lunéaagesnd



surrounding tissues. Individual vertebrae was modeled in an articulated spine model lwith
dimensional manifold representation and inferred the model using high-ordeovMakdom fields
(Kadoury et al.]. The vertebrae were clustered into sub-groups using manifold learning and a linea
point distribution model was constructed for each sub-group. Ibragimovwlt landmark-based
shape representations of vertebrae using transportation theory armdl tigmodel to a specific vertebra
in three-dimensional (3D) CT images using game theory. Part-based models and active ;telpe m
were used in Roberts et EZl] to divide the vertebra into @eparts and conducted the segmentation
collaboratively. The model was applied on 2D radiograph images and can be extende8ter 8Bt al.
proposed a 3D superquadric model for the segmentation of just the vertely.aMudti-atlas with
joint label-fusion had showed promising results in the segmentation of severaim@ahtorgans
including vertebrae. Wang et eiEIIZS] applied the atlas approach in the seipnenfaosteoporotic
vertebrae with compression fractures. Ghebreab and Smers [24] constructednabiiefmtegral
spine model encoded as an necklace model by learning the appearance of vertebrae boandarses fr
of training images.

More recently, machine learning techniques had been applied in the segmentation of vertebrae. Huang
et aI] applied a statistical learning approach based on Adaboost fsraetdetection and an iterative
normalized cut algorithm for boundary refinement. Suzani I. [26] proposed a deamleaheme to
automatically localize, identify and segment vertebral body in MR images. Mazaet al.]
combined a probabilistic boosting tree classifier for initializatwf statistical shape models for
segmentation.

Most of the published methods reported fairly accurate results (1.12 + 1.04 mnogzinface error
reportedn Klinder et aI.@). Table 1 summarizes the performance of some recently published methods
including number of cases, performance metrics by DICE coefficient and averagee sdigtance
targeted subjects, and initialization methods. All informai®wlirectly extracted from the published
peer-reviewed papers. However, these algorithms were mostly evaluated oendiffata sets with
various degrees of difficulties and are not publicly available. This prechlidest comparison of the
results and access to the data, and therefore, their performances were not indepenifiedtly ver

In order to objectively compare different segmentation algorithms, it is rRegegs establish
standardized reference data and validation criteria. Quite a few challenge frameworkbebave
developed in the past few years for several medical image analysis problems c#tetkdiebsitet
[http://www.grand-challenge.ofigas the most complete list of organized challenges since 2007, including
those focusing on liver, lung, brain and heart, amongst otfbrs far, there is no grand challenge
focusing specifically on spine image analysis.

This paper presents a milestone comparative study of the vertebra segmentatfost tage was a
challenge held at the 2014 International Conference on Medical Image Compatn@omputer
Assisted Intervention (MICCAI) Workshop on Computational Spine Imaging (CSI 2&ddhe second
stage was evaluation on more challenging clinical casbe objective to organize ith vertebra
segmentation comparative study was three-fold. l¥¥jrate wanted to provide a platform to objectively
evaluate the strengths and weakeeas$ various spine segmentation algorithms; segmnvde intenédto
construct an annotated reference data set for spine labeling and segmentatioirdigndveéhwant to
assess current state-of-the-art segmentation accuracy for vertebra andritetsmbes. The details of the
organization of the comparative study can be found at the wehisfig/¢si-workshop.weebly.cofm/)
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Table 1. Summary of recently published vertebra segmentation methods on CT

Method Number of| DICE | Average Surface Subject Initialization
Cases Distance (mm)
Kang (2003) 3 N/A 18.36 Lumbar Manual
phantom
Klinder (2009) 64 N/A 1.12 Whole spine | Auto
Kim (2009) 50 87% N/A Lumbar Auto
Huang (2009) 22 96% N/A Vertebral body| Auto
Aslan (2010) 30 94.4% | N/A Lumbar Auto
Vertebral body
Stern (2011) 150 N/A 1.17 Lumbar Manual
Vertebral body
Kadoury (2011) | 711 N/A 1.8 Whole spine | Auto
Ibraginov (2011) | 50 93.6% | 0.75 Lumbar Auto
Huang (2013) 56 94% N/A Lumbar Manual
Ma (2013) 40 N/A 0.95 Thoracic Auto
Mirzaalian (2013)| 154 N/A 1.37 Whole spine | Manual
Rasoulian (2013)| 32 N/A 1.38 Lumbar Manual
Lim (2013) 20 89.3% | N/A Lumbar Manual
Suzani (2015) 9 N/A 2.8 Lumbar Auto
Vertebral body
Li (2015) 25 91.7% | 7.73 Lumbar Auto
Wang (2015) 170 92.7% | 0.32 Whole spine | Auto

2. Spineimaging data sets

The data sets used in the comparative study were acquired at the Unofe@Gsitifornia, Irvine, Medical
Center (Orange, CA, USA), between March 2013 and May 2013. The study received InstiReioaal
Board approval, and was compliant with the Health Insurance Portability andability Act. As the



study was performed as a retrospective analysis of previously obtained irsiagiieg, informed consent
was waived. The data sets were manually selected by a radiologist glithyeiars of experience
according to the following selection criteria: thoracic and lumbar spine naddeanned. All patients were
scanned using a spine CT protocol, where a small field of view centered at the spireomnasucted.
The scanning parameters included 0.7-2.0 mm slice thickness, 120 kVp, soft tissue recm&ecros,
and intravenous contrast. The volumes completely covered the thoracic and lumbattgadpifie and
were scanned as a single continuous CT data set at high spatial resolution.

Following these data characteristioge collected twenty data sets for the comparative study, ten for
training and ten for testing. The training cases were provided beforertiogppats entered the workshop
challenge (January, 2014). The testing sets were provided in two stages aftetidipapiar entered the
challenge. In the first stage, five cases from healthy young individuals (28a34 mean 27 gas) were
provided. In the second stage, the participants were invited back to test on fiviearasas osteoporotic
cohort (59-82 gas, mean 73 gas) that has been previously identified to have at least one vertebral
compression fracture. In the osteoporotic set, 16 vertebrae were idewiified compression fracture
(one with grade 1 Genant score, ten with grade 2, and five with grade 3). Exanthle$wad testing sets
are shown in Figure 1. All data were anonymized and made available in Meta fvtHRtréw). The
data sets and related codes are open to public and released on SpineWeb
(http:/spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Dgtaaeatsllaborative platform
for research on spine imaging and image analysis. The details of the training and tess degdistgd in
Table 2. The test sets from healthy young individual were intended to assess the baselmamsrfand
the more difficult diseased cases for evaluating the accuracy of sthke-arfttvertebra segmentation
algorithms.

Table 2. Description of training and test data sets

Case Gen | Age | Manufactu | Model Pixel Slice #dlices
der rer spacing(mm) | thicknes
s (mm)
Training cases
casel | F 23 Philips iCT 256 0.3125 1.0 559
case2 F 22 Philips iCT 256 0.3125 1.0 507
case3 M 27 Philips iCT 256 0.3125 1.0 560
cased | M 28 Philips iCT 256 0.3535 1.0 625
case5 | F 19 Philips iCT 256 0.3125 1.0 601
case6 | M 26 Philips iCT 256 0.3437 1.0 562
case7 | F 21 Philips iCT 256 0.3125 1.0 509
case8 | F 16 Philips iCT 256 0.3125 1.0 548
case9 | F 23 Philips iCT 256 0.3613 1.0 572
casel0| F 25 Philips iCT 256 0.3125 1.0 552
Testing cases
casel F 25 Philips iCT 256 0.3125 1.0 545
case2 | M 32 Philips iCT 256 0.3457 1.0 618
case3 | F 34 Siemens Sensation | 0.3125 0.7 766
64
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cased M 25 Philips iCT 256 0.3125 1.0 551
case5 | M 20 Siemens Sensation | 0.3125 0.7 938
64
case6 | M 82 Philips iCT 256 0.3496 1.0 536
case7 | F 59 Philips iCT 256 0.3184 2.0 278
case8 | F 68 Philips iCT 256 0.3516 2.0 265
case9 | M 79 Philips iCT 256 0.3516 2.0 268
caselO | F 78 Philips iCT 256 0.3789 2.0 237

Figure 1. Example of test caseswith refer ence segmentation

Each vertebra is assigned a unique label (color coded). Sagittal and 3D views are shown.
Left: a healthy spine (test case 1)

Right: an osteoporotic and fractured spine (test case 10). Arrows point to vertebrae \pithssion
fractures.

3. Reference data generation

The reference segmentation data was generated in two stagdsg, friestnitial segmentations were
obtained using a fully automatic algorithm repor'lle, which was based on adaptive thresholding,
watershed, directed graph search, and connected component analysis. The obtained segmentations were
then manually corrected and refined by a medical fellow and a research dslluywcustomized softwar
that was developed for the manual correctlarthe reference data, each vertelves assigned a unique
label and the background (pixels other than vert@bweas assigned label 0. We created reference
segmentation for every vertebra, for both thoracic (T1-T12) and lumbakX) $pines. A reference
segmentation file was saved in Meta data for@ [28] for each data sdhevitame resolution as the
original CT image file. The reference segmentations for the test setbag=e on consensus reading of



two operators. Figure 1 shows examples of the reference labels in thal gdaite and the 3D surface
model generated by the reference segmentation forafethlthy case and an osteoporotic case.

4. Participating algorithms

Since the release of the training data thenes teeen over 60 requests or downloads of the training
data from SpineWeb. Five teams entered the comparative study held at the Comp@&ptienhhaging
Workshop (CSI12014). Among the participants, four teams segmented both thoracic andvintetbaae
and one team segmented only lumbar vertebrae.

The five participating algorithms are dubbed as Methofd ] [29], Methpd ]2 [30], &t{BT]
Method 4], and Method @3] in this paecording to the order of the submission. The titles of the
five methods are listed in the references. The followirabisef description of each participating method.

Method 1] is an atlas-based technique and consists of four steps: pre-procesairgigninent,
non-rigid registration and label fusion. N spine atlases (image data with correspabaingdgtta) are used
to segment thoracic and lumbar vertebrae as imaged in a target data set. ke-pghecessing step,
consisting of spinal canal tracking, disc detection, and vertebra position aridnrastimation, an
approximate position and rotation (pose) of each vertebra in all dataesetstiarated. The results from
the pre-processing are used to obtain an initial alignment betweenfdhehN atlases and the target data
set. The initial alignment can either be for the whole spine or computed per vertebriag. followed by
a registration step, where the vertebrae of each atlas are registered tgahdata set using non-rigid
registration (minimizing the local phase-difference). This step is perfoomedgroup of three vertebrae.
The computed transforms are used to transform corresponding label sets. The transfoeftsedré
combined to a single label volume using label fusion (majority votingdrta the segmentation of the
vertebrae as imaged in the target data set.

Method 2] is based on a statistical multi-vertebrae shape+pose model svhaglistered to the
bony edges of the spinal column as extracted from the CT volume. For construchienmafdel the idea
is to analyze the pose and shape statistics separately as they are not lyecessdaied and are not
formulated in the same parameter space. Training data is collected for everyavgéntehis case T1 to
L5) and is used to build individual sub-models each containing three neighboringraerend the
ensemble of all models covering the whole spinal column. Segmentation using one ofatistszalst
multi-object shape+pose model can then be formulated as a registration prdideentiae model is
registered to the bone edge point cloud extracted from the CT volume by optirthizingiodel
parameters using the expectation maximization (EM) algorithm. Successive tiegisifahe individual
sub-models starting from a user-specified initial vertebra finally results in the segorentate spine.

Method 3 ] uses a variational segmentation framework which is derived from a convex
formulation of 3D geodesic active contours for individual vertalagnentation. In this formulation the
weighted total variation (TV) norm is combined with prior bone intensity and shégenation. For
bone intensity prediction, normalized foreground (bone) and background histograms are lkesmned f
annotated training data. Each voxel of a test image is classified accouBimgiythe log-likelihood ratio.
Prior shape knowledge in terms of a mean shape is obtained by registers® tifebinary training
vertebrae representations and final averaging. To account for variation in shapéalspme, mean
shape representations for upper thoracic, lower thoracic and lumbar spines astechBrparately. tA
testing time, the learned mean shape is registered to a binary reprasesftdhe bone prior to get a
rough location of the vertebra@he final energy formulation expressed in a variational framework



obtains a segmentation by combining bone prior, registered shape prior and the weightea Wich
accounts for both edge magnitude and edge direction of the respective image.

Method 4] consists of two parts: vertebra detection and vertebra segmentatiaterpolation-
based optimization approach is applied to detect the whole spine anduatiivértebrae in an unknown
CT spine image by using a spline-based interpolation function on an equidistantoganszation grid
and a dimension-wise computational complexity reduction algorithm to obtain tmeabptanslation,
scaling and rotation parameters of the rigidly align vertebra shape modelsbtahreed detection results
represent a robust and accurate initialization for vertebra segmentation,poulthe existing shape-
constrained deformable model approach. The proposed iterative segmentation consists of finding
distinctive vertebra boundaries by applying Canny edge operator and random forestoregnestil of
image intensities and intensity gradients, and of deforming the vertebra shapesmala it fits the
obtained vertebra boundaries while preserving shape topology.

In Method 5(B3)], a statistical shape models (SSM) of each lumbar vertebra was preioestgd
from an independent dataset of 30 lumbar spines with no evident osteological pathologies. From manually
placed intervertebral discs centers, the similarity transformation paramegashofertebra are computed
to initialize the vertebra shapes. The segmentation is performed by iterativaiyithef a mesh inside the
image intensity and then projecting it into the SSM space until convergitemvards, a relaxation step
based on B-spline is applied to overcome the SSM rigidity. The deformation of the nithah,thve
image intensity, is performed by displacing each landmark along the normal diredtiensafface mesh
at the landmark position seeking a minimum of a cost function based on a set of trained features.

The technical comparisons of the five methods are detailed in Table 3. The comparisons ar
conducted in six aspects: vertebral localization, segmentation strategy, bundled model,
registration/optimization, image feature, and running time. Method 1 artldoi& comprise steps to
automatically initialize the location of vertebrae. Method 2, 3, and 5 require niaitigdization of the
model, either at the center of vertebral bodies or at the center of interaedaws The automatic
initializations of Method 1 and 4 were self-claimed by the participants aneeriied. All methods are
based on certain types of shape and intensity models. Method 1 uses multipledirgasigsderived
from the reference data. Method 2 usestatistical shape+pose model built from 87 training volumes
incorporating variations of both shape and pose across the population. Both Methobl&lzodi 4 use
mean shape models from the training data. Method 4 builds a model for each ventebravhile
Method 3 builds one model for each section of the spine (one for T1-T6, ohig-Tdr2, and one for L1-

L5). Method 5 computes a statistical shape model from 30 training models for eachavienieb In

Method 1 and Method 2, adjacent vertebrae are bundled together (5 vertebrae in Method 1 and 3 vertebrae
in Method 2) in the segmentation. Different registration/optimizattaméworks were adopted in the
methods. Method 1 first applies a non-rigid registration for each atlas emgdinforms a label fusion.
Method 2 conducts an EM algorithm to optimize the model. Method 3 adopts a total varatiework.

Surface mesh deformation and reconfiguration is performed in Method 4. Method 5 entptiyEal

shape deformation plus B-spline relaxation for surface optimization. Diffegetire functions are used

in the methods for the optimization. They are mostly based on edge point and imeod#s. The

running time was reported by the participating teams (Table 3). It can only be viewed as a reference, since
the algorithms were run on different hardware platforms and some have beerzaaptipi graphics
processing units (GPU).

Table 3. Detailed comparison of five participating algorithms.



Metho | Vertebral Segmentation Bundled Registration/Opti | Image Feature | Runtime

d Localizatio | Strategy model mization /Energy Formula
n

1[29] | Automatic Multi-atlas Five Nonrigid+label Local phase 12 minutes

vertebrae | fusion difference per  case
(GPU)

2[30] | Manually Statistical multi-| Three EM algorithm Edge point datd | 10 minutes
specify the| object shape+pos| vertebrae distance of edgq per case
vertebral model (87 training points
body center | volumes)

3 Manually Mean shapg N/A Total variation| Bone prior map| 45 minutes
specify the| model (three framework and image edg{ per case
vertebral model groups) influence/  total| (GPU)
bodycenter variation of edge

magnitude  anc
direction

4 Automatic Mean shapg N/A Mesh Canny edgg 30 minutes
(interpolatio | model (each deformation +random  foresi per case
n theory) vertebra) intensity

regressioh
boundary
difference

5 Manually Statistical shape N/A Statistical shapq Image intensity, 10 secondg
specify the| model (each deformation + B-| directional per
center of the| vertebra) (30 spline relaxation derivative vertebra
intervertebra| training models) surface  feature
| disc below difference
the vertebra

5. Evaluation

The performance on the training data set was evaluated by the participantsvbeselreported in
their submission3]. The performance on the test data set was evaluated by the @rganizer

After the test data set was released, the participants were given 10 dajpsnio the segmentation
results. Each segmented vertebra was assigned a unique label. The results wasslsalivtéta format
(MHD/raw) with the same resolutiasthe original CT data.

Two metrics were employed for evaluation: Dice coefficient ( Bnd mean absolute surface
distance (ASD). The definitions are as follows:

_ 2|VrnVs|
~|Vr| + |Vs|

|Ss|

1
ASD = 1d;(S5, 5,
5.1 &

Here V is the reference volumes\¥s the segmentation volume; iS the reference surfaces iS the
segmentation surface, ang id the minimum distance from a point oat& S. The evaluation was
conducted on each individual vertebra. The maximum surface distance (MSD) is alsteslal he
surfaces were generated using a Marching Cube algorithm from the binary segmentation mask.



By visual inspection, we noticed that the segmentation performed differentifea¢ili parts of the
vertebra. Therefore, we evaluated the segmentation performance for bottoteerertebra and its four
substructures: vertebral body, left transverse process, right transverses,par@sspinous process
respectively. We developed an automatic method to partition the vertebra into anasutstaictugs
. It is based on the anatomical knowledge that pedicles and laminae are the detseasttha
vertebral arch which forms tharcle of bonesaround the spinal canal. We therefore search for the four
cutting planes at left pedicle, right pedicle, left lamina and right lathatago through the cross-sections
with highest CT intensity aroundelspinal canal. Symmetric constraints are also enforced to balance the
left and right cutting planes. The vertebra is then partitioned into four gctosts (vertebral body, left
transverse process, right transverse process and spinous prdepsading on which side of the cutting
planes a pixel lies. The partitions on our data sets were verified by £xperhsure the correctness.
Figure 2 shows the partitioning of a vertebra into the four substructures.

Vertebral

Body
Right
pedicle - Cutting
Cutting Plane

. -q/ Plane

Right Left Right
Lamina Transverse Transverst
Process Spinous Process

Process
Figure 2. Partitioning of a vertebrainto four substructures

Left: Density map on vertebra surface, hotter color: higher density
Right: Partitioning a vertebra into four substructures. The substructures are color-codeffesdtt d
colors. The cutting planes lie at the border between two substructures.

6. Performance comparison

The segmentation results were compared both visually and quantitatively. Thits nesre
superimposed on the CT image for visual inspectisband ASD were used for quantitative analysis. In
this paper, we mainly focus on the results on the test set.

Figure 3 shows the visual comparison of submitted segmentation results for testroasa healthy
spine. All methods achieve visually acceptable segmentation for thoracic and lumearaeesin a
healthy spine. There is no obvious leakage or under-segmentation from the wagitt&ligure 4 shows
the visual results for test case 10 which is an osteoporotic case withlencompression fractures. All
methods show certain degree of deterioration in performance compared to the healthy casel htethod
4 demonstrated the best segmentation on the osteoporotic Maged 1’s segmentation on the



compression fractured vertebrae slightly leaked into the intervertebrakpiee. Method 4 slightly
under-segmented the spinous processes. Method 2 had trouble locating the endplates ini¢heptherac
Method 3 failed to segment several vertebrae because of the training prior. Methigd&gmented the
lumbar spine, but showed fairly good results, not statistically different fnetihod 4 for osteoporotic
spines.

For a closer visual inspection, Figure 5 shows the visual comparison of the segmentaiiemd-
axial slice for three representative vertebrae on a healthy case: 88dTSB. In T3 and T9, all methods
successfully separate the vertebra and the ribs. The border of segmented irefiébitzod 1 is not
smooth, which indicates that further refinement is necessary. Method dpaentiindicated that the data
was resampled at Immlmmx 1mm due to memory limitation. Running the method on a finer grid may
improve the pixelated result. The segmentation in Method 2 is off-mark althoudbctt®n of the
vertebra and the overall shape are corrAobther stage of local segmentation should be conducted.
Method 3 and 4 both achieve moderately accurate segmentation results, but edsthadt the
segmentation of the posterior substructures still have room for improverhentip$ of the processesar
not completely segmented and some contrast-enhanced vessels are included in the segrivesttaid
5 only segments the lumbar spine and the result is similar to that of Metiwhérg the boundary is
slightly off.

Method 1 Method 2 Method 3 Method 4 Method 5
Figure 3. Visual comparison of segmentation resultsfor test case 2 (a healthy case
There is a general trend of better performance from upper spine to lower sphe \astébrae

gradually increase in size and density. To illustrate the pattern, we group #iwaeinto three sections:
upper thoracic from T1 to T6, lower thoracic from T7 to T12 and lumbar $mmmelL1 to L5 (Figure 6)



In the healthy cases, DC goes from 0.867 in the upper thoracic, to 0.909 in the lower thoracic and to 0.933
in the lumbar spineln the osteoporotic cases, DC goes from 0.652 in the upper thoracic, to 0.756 in the
lower thoracic and to 0.854 in the lumbar spine. As expected, the perforomanbe healthy cases is
much higher than that on the disease cases.
Figure 7 summarizes the performance on the sub-structures. This evaluationlyvaenducted on
the healthy cases. It is noted that the DC for the vertebral body sedareigtamuch higher than that for
the posterior substructures (left transverse process, right transverse prtegsnous process). The
three processes have comparable performance. This further verifiegssulé comparison shown in

Figure 5.

Method 1 Method 2 Method 3 Method 4 Method 5

Figure 4. Visual comparison of segmentation resultsfor test case 10 (an osteoporotic and
fractured case).



Reference Method 1 Method 2 Method 3 Method 4 Method 5

Figure5. Visual comparison of segmentation resultsfor specific vertebraein test case 4

Row 1: T3 vertebra; Row 2: T9 vertebra; Row 3: L3 vertebra

Mid-axial slice for each vertebra is shown. The segmentation is superimposed on the CT
data.
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Figure 6. Mean performance of all methodsfor healthy and osteopor otic cases.
Both Dice Coefficient and mean surface distance are evaluated. The spine column is
divided into three segments (T1-T6, T7-T12, and L1-L5) for assessment.
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Figure 7. Mean performance of all methodsfor vertebra substructures.
The results show that vertebral body is more accurately segmented than other posterior sub
structures.

Figure 8 shows the comparison for the three vertebra groups on both the healthy and osteoporotic
cases for all five methodBigure 9 summarizes the comparison for the whole thoracic and lumbar spine
These comparisons show the differences in performance among the methods, in testhD@f and
ASD. The MSD for healthy cases were 8, 12, 22, 12 and 10mm for Method 1 to 5 vebpeatid those
for osteoporotic cases were 9, 15, 44, 12 and 10mm for Method 1 to 5 respectivedyDSiand ASD
show similar patterns, we will only show DC in most of the following corspas. The ranking of
performance on the healthy cases is Method 4, Method 3, Method 1, Method 5, and Method 2, and that o
the osteoporotic cases is Method 1, Method 4, Method 5, Method 2 and Method 3. It is noted that Method
5 only segmented lumbar vertebrae. Method 3 performed well on the healthy caseidonfanany
vertebrae in the osteoporotic cases (34 out of 85 vertebrae were mensed). For those vertebrae that
were successfully segmented in Method 3, the average DC was 0.833. The reason faragheafmithat
the bone prior map was trained based on healthy vertebrae and did not work on timeststéoporotic
vertebrae. Method 5 was also trained on healthy cases, but the B-spline relaeatisaeshs to give
enough flexibility to allow the model to adapt to fractured lumbar vertebrae.

Statistical analysis was conducted to evaluate the significance of differermeréormance. Table 4
lists the p-value of the paired t-test D& of every vertebra for the healthy cases. Only two t-tests did not
show statistically significant difference: the comparison between Method 3 anddviktlamd the one
between Method 1 and Method 5. The analysis shows that Method 3 and Method 4 dyatistical
performed better than other methods on the healthy cases. Table 5 lists the gairedsutts for the
osteoporotic cases. Again only two t-tests did not show statisticghiifisant difference: the comparison
between Method 1 and Method 4, and the one between Method 4 and Method 5 (oatgban |
vertebrae). This shows that Method 1 and Method 4 had statistically better perforimamoathter
methods on the osteoporotic cases. Table 6 lists the z-test results comparingne@ealthy cases and
the osteoporotic cases for each method. It shows Method 1 had the smallest diffeeeneen the two
test sets, while all methods showed statistically worst performance on the osteayasesi comparing to
the healthy cases.

In the osteoporotic cases, 16 out of 85 vertebrae were previously identitiedcevhpression
fractures. The comparison of performance on fractured and non-fractured vertebrae is shown in Figure 10.
All methods except Method 2 had better performance on non-fractured vertebrae than fractured.vertebrae
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Figure 8. Performance comparison on each vertebra group on healthy (left) and

osteopor atic (right) cases. The charts compare the performance of different methods on each
segment of the spine.

Table 4. Paired t-test among methods (p-value€) on the healthy cases

Metho Method2 Method3 Method4 Method5
di
Method1 <103 <10°% <10°% 0.519
Method?2 <103 <1038 <103
Method3 0.846 0.001
Method4 0.001
Table 5. Paired t-test among methods (p-value) on the osteopor otic cases
Method1 Method2 | Method3 Method4 Method5

Method1 <10°% <10°% 0.12 0.004
Method?2 0.01 <10°% 0.01
Method3 <103 0.12
Method4 0.25

Table 6. z-test between the healthy cases and osteopor otic casesfor each method

Method1 Method2 Method3 Method4 Method5
Difference 0.024 0.138 0.408 0.057 0.036
z value 2.2 12.8 43.6 5.2 1.8
p-value 0.027 0 0 <10° 0.07
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Figure 9. Performance comparison on the entire spinal column
Only lumbar vertebrae were evaluated in Method 5. The charts compare the difference of each
method on healthy cases and osteoporotic cases.
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Figure 10. Performance comparison on fractured and non-fractured vertebrae.
All methods except Method 2 performed better on non-fractured vertebrae.

Figure 11 compares the system performance on vertebral substructures for eadiveofbkthods. This
evaluation was conducted on the healthy cases. A similar trend in segmentatiomanecé between the
different methodologies is seen in the substructure segmentation portion of theatmasandyaswas
seen in the whole vertebra segmentatiéi methods perform better on the vertebral body than the other
substructures.

We evaluated the inter-operator and intra-operator variability of the manuakrsagon to
assess the consistency and variability of the reference segmentation. We chosedata sett (test case
1 for healthy case and test case 6 for osteoporotic case). We then had apecatod to provide a new
manual segmentation (for inter-operator variability) and also asked thed#sdtor to repeat the manual
segmentation six months after the first manual segmentation (for intra-opexasdnility). Table 7 lists
the mean DC for both data sets between the two corresponding manual segmefitadomsnual
segmentations showed high consistency even for osteoporotic and fractured vertebrae.
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Figure 11. Performance comparison on substructures.
The charts show the similar pattern of performance on substructures.
Table7. Inter- and intra- operator manual segmentation variability
T1-T6 T7-T12 L1-L5 All
Inter- operator 0.974+0.005 0.971+0.014 0.983+0.005 0.97610.01
Intra- operator 0.981+0.004 0.989+0.004 0.993+0.002 0.987+0.006

7. Discussion

The performance of the methods of the participating teams ranged from 0.868dn0¥C and
0.373 to 1.086 mm in ASD for the healthy cases. The best results representtabsf-tbierart
performance and out-perform most recently published methods (Table 1). Howe\gr iiidatates that
there are still opportunities for improvement. The substructure assessment shadhe veatebral body
segmentation is generally excellent (DC of 0.936 on average, 364 best method). However, for
other substructures (left and right transverse processes, spinous proed3€)igt®.852 on average and
0.917 in the best performer. A closer Idok-igure 5 also shows that most segmentation errors occur at



the tip of the processes. The tips of the processes are often useddmsirks for image-guided
intervention. Further refinement in the posterior substructures is possible amdbldeskor the
osteoporotic cases, the performance varied greatly among methods (DC from 0.472 tave88x) 1

and Method 4 managed to segment every vertebra, while Method 3 failed for about 40% of the vertebrae.

The results also show that the performance of the segmentation algohes at different vertebra
levels. For instance in the healthy cases, upper thoracic kewets DC of 0.867 on average and 0.930 in
best, lower thoracic 0.909 on average and 0.961 in best, andrlQrAB& on average and 0.965 in best
The performance difference is predominantly based on two factors: 1) the size ardkbsihe at the
upper thoracic level is smaller and lower, respectively, than that at tharledel; 2) interfaces with
surrounding structures are more complexhatupper thoracic level, particularly at the costovertebral
junctions connecting the ribs and the vertebrae. Further investigation is necessamprove the
segmentation of the upper spine column.

All participating methods used models computed from training data to setiragrst dataMethod
2 and Method 5 used their own training set to build the model. Indeed, the avgilabditly lumbar
training set was the reason for Method 5 to segment only lumbar vertebragiffétence in imaging
protocols and type of population between their own training set and the challatageet may have
decreased the accuracy of the results. Method 1 used multiple atlases from labels, Method 2 aril Method
used statistical shape models and Method 3 and Methegkd mean shape models. The mean shape
model with large flexibility for deformation may work better for healdmgl normal vertebrae. However,
statistical models with stricter domain constraints would be necessapathological cases where the
target shape is far from the mean shape and therefore severe under- or over- Segmamyabccur
without shape and domain constraints. Method 1 and Method 4 performed well on both theamehlthy
diseased cases, indicating both statistical model based approaches and singleasemtieleformable
registration approaches are valid for reliable vertebra segmentation.

Initial location of the model is essential for the accuracy of segmentatsoits. Three methods in
this comparative study required manually placement of the model locations. Autoerttiora labeling
and localization will be important for the methods to be applietcimical setting or to a large number
of data sets. Manually placed seeds also have the issue of operator subjdtivibds based on spinal
canal tracking[ [}, 36] or based on random forest mofdel§ [37, 38] have shown robust asthgromi
results to automatically locate the vertebrae.

Vertebra models are bundled in Method 1 and Method 2, so that the interaction badjeeemt
vertebrae can be employed to assist the segmentation. Since most vertebrae are well,stéparat
individual vertebra model is able to reliably segment the individual vertétapendently, within the
limitations of normal architectural variation. In the case of patholagatomic deformity, especially for
cases with compression fractures, it can be helpful to rely on relativelyhyhevertebrae in the
neighborhood to assist the segmentation of the damaged vertebra. Thus, the bundled moattdstexpe
be beneficial in situations of pathologic architectural deformity. The bundled wex@lso help prevent
overlapping and collision between adjacent vertebrae. This is one of the reastMethioat 1 performed
the best on the osteoporotic and fractured vertebrae.

Vertebrae at different spinal levels have different shapes, sizé image intensity. For instance, two
vertebrae with a large spatial separation within the spinal column, sachugper thoracic vertebra and
alower lumbar vertebra, show significant morphologic differences. Therefoveultl bea difficult task
to accurately characterize all vertebrae with a single model. Based on this erimatahn, all
participating teams employed methods that built different models for diffeegtebra levels, or at least



for different vertebral groups (Method 3). Vertebra specific models imposenm@docat&nowledge in the
modeling and would be necessary for a robust segmentation.

Image resolution also affects the segmentation performaieetest data for healthy spine has two
reconstructions of slice thickness: 0.7mm and 1mm. The best performer (Methdueled 96.3% for
0.7mm data sets and 95.7% for 1mm data sets respectively. The diseased datdreet hasl 2mm
reconstructed slice thicknesses. The best performer (Method 1) achieved 908#rf@nd 89.3% for
2mm data sets respectively. Intuitively, the segmentation algorithms perfaen drethigher resolution
data set. New multi-channel CT scanners generate high resolution data. ImmruetsehsET is
becoming a norm.

Model fitting or image registration is widely accepted as the reliable avaggment complex objects
such as a vertebra. Different frameworks for the registration or optimization hadcatbepted by the
participating methods. They all converged to a solution, however, at diffatest and computational
costs.

The running time ranged from a few minutes to 30 minutes (including thaliation), and three
methods required manual initialization of the model. Vertebra segmentatioosity meeded for pre-
operative planning, biomechanical simulation or offline diagnosis. Therefore, 30 rsegr@entation
time and manual interaction are accepted for clinical uses.

Since the vertebral bone hagelatively high contrast relative to its surrounding tissues, edge and
gradient based feature functions were used in all methods. These feature functiote cmriditive to
noise and compromised by surrounding bony tissues (e.g. ribs). Recently, however, machimg lea
techniques have been explored to classify pixels based on structural information andiaiofgatxires
which may mitigate the effect of this image noise. Furthermore, the gradémtaithin the images due
to variation of bone density and partial volume effect. The feature dmnotust be adaptive to local
image properties.

Method 1 and Method 4 have comparably the best performance in this study. Both methodsinclude
component for automatic vertebra detection and localization, which makes them a moreecsyspiet.
The initialization appeared to be rather robust since both methods succesesjutignted all vertebrae.
Method 4 performed best on the healthy cases and Method 1 performed best dagperatc cases,
although the difference was not statistically significant for the osteopoestirs cAlthough different data
sets were used in the evaluation, Method 1 and Method 2 outperformed the methods Tiatgd 1 in
terms of DICE coefficient and average surface distance.

There were a few limitations in this study report. Firstly, the data set was relathadly ldowever, it
was very time consuming to generate the reference segmentation, especiabgdsediases. Although
we only have 20 data sets, each data set has 17 vertebrae. Therefore, each algerigsted on 340
vertebrae, which was a relatively large number. Secondly, the number of participatagvisely small.
Computational spine imaging is a relatively small research field. Sinces tthie first comparative study
in this field, we only managed to recruit five participants. This isiadlgt the typical number of
participants in most medical image analysis comparative studies. We have madethabiic so that
other researchers can test their algorithms. We also plan to keep the study opene@elsp
(http://pineweb.digitalimaginggroup.ca/spinewebhirdly, the reference standard is somewhat biased
toward the result of the automatic segmentation that was used astiiesegmentation. Through the
inter- and intra- observer experiments, the variability between two sets of Irsaguzentations is much
lower than the difference between manual and computer segmentations. Even thouglehha saepe
is complex, its border has distinct contrast to be located positively by an operator.ofE)etied



http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets

reference segmentation is consistent. Fourth, the data used in the comparativeestuslyirve CT with
intravenous contrast. From our experience, the vertebra segmentation algorithms petterrman non-
contrast scans since less interference from contrast agent inside nearbyladnealthy spines, the
interference is small since bone has much higher density than the contrast agent. Howewatrabte
agent may cause problems in osteoporotic cases since part of the spine may haveessity as the
contrast agent. The contrast may be present inside the vertebral body where it will change thexehage v
density and thus affect segmentation, density measurement and identification. tAimtialization and
shape constrained vertebra model will provide a means to handle this issuethEroesults of the
participating algorithms, we didn’t notice visible leakage into the aorta, which indicates that contrast had
little impact on the vertebra segmentation algorithHwswever, in this challenge, we didn’t compare the
performance between contrast studies and non-contrast studies.

The basic mechanism of the vertebra segmentation algorithms presented in this comparative study has
potentials for application to more generalized clinical CT data sets. Thitbagcomparison of various
algorithms, readers should get a sense of the strengths and weaknesses of\diftetsat segmentation
algorithms and choose the appropriate one for their applications.
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Figure Captions

Figure 1. Example of test caseswith refer ence segmentation

Each vertebra is assigned a unique label (color coded). Sagittal and 3D views are shown.
Left: a healthy spine (test case 1)

Right: an osteoporotic and fractured spine (test case 10). Arrows point to vertebrae \pitbssin
fractures.

Figure 2. Partitioning of a vertebra into four substructures

Left: Density map on vertebra surface, hotter color: higher density
Right: Partitioning a vertebra into four substructures. The substructures are color-cbddiffevent
colors. The cutting planes lie at the border between two substructures.

Figure 3. Visual comparison of segmentation resultsfor test case 2 (a healthy case)

Figure 4. Visual comparison of segmentation resultsfor test case 10 (an osteoporotic and fractured
case).



Figure5. Visual comparison of segmentation resultsfor specific vertebraein test case 4
Row 1: T3 vertebra; Row 2: T9 vertebra; Row 3: L3 vertebra
Mid-axial slice for each vertebra is shown. The segmentation is superimposed on the CT data.

Figure 6. Mean performance of all methodsfor healthy and osteopor otic cases.
Both Dice Coefficient and mean surface distance are evaluated. The spine column is divided into
three segments (T1-T6, T7-T12, and L1-L5) for assessment.

Figure 7. Mean performance of all methodsfor vertebra substructures.
The results show that vertebral body is more accurately segmented than other posterior sub structures.

Figure 8. Performance comparison on each vertebra group on healthy (left) and osteoporotic (right)
cases. The charts compare the performance of different methods on each segment of the spine.

Figure 9. Performance comparison on the entire spinal column
Only lumbar vertebrae were evaluated in Method 5. The charts compare the difference of each method on
healthy cases and osteoporotic cases.

Figure 10. Performance comparison on fractured and non-fractured vertebrae.
All methods except Method 2 performed better on non-fractured vertebrae.

Figure 11. Performance comparison on substructures.
The charts show the similar pattern of performance on substructures.

References

1. Burns, J.E., J. Yao, H. Munoz, and R.M. Summers, Automated Detection, Localization, and
Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT.
Radiology, 2015. 142346.

2. lyer, S., B.A. Christiansen, B.J. Roberts, M.J. Valentine, R.K. Manoharan, and M.L. Bouxsein, A
Biomechanical Model for Estimating Loads on Thoracic and Lumbar Vertebrae. Clin Biomech,
2010. 25(9): p. 853-858.

3. Bourgeois, A.C., A.R. Faulkner, A.S. Pasciak, and Y.C. Bradley, The evolution of image-guided
lumbosacral spine surgery. Annals of Translational Medicine, 2015. 3(5): p. 69.
4, Kang, Y., K. Engelke, and W.A. Kalender, A New Accurate and Precise 3-D Segmentation Method

for Skeletal Structures in Volumetric CT Data. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003.
22(5): p. 586-598.

5. Li, H. and Z. Wang. A Seepage Flow Model for Vertebra CT Image Segmentation. in IEEE
Engineering in Medicine and Biology 27th Annual Conference. 2005. Shanghai, China.

6. Aslan, M.S., A. Ali, H. Rara, and A.A. Farag. AN AUTOMATED VERTEBRA IDENTIFICATION AND
SEGMENTATION IN CT IMAGES. in IEEE 17th International Conference on Image Processing. 2010.

7. Lim, P.H., U. Bagci, and L. Bai, Introducing Willmore flow into level set segmentation of spinal

vertebrae. |EEE Transactions on Biomedical Engineering, 2013. 60(1): p. 115-122.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Huang, J., F. Jian, H. Wu, and H. Li, An improved level set method for vertebra CT image
segmentation. Biomedical engineering online, 2013. 12(1): p. 48.

Li, Y., W. Liang, J. Tan, and Y. Zhang. A novel automatically initialized level set approach based on
region correlation for lumbar vertebrae CT image segmentation. in IEEE International
Symposium on Medical Measurements and Applications 2015.

Blumfield, A. and E. Blumfield, AUTOMATED VERTEBRAL BODY IMAGE SEGMENTATION FOR
MEDICAL SCREENING, 2014: US.

Yao, J., S.D. O'Connor, and R.M. Summers. Automated spinal column extraction and partitioning.
in Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on. 2006.
Naegel, B., Using mathematical morphology for the anatomical labeling of vertebrae from 3-D
CT-scan images. Comput. Med. Imaging Grap., 2007. 31(3): p. 141-156.

Mastmeyer, A., K. Engelke, C. Fuchs, and W. Kalender, A hierarchical 3D segmentation method
and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Medical
Image Analysis, 2006. 10(4): p. 560-577.

Burnett, S., G. Starkschall, C.W. Stevens, and Z. Liao, A deformable-model approach to semi-
automatic segmentation of CT images demonstrated by application to the spinal canal. Med.
Phys., 2004. 31(2): p. 251-263.

Klinder, T., J. Ostermann, M. Ehm, A. Franz, R. Kneser, and C. Lorenz, Automated model-based
vertebra detection, identification, and segmentation in CT images. Medical Image Analysis, 2009.
13(3): p. 471-482.

Ma, J., L. Lu, Y. Zhan, X. Zhou, M. Salganicoff, and A. Krishnan. Hierarchical segmentation and
identification of thoracic vertebra using learning-based edge detection and coarse-to-fine
deformable model. in Medical Image Computing and Computer-Assisted Intervention. 2010.
Springer.

Rasoulian, A., R. Rohling, and P. Abolmaesumi, Lumbar spine segmentation using a statistical
multi-vertebrae anatomical shape+pose model. IEEE Transactions on Medical Imaging, 2013.
21(10): p. 1890-1900.

Kim, Y. and D. Kim, A fully automatic vertebra segmentation method using 3D deformable fences.
Comp. Med. Imag. and Graph, 2009. 33(5): p. 343-352.

Kadoury, S., H. Labelle, and N. Paragios, Automatic inference of articulated spine models in CT
images using high-order Markov Random Fields. Medical Image Analysis, 2011. 15(4): p. 426-437.
Ibragimov, B., B. Likar, F. Pernus, and T. Vrtovec, Shape Representation for Efficient Landmark-
Based Segmentation in 3-D. |IEEE Transactions on Medical Imaging, 2014. 33(4): p. 861-874.
Roberts, M.G., T.F. Cootes, and J.E. Adams. Segmentation of lumbar vertebrae via part-based
graphs and active appearance models. in MICCAI. 2009.

Stern, D., B. Likar, F. Pernu, and T. Vrtovec, Parametric modelling and segmentation of vertebral
bodies in 3D CT and MR spine images. Phys. Med. Biol. , 2011. 56: p. 7505-7522.

Wang, Y., J. Yao, H. Roth, J.E. Burns, and R.M. Summers. Multi-Atlas Segmentation with Joint
Label Fusion of Osteoporotic Vertebral Compression Fractures on CT. in 3rd MICCAI 2015
Workshop & Challenge on Computational Methods and Clinical Applications for Spine Imaging.
2015.

Ghebreab, S. and A. Smeulders, Combining strings and necklaces for interactive three-
dimensional segmentation of spinal images using an integral deformable spine model. |IEEE Trans.
Biomed. Eng., 2004. 51(10): p. 1821-1829.

Huang, S.-H., Y.-H. Chu, S.-H. Lai, and C.L. Novak, Learning-Based Vertebra Detection and
Iterative Normalized-Cut Segmentation for Spinal MRI. |EEE TRANSACTIONS ON MEDICAL
IMAGING, 2009. 28(10): p. 1595-1605.



26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Suzani, A., A. Rasoulian, A. Seitel, S. Fels, R.N. Rohling, and P. Abolmaesumi. Deep Learning for
Automatic Localization, Identication, and Segmentation of Vertebral Bodies in Volumetric MR
Images. in SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and
Modeling. 2015.

Mirzaalian, H., M. Wels, T. Heimann, B.M. Kelm, and M. Suehling. Fast and Robust 3D Vertebra
Segmentation using Statistical Shape Models. in International Conference of the IEEE EMBS.
2013. Osaka, Japan.

Ibanez, L. and W. Schroeder, ITK Software Guide2003: Kitware Inc.

Forsberg, D. Atlas-Based Segmentation of the Thoracic and Lumbar Vertebrae. in 2nd MICCAI
Workshops on Computational Methods and Clinical Applications for Spine Imaging (CSI12014).
2014. Boston, USA: Springer.

Seitel, A., A. Rasoulian, R. Rohling, and P. Abolmaesumi. Lumbar and thoracic spine
segmentation using a statistical multi-object shape+pose model. in 2nd MICCAI Workshops on
Computational Methods and Clinical Applications for Spine Imaging (CSI2014). 2014. Boston,
USA: Springer.

Hammernik, K., T. Ebner, D. Stern, M. Urschler, and T. Pock. Vertebrae Segmentation in 3D CT
Images based on a Variational Framework. in 2nd MICCAI Workshops on Computational
Methods and Clinical Applications for Spine Imaging (CS12014). 2014. Boston, USA: Springer.
Korez, R., B. lbragimov, B. Likar, F. Pernus, and T. Vrtovec. Interpolation-Based Shape-
Constrained Deformable Model Approach for Segmentation of Vertebrae from CT Spine Images.
in 2nd MICCAI Workshops on Computational Methods and Clinical Applications for Spine Imaging
(CS12014). 2014. Boston, USA: Springer.

Castro-Mateos, |., J.M. Pozo, and A.F. Frangi. 3D Vertebra segmentation by feature selection
Active Shape Model. in 2nd MICCAI Workshops on Computational Methods and Clinical
Applications for Spine Imaging (CS12014). 2014. Boston, USA: Springer.

Dice, L.R., Measures of the amount of ecologic association between species. Ecology, 1945. 26: p.
297-302.

Yao, J., J. Burns, S. Getty, J. Stieger, and R. Summers. Automated extraction of anatomic
landmarks on vertebrae based on anatomic knowledge and geometrical constraints. in
International Symposium on Biomedical Imaging. 2014. Beijing, China.

Forsberg, D., C. Lundstrom, M. Andersson, L. Vavruch, H. Tropp, and H. Knutsson, Fully
automatic measurements of axial vertebral rotation for assessment of spinal deformity in
idiopathic scoliosis. Physics in medicine and biology 2013. 58(6): p. 1775-87.

Glocker, B., J. Feulner, A. Criminisi, D.R. Haynor, and E. Konukoglu, Automatic Localization and
Identification of Vertebrae in Arbitrary Field-of-View CT Scans. Medical Image Computing and
Computer-Assisted Intervention, 2012. 7512: p. 590-598.

Ibragimov, B., R. Korez, B. Likar, F. Pernus, and T. Vrtovec. Interpolation-Based Detection of
Lumbar Vertebrae in CT Spine Images. in 2nd MICCAI Workshops on Computational Methods and
Clinical Applications for Spine Imaging (CSI2014). 2014. Boston, USA: Springer.



