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Elasticity of smectic liquid crystals with in-plane orientational order, and dispiration
asymmetry

Jaya Kumar Alageshan,! Buddhapriya Chakrabarti,? and Yashodhan Hatwalne!

YRaman Research Institute, C.V. Raman Avenue, Bangalore 560 080, India
2 Department of Mathematical Sciences, University of Durham, Durham DHI1 3LE, UK *
(Dated: January 14, 2017)

The Nelson-Peliti formulation of the elasticity theory of isolated fluid membranes with orienta-
tional order emphasizes the interplay between geometry, topology, and thermal fluctuations. Fluid
layers of lamellar liquid crystals such as smectic-C, hexatic smectics, and smectic-C* are endowed
with in-plane orientational order. We extend the Nelson-Peliti formulation so as to bring these smec-
tics within its ambit. Using the elasticity theory of smectics-C* we show that positive, and negative
dispirations (topological defects in Smectic-C* liquid crystals) with strengths of equal magnitude
have disparate energies — a result that is amenable to experimental tests.

PACS numbers: 61.30.-v, 61.30.St, 61.30.Gd, 61.30.Dk, 61.30.Jf

I. INTRODUCTION

Smectic liquid crystals (smectics) are one-dimensional
“solids” composed of 2-dimensional fluid layers. Ther-
motropic [1], as well as lyotropic [2] smectics having
orientational order in the fluid layers (in-plane orien-
tational order) exhibit a rich profusion of symmetries.
As a consequence, smectics display a wide variety
of topological defects [1, 3-5] such as dislocations,
disclinations, and dispirations, including a range of
curvature defects known as focal conmics [3, 5]. For
example smectic-C (SmC) has in-plane vectorial order,
and supports dislocations as well as disclinations.
Smectic-C* (SmC*) is chiral, has vectorial order, and
supports exotic topological defects called dispirations.

Motivated by the discovery of liquid crystalline smectic
L phase of phospholipid membranes with vectorial in-
plane order [6], and the feasibility of obtaining almost iso-
lated, deformable membranes by hyperswelling it [7], Nel-
son and Peliti [8] formulated the elasticity theory of iso-
lated fluid membranes with in-plane orientational order.
This elegant formulation brings out the interplay between
elasticity, topological defects, and thermal fluctuations in
isolated fluid membranes endowed with in-plane orienta-
tional order. It establishes that Gaussian curvature of
a membrane is apt to act as a source of disclinations in
the orientational order. Conversely, disclinations tend to
bend flat, deformable membranes [9]. These reciprocal
effects help to mitigate the overall stress from bending of
membranes, and that from deformations in the orienta-
tional order. Positive and negative disclinations of equal
strength prefer locally positive (sphere-like) and negative
(saddle-like) Gaussian curvatures respectively, leading to
asymmetry in their energies [9-11]. Disclination induced
buckling of nematic, and smectic vesicles has been ob-
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served experimentally [12].

As is the case for membranes, smectic layers bend be-
cause of thermal fluctuations, and in response to ex-
ternally applied stresses. The physics that describes
the interplay between elasticity, topological defects, and
thermal fluctuations as brought out by the Nelson-Peliti
formulation is, therefore, applicable to smectics — one
dimensional, periodic stacks of orientationally ordered,
two-dimensional fluid membranes.

In this paper we adapt and extend the Nelson-Peliti
formulation [8] to smectics with in-plane orientational
order, and develop the continuum elasticity of such
smectics. It is applicable to all smectics, and multilamel-
lar, lyotropic vesicles, which have in-plane orientational
order (excepting smectics such as very short pitched
chiral SmC*, which are not amenable to a continuum
description). Using our results for the elasticity theory
of SmC* we investigate the structure and energetics
of dispirations in SmC*, and show that dispirations
with a negative index have a lower energy (per unit
length) as compared to those with a positive index
of the same strength. This result illustrates that
the generalization mentioned above can lead to new,
experimentally testable consequences in the mature field
of smectic liquid crystals. Throughout this paper we
assume that smectic- as well as orientational order is
well established; the treatment of phase transitions such
as nematic-SmA-SmC [13], and the effect of thermal
fluctuations [9, 10] is outside the scope of this paper.

This paper is organized as follows. In Sec. IT we present
a brief review of the Nelson-Peliti formulation of the elas-
ticity theory of isolated membranes endowed with orien-
tational order. In Sec. IIT we discuss the elasticity theory
of achiral, as well as chiral smectics with in-plane orienta-
tional order. The structure and energetics of dispirations
in smectics-C* are discussed in Sec. 1V.



II. THE NELSON-PELITI FORMULATION

In this Section we give a brief account of the Nelson-
Peliti formulation of elasticity of fluid membranes with
in-plane orientational order, and the corresponding equa-
tions of equilibrium. The well-known Helfrich free-energy
[14] of an up-down symmetric, deformable fluid mem-
brane (regardless of orientational order) is

. (IL1)

Fu :/[EH%FKGK} ds,
where H is the mean curvature, K is the Gaussian curva-
ture, K, kg are elastic constants, and the integral is over
the surface of the deformed membrane surface. Gaus-
sian curvature K is a total divergence, and does not
contribute to the equations of equilibrium (the Euler-
Lagrange equations). In the Monge gauge, the mem-
brane surface is described by using the height function
h = h(x,y) in the Cartesian coordinate system. In this
gauge the lowest order, approximate expressions for H
and K are

H ~V?%h, and

K ~ (02Rh)(0;h) — (0,0,h)(0y05h), (I1.2)
where V2 = 52 —1-85 is the two-dimensional Laplacian op-
erator. Within this approximation the surface integral in
(I1.1) is over dS ~ dz dy rather than over the deformed
membrane surface. The Helfrich free energy refers only
to deformations of the shape of the membrane, and not
to the deformation of the orientational order embedded
in it.

Before discussing the elastic free energy for orientation-
ally ordered membranes, we consider the simplest contin-
uum model with orientational order, the continuum xy-
model, which has the low-temperature elastic free energy
4]

Fy = % / (V6)? da dy, (I1.3)

where kg is the spin-wave stiffness, the unit zy-spin vec-
tor m = (cosf,sind), and V = (9,,0,) is the gradient
operator. We wish to generalise the flat-space zy- model
described above to spins on a deformable surface.

On curved membranes orientational order gets frus-
trated, as evidenced by the familiar fact that a hairy ball
cannot be combed flat without creating disclinations of
total index 2. On curved surfaces, ordinary derivatives of
vector fields have to be replaced by covariant derivatives.
The generalization of (IL.3) to spins on a deformable sur-
face involves defining the appropriate “covariant deriva-
tive of #” on a curved membrane. For deformable mem-
branes the square-gradient elastic free energy (I1.3) takes
the form [8]

K
Fy = —A/(VH— A)%ds,

5 (IL4)

where the “vector potential” A is a local gauge field that
corrects V0 so as to compensate for membrane curvature,
and the integral is over the deformed membrane surface.
A is called the spin-connection. To the lowest order the
components of A are given by

in the Monge gauge, where ¢;; is the totally antisym-
metric unit symbol with €;, = —e,; = 1, and repeated
indices are summed over. Thus Fy necessarily involves a
coupling between 6- and h fields.

The geometry of the membrane (represented by the
Gaussian curvature K) and the topology of the 8- field on
it (represented by the disclination density .7, see below)
are connected through [§]

V xV0=n, and

V xA=Kn, (I1.6)
where 7 is the unit normal to the membrane. The discli-
nation density (see Sec. IV A for a simple introduction to
disclinations)

S (x) = 2r qu O (x —x,,), (I1.7)

with discrete disclination charges ¢,, located at x,,. The
importance of the relations (II.6) is brought out by the
compatibility condition discussed below.

Minimization of Fy with respect to the - field gives
the equation of equilibrium [9)

F
55—99 =K,V (V- A)=0. (IL.8)
The Airy stress function y defined by

identically satisfies 0Fp/d60 = 0. However, x has to obey
the condition

Vix=5%—-K (I1.10)
that ensures compatibility between the shape of the
membrane and topology of the orientational order em-
bedded in it.

Minimization of the total elastic free energy Fy + Fy
with respect to the height-field A in the Monge gauge
yields the approximate “nonlinear, hexatic von Karman
shape equation” of [9];

72 V= @50)(92h) + (@20)(5h) — 20:0,x)(0:0,).

(I1.11)
The compatibility condition (II.10) and the shape equa-
tion (II.11) form the pair of coupled, nonlinear partial

differential equations of bulk equilibrium.
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FIG. 1. (Color online) Schematic of smectics: ny = —nrg

is the unit, apolar Frank director that specifies the average
orientation of molecules; IN is the unit layer normal. The
equilibrium layer spacing is d. In SmA ng || N; SmA does not
have in-plane orientational order, the molecular orientation
is not tilted. In SmC, the projection of mr onto the layer
plane, the polar vector ¢, spontaneously breaks the continuous
azimuthal symmetry. The plane spanned by nr and N (the
xz-plane) is a mirror plane with a point of inversion. SmC*
has a chiral structure, in which the mirror symmetry of SmC
is lost; ¢ = ¢(cos(q* z),sin(¢* z), 0) in the ground state, i.e., ny
lies on a cone with its tip on a helix with pitch P* = 27/q".

III. ELASTICITY OF SMECTICS

This Section is organized as follows. In Sec. IITA
we briefly discuss the elasticity theory of SmA. This is
followed by the simplest, isotropic elasticity theories of
SmC, smectics with hexatic order (SmF, SmI, SmL), and
SmC* in Sec. III B, where the shape - orientational order
coupling via the spin-connection term is emphasized.

A. Smectic-A liquid crystals

Before addressing the extension of the spin-connection
formulation to smectics with orientational order, we
briefly review the standard elasticity theory of SmA [4, 5].
SmA does not have in-plane orientational order (Fig. 1).
However, the layer compression and layer bend terms in-
troduced below are common to all smectics, regardless
of the presence of in-plane orientational order. In the
ground state, flat, fluid layers of thermotropic SmA, typ-
ically composed of rod-like molecules, form a periodic
stack along the layer normal, which we take to be along
the z- axis. The Frank director np is also oriented along
the layer normal. The elastic free energy of SmA is a
functional of the displacement field u(z,y, z), which, in
the continuum, describes the displacement of the layers

along the z- axis. The elastic free energy of SmA is [4, 5]

Fonlu] = / [f(azu)uf(viu)ukgk] av,

(I11.1)
where Vﬁ_ is the two-dimensional Laplacian operator, and
dV is the volume element. The first term on the right
hand side of (ITI.1) describes the free energy cost for layer
compression. We note that the layer-compression term
(having coefficient B) is not rotationally invariant. In
the Eulerian picture of elasticity theory the rotationally
invariant nonlinear elasticity for layer compression is ob-
tained by the replacement d,u — 9,u — (1/2)(Vu)? in
(ITI.1) above [4]. The terms with coefficients K, and
Kg give the free energy costs for the mean, and the
Gaussian curvatures of the layers respectively. The two-
dimensional, flat-space Laplacian of the displacement,
V2 u(z,y,2), is an approximation to (1/2)H(z,y,z),
where ﬂ'(w,y,z) is the “mean curvature” at a point in
the three-dimensional smectic. The expression

K(z,y,2) = (aiu)(aiu) — (050yu)(0y0yu)  (II1.2)
for the Gaussian curvature is valid to the same order of
approximation as 2H (z,y, 2) ~ V2 u. Gaussian curva-
ture is a total divergence, integrates to the boundary sur-
face, and does not contribute to the bulk energy. In writ-
ing (IIL.1) it is implicitly assumed that the local Frank
director ny is “tied” or locked to the local layer normal
N, so that ng || N even in the deformed configuration.
The elastic free energy (II1.1) for smectic layer distor-
tions (compression and bend) used in this paper is the
continuum, Landau-Peierles version, which is valid for
“type-1” smectics (those for which the Ginzburg parame-
terk = A,/ <1/ V2, where Ap denotes twist penetration
depth, and ¢ is the smectic correlation length) [4].

B. Smectics with in-plane orientational order

In this Section we first consider SmC (Fig. 1), the sim-
plest lamellar liquid crystal with vectorial in-plane or-
der. Next, we consider smectics with in plane nematic-
and hexatic order, followed by chiral SmC* (Fig. 1). Al-
though the elasticity theory of smectics with in-plane or-
der discussed here is not fully covariant, it captures the
essential physics of the crucial coupling between shape
and orientational order. The derivation of its covariant
version will be discussed elsewhere.

1. Smectic-C liquid crystals

In the undeformed, ground state of SmC, the three-
dimensional, unit Frank director npg can be written in
terms of its projection cy;

fipg = (co,1/1 — ),

(I11.3)



where the two-dimensional vector ¢y has the components
Co(ﬂ?, Y, Z) = Co (COS '(/)0(1‘7 Y, Z)7 Sinwo(ﬂ% Y, Z)) in the TY-
plane, and ¢y = sin Ay, where Ay is the angle between
the Frank director and the local layer normal (the half-
apex angle of the cone in Fig. 1). As in the elasticity
of SmA, we assume that the tilted molecular director
is locked to the layer normal, so that the magnitude cg
is fixed. Thus the projection of the Frank director in
the deformed state of SmC is described by c(z,y,z) =
co (cos(x,y, 2), sintp(x,y, z)). The elastic variables for
SmC are then the displacement field u of the layers, and
the azimuthal angle ¢ of the Frank director. The angle 1)
is analogous to the angle 6 used for membranes in Sec. II.
To the lowest order the elastic free energy of SmC is given

by
/fw v,

where we have used the elastic free energy for layer dis-
tortions Fgm[u] is given by (IIL.1), and fy is the elastic
free energy density for deformations in the - field (see
below). The orientational order, described by v, is in-
evitably coupled to the shape of smectic layering. In a
general deformation, smectic layering can bend and ac-
quire Gaussian curvature. The arguments of Sec. II that
lead to the introduction of spin-connection in defining
the proper gradient of € also hold for . The angle 1
can have spatial variations within the plane of a given
layer, as well as across the layering. Therefore the lowest
order, (in-plane) isotropic elastic free energy density for
SmC has to be of the form

Fc [u, w Fsm (HI.4)

fo= KA (Vv A+ BN .,

(I11.5)
where ¢ = ¥(z,y,2). The first, and the second terms
on the right hand side are the elastic free energy den-
sity costs for in-plane deformations, and deformations
across the layering respectively. The term with the co-
efficient K 4 describes the crucial shape - orientational
order coupling. The approximate expression for the spin-
connection is

AL (z,y,2) = €1 0 [ (O5u) (Ou) ], (I11.6)
where it is important to note that i, j, k run over x, y, and
that v = u(:v y,z). It is easy to check that the Gaussian
curvature K = (V. x A}) - N, where the layer normal
N ~ (—0yu, —0yu, 1).

The elastic coefficients K 4 and Ky have the dimen-
sions of force. A straightforward comparison of the
Frank free-energy density for nematics with (II1.5) above
gives a rough estimate of K4, and Kx in terms of the
Frank elastic coefficients K (splay), Ko (twist), and
K3 (bend) [15]. The elastic coefficient K4 involves
splay as well as bend in the c¢- field, which in turn in-
volves all three Frank elastic coefficients. In the one
constant approximation (K; = Ky = K3 = K), and

for small tilt angles Ay, Ky ~ KA2. The coefficient
Ky ~ Kysin® Ag+ K3 sin® A cos? Ay includes twist- and
bend deformations in the Frank director. Both K4 and
K vanish (Ap = 0) in the SmA phase.

2. Other smectics

The elasticity theory (II1.4) of SmC is easily modified
to describe that of other smectics. For example, the low-
est order, isotropic elastic free-energy of a smectic with
nematic in-plane order is obtained by merely redefining 1
as the angle of deviation of the nematic director from its
orientation in the undeformed state. For thermotropic,
hexatic SmB that does not have tilt-order [16, 17], the
elastic free energy is obtained by redefining the hexatic
bond-orientational order ) modulo 27 /6. Thermotropic,
achiral hexatic smectics such as Sml and Sm F have two
kinds of in-plane orientational order, one from the tilt
orientation, and one from the hexatic order. The tilt
orientation in Sml is towards the hexatic bond, whereas
that for SmF is midway between the hexatic bond angles
[18]. Hexatic SmL has tilt orientation between 0 and
/6, and is, therefore, chiral [19]. The elastic free energy
(IT1.4) can be easily extended to SmL by introducing two
angles, ¥ and ¢, corresponding to the tilt- and hexatic
orders respectively, and by including known symmetry-
allowed elastic couplings between these fields [17]. There
are lyotropic smectics that appear to possess the same
symmetries as SmI, SmF, and SmL (named Lgry, Lgr, and
Ly, respectively) [19], however, their structures have not
yet been characterized unambiguously [20].

3. Smectic-C* liquid crystals

As indicated in Fig. 1, SmC* is chiral, with vectorial
order in the plane of smectic layers. In the undeformed
state, SmC* has uniform pitch along the layer normal.
The lowest order, harmonic elasticity of SmC* is given
by replacing fy, of (IIL.4) by

fou= SRV 0 AP — "9, (IIL7)

= (0:9)°
where the first two terms on the right hand side are the
same as those of f, for SmC (IIL.5), and we have in-
troduced a new term with the pseudoscalar coefficient h*
describing the chiral strength, which reflects the chirality
of SmC*. The angle 1 is a pseudoscalar, therefore h*9,1)
is a true scalar, as it should be. This term ensures that
the undeformed, ground state structure of SmC* is chiral,
with a uniform pitch P* = 27Ky /h*, and penalizes devi-
ations of ¥ away from it. There is no symmetry-allowed,
harmonic elastic coupling between the compression d,u
and gradients of 1. We note that the continuum elasticity
theory described above holds for SmC* with |P*| > d. In
Sec. IV below, we use the elasticity theory of SmC* de-



FIG. 2. (Color online) The planar surface L; labels the i*®
smectic layer in the reference lattice of SmA, with inter-layer
spacing d. Making a vertical cut C (shaded rectangle) through
the layers, identifying the left lip of the cut on L;_1 to the
right lip of the cut on L;, and letting the system relax leads
to the right-handed, half-helicoidal surface shown. This is the
Volterra construction of a screw dislocation. The z- axis is the
singular dislocation line, and b = d 2 is the Burgers vector.

veloped above to establish the asymmetry in dispiration
energies.

IV. DISPIRATIONS IN SM-C*

Owing to their periodicity, smectics with orientational
order support dislocations as well as disclinations. Dispi-
rations are topological line defects in SmC*. Dispirations
have a mixed character; their structure involves features
of both dislocations and disclinations. Before discussing
wedge-screw dispirations in SmC*| we review the struc-
ture and energetics of screw dislocations and disclinations
(Sec. IV A). This is followed by the characterization of
the structure of dispirations (Sec. IV B), and their ener-
getics (Sec. IV C).

A. Screw dislocations, and disclinations

As mentioned in the Introduction, smectics with in-
plane orientational order support dislocations as well as
disclinations. In this Section we give a brief pedagogical
review of these line defects.

1. Screw dislocations in SmA

A screw dislocation line in SmA (Fig. 2) is character-
ized by the topological condition

%dUZ?{VU'dlznde,

where the integral is over any closed loop around the
dislocation line, n is an integer, d is the smectic layer
spacing, and b is the magnitude of the Burgers vector.
The Burgers vector b of a screw dislocation is defined
in relation to the direction of the screw dislocation line
A by using the right hand rule for traversing the closed
loop. X can be freely chosen to be along either Z or
—2, since the ground state of SmA is invariant under
the transformation z — —z. If the displacement b of
(IV.1) is parallel to X, then b = +b 2. If the displacement
b is antiparallel to A, then b = —b2 [4]. Thus right-
handed screw dislocations have b = b2, whereas left-
handed screw dislocations have b = —b 2.
The solution of the equation of equilibrium

(IvV.1)

~Bdu+KViu=0 (IV.2)
corresponding to the elastic free energy (I11.1), satisfying
the topological condition (IV.1) with b =d is

d
u(z,y,z) = o arctan %, (IV.3)

The function arctan(y/x) is just the polar angle in cylin-
drical polar coordinates, and the solution (IV.3) describes
a half-helicoid (Fig. 2). This surface is a minimal surface
(has zero mean curvature; V2 u = 0). It is locally saddle-
like, and therefore has negative Gaussian curvature. The
half-helicoid has a singular line running along the z- axis.
Surrounding the singular line, strains are of order unity
in a region having a size of order d. This region, where
the smectic ordering gets destroyed, is called the core of
the dislocation. Substituting (IV.3) into (IIL.1), we find
that within the linear elasticity theory used here, the
elastic free energy of a screw dislocation is zero; the only
contribution to the free energy of a screw dislocation in
SmA is that from the destruction of smectic order at the
core [5].

We note that the solution (IV.3) has been obtained by
assuming harmonic elasticity for layer compression. As
stated in Sec. IIT A, the harmonic elasticity is not rota-
tionally invariant. An exact solution for the displacement
field of edge dislocations in SmA has been obtained in [21]
using the nonlinear, rotationally invariant expression for
layer-compression elasticity (see Sec. IITA), albeit with
the approximate, linear expression for the mean curva-
ture of smectic layering. This solution fits well to exper-
imentally studied displacement field profiles of edge dis-
locations in cholesteric fingerprint textures [22]. To our
knowledge the exact solution to the full nonlinear prob-
lem has not yet been obtained for a screw dislocation in
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FIG. 3. (Color online) Elliptic (+1), and hyperbolic (—1)
disclinations in the zy-model. Upon traversing an anticlock-
wise, closed circuit, the vector field rotates in anticlockwise
sense through 27 for a 41 disclination, and in clockwise sense
through 27 for a —1 disclination.

Sm A. In this paper we do not address the energetics of
dislocation cores (elastic strain is of order unity near the
cores), which is outside the purview of elasticity theory.
The Volterra construction for a screw dislocation in
SmA is shown in Fig. 2. The same construction can be
carried out for a screw dislocation in SmC, without any
discontinuity in the c- field across the cut plane. How-
ever, carrying out the Volterra construction of a screw
dislocation in SmC* results in a discontinuity in the c-
field across the cut plane; ¢ has a discontinuity of do /| P*|
across each joint. We return to this issue in Sec. IV B.

2. Disclinations — xy-model

An isolated, single disclination in the xy-model is a
point vortex characterized by the topological condition

fd@:fvo.dlzzm,

where the integral is along any closed loop enclosing the
singular disclination point, and s is called the disclination
index. For the xy-model, s has to be an integer, whereas
for a two-dimensional nematic s can take values which are
integer multiples of 1/2 [4]. For a distribution of discrete
disclinations (IV.4) above can be written as

(IV.4)

where we have used Stokes’s theorem, and where the

disclination density .7(z) = 273, ¢m @ (z — z.m),

with discrete disclination charges ¢,, located at x,,.
The solution to the equation of equilibrium

—ky V20 =0, (IV.6)

corresponding to the elastic free energy (I1.3), which sat-
isfies the topological condition (IV.4) is

0 = sarctan(y/x). (IV.7)

Thus the simplest +1 disclinations have either radial, or
circular streamlines centered at the disclination point,
whereas the simplest —1 disclinations have a hyperbolic
texture of streamlines (Fig. 3). Substituting (IV.7) into
(I1.3), we find that the energy of a disclination is

E, = 21k, s*In(R/¢) + E., (IV.8)
where R is the system size, £ is the small-length cutoff for
the disclination core, and E. accounts for the free energy
cost from the destruction of xy- order in the core.

In fluid membranes with hexatic order, disclinations
with the smallest strength have indices £1/6. A five-
fold disclination can be obtained by removing a wedge
of angle 27r/6 in the bond-order, thus leaving five-fold
bond-order at the disclination point. A five-fold discli-
nation has the index +1/6. A seven-fold disclination is
obtained by adding a wedge of angle 27 /6 in the bond-
order, and has the index —1/6. As stated in the In-
troduction, disclinations can buckle membranes provided
k/K 4 is sufficiently small, thus leading to asymmetry in
the energies of disclinations having indices of the same
magnitude but opposite signs [9, 10].

Disclinations in smectics are line defects rather than
point defects. In smectics with in-plane nematic order, s
can have half-integer values, since ngp = —npr. In SmC,
disclinations have integer indices because c is a polar
vector.

B. Characterization of dispirations

The caption of Fig. 1 has a description of the struc-
ture of SmC*. The Volterra construction of a screw dis-
location in SmC* leads to frustration in the vector order
(Fig. 4) that can be healed by introducing partial discli-
nations. This combination of a screw dislocation and
partial disclinations is called a wedge-screw dispiration
[23-25]. Using simple polarizing microscopy, dispirations
have been observed in antiferroelectric SmC* [1, 26]. In
what follows, we focus on the characterization of dispira-
tions.

Because of the chirality of SmC*, dispiration lines can
be assigned an unambiguous orientation. This is not the
case for screw dislocation lines in achiral smectics such
as SmA or SmC. SmC* has no mirror plane. In partic-
ular, the xy- plane is not a mirror plane. The direction
of the dispiration line A can be fixed by exploiting the
inherent chirality of the é- field in the ground state of
SmC* as follows. First, we label smectic layers by inte-
gers i such that the - field, as defined in the reference,
right-handed cylindrical polar coordinate system, satisfies
Yiy1 — i = w = d/|P*| > 0 (see Fig. 4). Next, we orient
the dispiration line along a unit vector X that is in the
direction of increasing i. In Fig. 4, X || 2. To find the
Burgers vector b we traverse an oriented circuit around
A using the right-hand rule, as in Sec. IV A. The screw-
dislocation component of the dispiration shown in Fig. 4



FIG. 4. (Color online) Volterra construction for a dispiration
in SmC*: L; (light planar surfaces), and ¢; = co(cos 9);, sin ;)
(thick arrows) represent the i*® smectic layer and the cor-
responding c-field with pitch P*. In the laboratory frame,
¢o || € . Thin arrows on L; represent ¢;—1. Making a vertical
cut C (shaded rectangle) through the layers and identifying
the left lip of the cut on L;_; to the right lip of the cut on L;
leads to a mismatch in the e-field across C. To eliminate the
mismatch, wedges of angle w = d/|P*| in the c-field need to
be inserted at the central singular line — one wedge of angle
w per layer. Each wedge is a negative, partial disclination,
since it does not correspond to a symmetry operation of the
ground state of SmC*. Post-relaxation, the construction de-
scribed above leads to a wedge-screw dispiration — a screw
dislocation associated with partial disclinations in each smec-
tic layer.

has b = +d 2 (the screw dislocation is right-handed).
The partial-disclination component of the dispiration of
Fig. 4 is negative (see Sec. IV A).

We define the index of a wedge-screw dispiration as
sq = —w = —(A-b)/|P*|; the dispiration shown in Fig. 4
has s4 < 0, whereas the one shown in Fig. 5 has sq > 0.
The dispiration index s4 captures the chirality of SmC*
(the direction of ), as well as the handedness of the
screw dislocation (the direction of b). The minus sign in
the definition of s4 is chosen to ensure that it matches
the sign of the partial disclinations associated with the
screw dislocation.

C. Energetics of dispirations

The elastic free energy of dispirations has been calcu-
lated in [25] using the results of [27] for the displacement
field u of a screw dislocation in SmC. The “flat-space”
elastic free energy density of SmC* in [25] does not use
the spin-connection coupling. The stability conditions
for the elastic energy used in [27] result in misleading so-

FIG. 5. (Color online) A dispiration with sq > 0. As in Fig. 4,
the screw dislocation is right-handed; b = d 2. However, the
chirality of SmC* is opposite of that shown in Fig. 4; A = —2.
Note that eliminating the mismatch in the é- field requires
removal of wedges of angle w.

lutions for the displacement field for screw dislocations
in both SmC and SmC* [28]. For a c-field of fixed mag-
nitude, the appropriate solution for screw dislocations is
a simple half-helicoid, within the approximations used in
our calculations below. As in SmA, the screw dislocation
component of dispirations costs only core energy.

We now calculate the dispiration energy per unit
length. In cylindrical polar coordinates, the compati-
bility condition (II.10), and the height equation (II.11)
lead to the simple solution v = w¢. The elastic
free energy is Fy. = [ fy«dV, where fy, is given
by (III.7). In cylindrical polar coordinates (p,¢,z),
dV = pdpde¢ dz. However, for a screw dislocation (half-
helicoid of pitch b) parametrized by the position vector
R = (pcos ¢, psin g, [d/(2m)]$), p > 0, the appropriate
volume element is dV = y/p? + [d/(27)]?> dpdpdz (the
surface area of a half-helicoid over one pitch is larger than
that of a circular disk). We have checked that 1) = w¢
remains a solution in the helicoidal coordinate system,
in which (A4,, 4¢) = (0,—p/+/p* + [d/(27)]?). Compen-
sating for the components A, = 0, A, = —1 for the
planar reference state of smectic layers [9], and using the
volume element that is appropriate to the half-helicoidal
shape we find that the energy per unit length of a straight
wedge-screw dispiration, written in terms of w is
£ ~w? (e + 1)) +wlea +2In(A /X)) + Ee + c3,
7K 4

(Iv.9)
where Ao = (A + X)), Ay = V14X, and A = L/d
(not to be confused with the unit vector A along the
dispiration line) for a system of size L. E. is the en-
ergy cost for destruction of smectic order in the dispi-



ration core. In (IV.9) ¢ = —In(1 + v2) ~ —0.88,
co = In(1/2) + 2In(1 + v/2) ~ 1.07, and c3 ~ 0.02 is
very weakly dependent on A. As in the case of SmA,
the screw dislocation component does not contribute to
the total elastic energy within the approximations used.
The “flat-space” result of [25] does not have the crucial
term linear in w (see (IV.9)) that leads to dispiration
asymmetry. From (IV.9), E(w) < E(—w). For A > 1,
E(w) — B(—w) ~ —2K 4w < 0. Recalling that the twist
angle 1 between adjacent smectic layers w = —sq, we
find that SmC* liquid crystals prefer dispirations with
negative s; — a result that is amenable to experimental
tests. The dispiration of Fig. 4 has a lower energy per
unit length than that of Fig. 5. The Gaussian curvature
of the screw dislocation is negative, and negative Gaus-
sian curvature acts as a source of negative disclinations.
Thus our result for the energetics of dispirations is consis-
tent with those of [9, 10] for disclinations in membranes.

Some remarks of particular relevance to our result on
dispiration asymmetry are in order. Within the SmC*
phase, the pitch P* is known to change considerably
with temperature. Moreover, this dependence is non-
monotonic [29]. Elaborate phenomenological theories
[30, 31] have been proposed to explain the observed vari-
ation of the SmC* pitch with temperature. Based upon
the discussion in Sec. ITI B we expect K4 ~ 3x10~" dyne
within the SmC* phase. Our result F(w) — E(—w) =~
—2K 4 w implies that the smaller the pitch, the larger
the magnitude of disclination asymmetry. Based par-
tially upon the analysis of [9, 10], and on the experimen-

tal demonstration of disclination induced buckling in ne-
matic and smectic vesicles [12], we believe that our result
on asymmetry in dispiration energies in SmC* is qualita-
tively robust, and would persist in a more detailed, fully
covariant version of the elasticity theory of smectics with
in-plane orientational order.

V. SUMMARY

We have extended the Nelson-Peliti formulation of the
elasticity theory of orientationally ordered membranes to
thermotropic, as well as lyotropic smectic liquid crystals.
It leads to asymmetry in the energies of positive and
negative dispirations. This result demonstrates that our
adaption of the Nelson-Peliti formulation is capable of
leading to qualitatively new results in the field of lamellar
liquid crystals with in-plane orientational order.
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