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Because of the familiarity of gelation theories in polycondensation reaction of multifunctional 

groups, often the gel-point is defined as the point of diverging weight averaged molar mass. We 

present an industrially-relevant counter-example to this common perception. Chain-growth 

polymerization in realistic reactors introduces history dependent crosslinking probability. For 

copolymerization of a two functional monomer (ethylene) with a four functional comonomer 

(non-conjugated diene), we show from a Monte Carlo scheme that standard gelation scaling 

exponents remain valid for a semibatch reactor. However, for syntheses in a continuous stirred 
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tank reactor (CSTR), all commonly measured molar mass moments (number, weight and `z'-

averaged moment) remain finite at the gel-point; the first moment to diverge is the fourth 

moment. Hence, identification of the gel point from experimental observations is difficult, and 

cannot be achieved through monitoring of the weight averaged molar mass. We use a numerical 

scheme based on the tube model of polymer melts to predict the rheology of the generated 

molecules. Stress relaxation follows a power-law decay, but due to dynamic dilution effects the 

CSTR resins exhibit much slower increase in the zero shear viscosity as the gel point is 

approached as compared to the semibatch reactor resins. 
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1. Introduction  

 

In many branched polymer synthesis, certain reaction conditions lead to gelation with diverging 

molar mass of the largest molecule (network formation). Since the seminal analysis of Flory[1] 

and Stockmayer,[2] step-growth polymerization (or polycondensation reaction)[3] served as the 

archetypal example of this sol-gel transition in polymer synthesis. During polycondensation 

reaction involving monomers with functionality f ≥ 3, the molar mass of the largest molecule 

diverges as the reaction probability p of the functional groups reaches a certain critical value . Close to the gel point, the resins exhibit universal features in both the static properties[1,2,4] 

(high molar mass tail of the molar mass distribution follows a power-law with a universal 

exponent, the weight averaged molar mass diverges as a power of normalized distance to the 

critical probability) and in dynamics[5,6] (relaxation follows a power-law in time, incorporating 

self-similar distribution of modes). The success and simplicity of the statistical description of 

gelation in polycondensation has often led to usage of the same results in other polymerization 

processes, often without any real justification. 

In classical models of gelation via a polycondensation reaction,[1,2,7,8] one usually considers 

equal probability of reaction for each of the functional groups. Similarly, in vulcanization one 

considers equal probability of crosslinking of preexisting chains. This assumption of equal 

probability of crosslinking fails when one considers realistic reactors. In chain growth 

polymerization (or, addition polymerization)[3] unsaturated monomers add onto the active site 

of a growing chain one at a time. In many synthesis processes, polymerization and crosslinking 

occur in the same reactor: a monomer with multiple terminal unsaturated bonds first gets 

incorporated in a growing chain. At a later time, another terminal unsaturated bond of the same 

monomer can be incorporated in another growing chain leading to branching. As we show 

below, the probability of such branching becomes dependent on the details of the reaction 
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history of this particular monomer. Different multifunctional monomers acquire different 

crosslinking probability because of the different available times for the second reaction to 

happen in the reactor. So far, a systematic study looking at the scaling properties in chain growth 

polymerization as the gel point is approached has received little attention, mainly limited to 

free-radical polymerization;[9–12] often with the a priori assumption that the gel point is defined 

by divergence of the weight-averaged molar mass. 

In this paper, we consider copolymerization of a bi and a tetra functional monomers (phrased 

in terms of ethylene and non-conjugated diene) with a metal catalyst in realistic reactor 

conditions: in a semibatch reactor and in a continuous stirred tank reactor (CSTR).[13] 

Comparing with polycondensation reactions, the ethylene monomer is equivalent to a 

bifunctional polycondensation monomer in the sense that its incorporation into a growing 

polymer gives rise to locally linear chain sections. In contrast, the diene comonomer is 

equivalent to a four-functional polycondensation monomer in that, when all groups are reacted, 

a branchpoint is formed linking four linear chain sections at their ends. In a batch reactor, all 

reactants are placed in the reactor at the start of the reaction. In a semibatch reactor, some of 

the gaseous monomer types are replenished by maintaining a constant gas pressure during the 

reaction. In the CSTR, all reactants are introduced in the reactor at a constant rate and product 

resin is removed continuously. We assume ideal mixing for both reactors here. A small amount 

of long-chain branching (LCB) can drastically alter the flow properties of polymer molecules[14–

16] and is often exploited for better processability when shear thinning or extension hardening 

at low rates are desired. In the past few decades, constrained geometry metal catalysts,[17] like 

metallocenes, have allowed synthesis of polyolefin resins of well-defined structure and 

comparatively narrow polydispersity. Under certain reaction conditions, vinyl terminated 

segments (macromonomers) can be incorporated in another chain growing at a later time[18] 

forming three-functional branches. However, the density of such macromonomer-induced 

branches is typically small. Non-conjugated dienes (small molecules, often short linear alkenes, 
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with two terminal double bonds at each end) can be used to increase the amount of branching 

in polyolefin resins.[19,20] Contrary to the single terminal double bond in a macromonomer, 

copolymerization with diene introduces pendant double bonds at each of the incorporated diene 

sites. Thus copolymerization with diene provides a route to create much more branched resins 

than is possible in homopolymerization of olefins. 

Understanding and eventually predicting the molecular structures created during this 

copolymerization can help in optimizing reactor conditions for desired flow properties of the 

manufactured resin.[16] Equally importantly, such a knowledge would help in avoiding reactor 

fouling (while often high level of branching is preferred, reaching post-gel conditions in the 

reactor results in reactor downtime and costly cleanups[21,22] ). Because of its commercial 

relevance, ethylene-diene copolymerization (often considered along with another comonomer 

like hexene, octene or propylene to control crystallinity by introducing short-chain branches[23] ) 

has been the focus of a number of patents[24–28] and publications.[20,29–31] However, the 

theoretical modeling of this important class of polymerization[32–35] has been mostly limited to 

calculations based on the method of moments. In this methodology, the branch-formation step 

couples the equations relating different moments. The set of infinite equations is reduced to a 

smaller set of equations (often just two), by introducing a closure hypothesis for higher 

moments, or by assuming some particular form of chain length distribution beyond a certain 

molar mass. The gel point is identified by considering either the divergence of the weight-

averaged molar mass,[34] or the non-existence of any real root for the weight averaged molar 

mass[32] from the closed equations with untested closure hypothesis. In general, the divergence 

of molar mass of the largest polymer does not ensure concomitant divergence of the second 

moment of the molar mass distribution. Close to gelation, the number distribution of molecules 

scales as a power-law of molar mass with some exponent Ĳ. The second moment of the molar 

mass distribution at gelation is the first moment to diverge only for 2 < Ĳ ≤ 3. For 

polycondensation reaction, Ĳ satisfies this inequality. But as we show in this paper, this is not 
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the case for all polymerization schemes. Another possible route for calculating the molar mass 

distribution is direct numerical solution for the “population balance” of different species in the 

reactor (e.g. using finite element methods[36] ). We expect that this method, properly applied, 

would result in similar conclusions to ours. However, for the particular set of reactions 

considered in this work, the balance equations would need to track the concentration of species 

varying with respect to five separate variables (degree of polymerization, number of branches 

of two different types, number of unsaturated groups of two different types), paying close 

attention to the tails of the distribution for each variable. We believe that under such 

circumstances our Monte Carlo approach detailed below is a competitive method, despite the 

care needed in obtaining a statistically significant number of large molecules. 

A route to gain detailed information about the structure of the molecules, which does not suffer 

from the closure problem of moment-based calculations, is a stochastic simulation of the 

polymerization process. Two quite distinct stochastic approaches have been developed for 

generating polymers from a certain reaction scheme. The first, direct stochastic simulation of 

the rate equations,[37] remains computationally costly with much of the computational cost being 

used in creating a library of branched structures that would be present in steady state. The 

second, stochastic Monte Carlo sampling at the segment level,[11,38] starts with calculations of 

the probabilities for different branching scenarios. Armed with the probabilities of various 

branching events, one can avoid the necessity of having a library of shapes and can generate 

representative in silico molecules one at a time. By generating a large ensemble of molecules 

for given reaction conditions, one can calculate both the structural and flow properties. 

In the following section (Section 2), we start by introducing such a segment level Monte Carlo 

scheme for ethylene-diene copolymerization with a metallocene catalyst. Next we use the 

Monte Carlo scheme in Section 3 to generate numerical ensembles of molecules and probe the 

static properties of the resins as gelation is approached with increasing diene concentration. The 
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sol-gel transition can be viewed as a geometric phase transition and has been modeled as a 

percolation transition on a lattice.[39,40] In the simplest form of the bond-percolation model,[39] 

one considers a regular lattice (for example, a cubic lattice) with bonds forming between 

adjacent lattice points with some fixed probability p. The size of the largest connected cluster 

diverges at a critical value of probability  and the various measurable quantities scale as 

power-laws close to  with exponents that are independent of the details of the underlying 

lattice. The mean-field description of the classical gelation model[1,2] can be viewed as a 

percolation on a Bethe lattice (Cayley tree) and, hence, neglects loop formation. During 

polymerization under usual conditions, except in a narrow window that decreases with the 

segment length between branchpoints,[41] the influence of loops can be neglected and the 

exponents are expected to be mean-field-like. Polycondensation of tri-functional oligomers of 

increasing length has been used to experimentally observe the exponents changing from the 

percolation-like to mean-field-like values.[42] 

Our modeling neglects loop-formation and hence, at a first glance, is expected to give classical 

mean-field exponents. However, percolation models (either critical percolation on a regular 

lattice or mean-field gelation on a Bethe lattice) typically assumes a fixed probability of bond-

formation. This is an appropriate choice for vulcanization, but not for realistic reactors 

considered in this work. With a fixed rate of incorporation of a pendant diene, a polymer 

segment that is created just before the reaction ended has effectively zero probability for cross-

linking at the incorporated pendant diene sites. Similarly, a polymer segment that survives in 

the reactor for very long times will have all the pendant dienes eventually incorporated in 

another growing segment. For the parameter space explored in this work, we find that the 

exponents for the divergence of the static structures remain classical mean-field-like in the 

semibatch reactor with the weight averaged molar mass diverging as gel-point is approached. 

Changing the parameters only affects the critical amplitudes without modifying the exponents. 

The divergence of the molar mass in the CSTR case is dominated by a very small population 
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of molecules that remain in the reactor for longer than average duration. All commonly 

measured low-order moments of molar mass are found to remain finite at the gel-point with the 

4-th moment of the molar mass being the first moment to diverge. Associated with these finite 

lower-order moments are exponents that are different from the classical mean-field model for 

gelation. Unlike the semibatch case, the exponent describing the power-law region of the molar 

mass distribution reaches a constant value only very close to the gel-point. 

Close to gelation, the shear relaxation modulus decays as a power-law in time.[5,6] The 

dynamical exponents are not universal and cannot be calculated without additional assumptions 

about the relaxation dynamics. In Section 4 we use the numerical ensembles of molecules 

generated from our Monte Carlo simulations to calculate the rheological responses in the melt 

state using a numerical scheme[43] based on the tube theory of entangled polymers.[44] As the 

gel point is approached for resins from either of the reactors, the shear relaxation moduli were 

found to decay as power-law in time (over suitable time range that increases with proximity to 

the gel point) with very similar exponents. However, the zero shear viscosity or the recoverable 

compliance for resins synthesized in CSTR shows much gentler increase as the gel-point is 

approached when compared to the resins synthesized in semibatch reactor. 

We end this paper (Section 5) with a detailed discussion on the relevance of our modeling to 

experimental synthesis of ethylene-diene copolymers, and to other chain-growth 

polymerization processes. 

2. Monte Carlo scheme 

 

2.1. Reaction Kinetics 

We consider a set of reaction steps that has been used to describe polymerization of polyolefins 

with metallocene catalysts,[18] supplemented by reaction steps involving non-conjugated 
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diene.[45] Schematically the reaction steps are shown in Figure 1. An activated catalyst binds to 

a monomer to initiate polymerization. Ethylene and unreacted diene are incorporated with 

respective rate constants ݇ and ݇  . The catalyst detaches itself from the growing chain 

leaving behind a double bond with rate ݇ୀ or a saturated chain end with rate ݇௦. Molecules 

having terminal double bond, macromonomers (P=), are incorporated in a growing chain with 

rate constant ݇. Irrespective of the presence or absence of the terminal double bond, 

molecules can be incorporated in a growing chain with rate constant ݇ at the point where 

a once reacted diene leaves a pendant double bond. For semibatch reactor, we assume that the 

catalyst is deactivated at a rate ݇ௗ during termination events without assigning any particular 

mechanism behind this deactivation process. 

2.2. Monte Carlo sampling 

We consider the population balance equations implied by the rate equations and analytically 

compute the concentrations of the various species and the probabilities of branch formation. 

Starting from a randomly chosen reacted monomer in the final product, we use these 

probabilities to recreate a probable life history of a single molecule. Repeating this a (potentially 

large) number of times, we generate an ensemble of molecules that collectively follows the 

analytically determined probabilities of branching. 

We consider a well-mixed CSTR reactor at steady state or a well-mixed semibatch reactor with 

monomer being continuously replenished. For the semibatch reactor, the monomer 

concentration ሾܯሿ remains fixed, but the concentration of active catalyst ሾܻሿሺݐሻ and that of 

unreacted diene ሾܦሿሺݐሻ decreases with time. For this case, it is convenient to consider the 

monomer conversion ݔ (concentration of reacted monomer ሾܯோሿ normalized by the equilibrium 

monomer concentration ሾܯሿ) as the proxy for time. Note that the monomer conversion defined 

in this way can be larger than unity. The monomer conversion x and the time t are related by 
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ݔ  ൌ ݇ሾܻሿ݇ௗ  ሾͳ െ  ݁ି௧ሿǤ  (1) 

Here, ሾܻሿ is the initial catalyst concentration. We denote the final monomer conversion in the 

semibatch reactor by ݔ and the corresponding time of reaction by ݐ. 

Once a free diene is incorporated in a growing chain, there is a pendant double bond created. 

We denote the density of such pendant double bond from once-incorporated diene as ሾܦଵሿ. 
Concentrating on a particular growing chain, we will distinguish between two different kind of 

diene-induced long-chain branching: (i) the growing chain can incorporate a free diene creating 

a pendant diene. The pendant diene is incorporated in another chain growing at a later time. We 

denote this branching event as of type ܾଵ. (ii) the growing chain can incorporate a pendant 

diene that is already part of another chain grown in the past. We denote this branching event as 

of type ܾ ଶ. Chains ending with a terminal double bond can be incorporated in another growing 

chain at a later time. We term this branching from macromonomer as of type ܾ. 

The derivation of the Monte Carlo scheme follows closely existing studies[11,38,45] for other 

polymerization scenarios and we only present an outline of the algorithm in the appendix. 

2.3 Simulations 

For our numerical explorations, we choose ሾܯሿ ൌ ͲǤ͵ mol/L, ݇ ൌ ͷͲͲ L/mol-s, ݇  ൌ ͵Ͳ 

L/mol-s, ݇ୀ ൌ ͲǤʹ /s, ݇௦ ൌ ͲǤͲͲͷ /s, ݇ ൌ ͳ L/mol-s, and ݇  ൌ ͲǤʹ L/mol-s. The 

monomer molar mass is chosen to be 28 g/mol corresponding to that of ethylene. Because the 

relative concentration of incorporated diene remains very small even at gelation, we neglect the 

molar mass contribution from diene. For the CSTR calculations, we explicitly consider an 

active catalyst concentration of ሾܻሿ ൌ ͳͲିଷ mol/L. For the semibatch reactor, we consider a 

catalyst deactivation rate ݇ௗ ൌ ͳͲିଷ /s. While the orders of magnitude of these parameters 

correspond to some previous modeling of experimental resins with metallocene catalysts,[46] the 

individual values of the parameters are probably not so relevant. Only a small number of 
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nontrivial combinations of these parameters determine the long-chain branched structure of the 

molecules.[47] For both the CSTR and the semibatch reactor, we vary ሾܦሿ starting from a small 

concentration (10-6 mol/L) until the point we can no longer reliably estimate the moments of 

the molar mass or until the level of recursion reaches a predetermined value (see below). For 

the CSTR case, we consider a number of different mean residence times (߬௦). Similarly, for 

the semibatch reactor, we consider a number of different final conversions. 

With increasing diene concentration, some of the molecules can become highly branched with 

many segments. Equivalently, our recursive algorithm can reach many levels of recursion, 

eventually exceeding the available stack size. For a particular parameter set, if the level of 

recursion reaches more than 260 during generation of a molecule, we reject the molecule. If 

two such rejections are found while generating 106 molecules, we consider numerically being 

close enough to the gel-point and do not proceed any further in increasing the diene 

concentration. The maximum recursion level of 260 is arbitrarily fixed from the observation 

that for recursion levels slightly more than this, the memory requirement becomes larger than 

that is available (2GB) for the particular computer in which simulations were performed. For 

the semibatch reactor, this exhaustion of available stack is the limiting resource that determines 

how close we can approach the gel-point.  

For each values of ሾܦሿ, we calculate the first five moments of the molar mass by considering 

106 molecules (the choice of the first five moments was from some exploratory simulations that 

suggested that for the CSTR reactor, the divergences of the fourth and the fifth moments occur 

at the same diene concentration with the lower moments remaining finite at that concentration). 

From 9 separate such simulations, we calculate the error estimates on the molar mass moments. 

If the relative error in the fourth moment was found to be larger than 1%, we generate another 

9×106 molecules and recalculate the averages and error estimates using all the additional 

molecules generated. We continue this process of increasing the generated number of molecules 
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until we either reach error estimates within our chosen criteria or the number of molecules 

generated becomes larger than 109 . This provides a second criterion for how close to the gel-

point we can go numerically: If with 109 molecules we cannot estimate the fourth moment 

within 1% relative error, then we discard the simulation. For the CSTR case, this lack of 

convergence of higher moments decides how close we can approach the gel-point.  

Using the highest calculated decade in diene concentration, we use the nonlinear Levenberg-

Marquardt algorithm[48] to fit the molar mass moments in a power-law form. The initial values 

for the critical diene concentrations were set from a linear extrapolation to zero value of the 

inverse of the moment and the initial values of the amplitudes were set to the value of the molar 

mass moment at low diene concentration. 

For the CSTR case, we also separately considered catalysts that do not allow macromonomer 

incorporation (i.e. ݇ was set to zero with all other rate constants kept the same). 

For a single value of conversion in semibatch reactor and a single residence time in CSTR, we 

use the generated molecules at various diene concentrations to calculate the rheological 

responses and investigate the dynamical scaling close to gelation. 

3. Scaling of molar mass distributions  

 

Concentrating on the pre-gel conditions, we define the closeness to the gel-point as[4]  

ߝ  ൌ  ሾܦሿ െ  ሾܦሿሾܦሿ ǡ (2) 

with ሾܦሿ being the critical concentration of diene at which the characteristic molar mass 

(defined below via Equation 3) diverges. Close to ሾܦሿ, the number distribution of polymers of 

molar mass ܯ is expected to scale as[4]  
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 ߶ேሺܯሻ ̱ ିܯఛ ݂ ቀ ெெೌೝቁ, (3) 

with an exponent Ĳ. The cut-off function ݂ is a function which is equal to 1 for ܯ ا   andܯ

which decays rapidly for ܯ    is a characteristic molar mass above whichܯ  so thatܯ

the power-law scaling is suppressed. As gelation is approached, ܯ diverges with an 

exponent 1/ı as 

 ଵȀఙǤ (4)ିߝ ̱ܯ 

The moments of molar mass 

ܯ  ؠ   ߶ேሺܯሻ ܯ ݀ܯ ߶ேሺܯሻ ܯିଵ ݀ܯǡ (5) 

diverge for all ݇   ɒ െ ͳ as powers (or logarithmically when ݇ ൌ  ɒ െ ͳ) of ܯ and hence 

as powers of  ߝ from Equation 4. 

In both lattice-percolation (߬ ൎ ʹǤʹ in 3-dimensions) and mean-field gelation models (Ĳ = 5/2), 

the first (integer) moment to diverge is the weight averaged molar mass ܯଶ ؠ  ௐ, definingܯ 

another exponent Ȗ 

 ஓǤ (6)ିߝ ̱ ௐܯ 

Keeping the possibility open that the first moment to diverge may not be the second one, we 

define a more general version of this power-law dependence as 

ܯ  ஓೖିߝ ̱  Ǥ (7) 

In trying to estimate the exponents, we first calculate different moments ܯ for ݇  ͷ as a 

function of ሾܦሿ. 
We emphasize here that the gel point is correctly defined as the point where ܯ diverges, 

irrespective of the exponent  ߬. Other works on branched polymer formation in CSTR[12,49] have 

noted a variation in an apparent exponent ߬ with reactor variables and have (erroneously) 
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defined gelation as the point where Ĳ decreases past a value of 3. This, of course, is the value of 

Ĳ below which the weight averaged molar mass diverges, but it does not define the gel point. 

3.1 Semibatch reactor 

For the semibatch reactor, Figure 2(a) shows the number distribution of molar mass for ݔ ൌͷͲ (ݐ ൎ ͳͲͷ s) and ሾܦሿ ؠ ሾܦሿሺݐ ൌ Ͳሻ ൌ ͲǤʹͻͶ mol/L. The high molar mass end of the data 

can be described well over three decades with a power-law dependence and an exponential cut-

off function characteristic of mean-field theory[4]. The exponent  ߬ ൌ  ʹǤͶͻʹሺʹሻ from the fit in 

Figure 2 is close to the mean-field prediction of 5/2. 

Figure 2(b) shows the weight averaged molar mass ܯௐ as a function of initial diene 

concentration. The fit gives an exponent ߛ ൌ  ͳǤͲͲͷሺͺሻ for the scaling of ܯௐ that is consistent 

with the mean-field prediction of 1. The fit also provides estimate of the critical diene 

concentration at which ܯௐ diverges as ሾܦሿ= 0.3095(2). Repeating the fitting exercise with the 

number averaged molar mass ܯே (first moment of the molar mass distribution) gives an 

apparent critical concentration ሾܦሿ=1.04(2), showing that ܯே remains finite as the gel-point is 

approached. For moments higher than 2, the fitting retrieves the same critical diene 

concentration as with ܯௐ. In particular, fitting of third moment ܯ predicts ሾܦሿ= 0.3097(2). 

From fitting the molar mass distribution with mean-field exponential cut-off (Figure 2), we 

calculated ܯ for different values of ሾܦሿ and hence for different ߝ. Figure 3(a) shows the 

plot of  ܯ as a function of ߝ. The fit gives 1/ı = 2.06(2), a value close to the mean-field 

prediction of 2. 

From a series of simulations at different final conversions, we calculated the critical diene 

concentration required for gelation at each of these final conversions. Increasing the time of 

reaction leads to gelation at lower initial diene concentrations (Figure 3b). A physically more 

meaningful quantity is the average number of diene links per primary segment (defined as the 



    

 - 15 - 

segment generated from initiation until termination) at gelation threshold. To calculate the 

number of links per primary segment, we start with the concentration of twice reacted diene at 

a certain conversion ݔ 

 ሾܦଶሿሺݔሻ ൌ ሾܦሿ ݇݇݇ െ ݇ ێێۏ
ͳۍ െ exp ሺെ ݇݇ ሻ݇ݔ െ ͳ െ exp ሺെ ݇݇ ሻ݇ݔ ۑۑے

 Ǥ (8)ې

The ratio of ሾܦଶሿ and ሾܯሿݔ evaluated at ݔ gives the number of diene link per reacted 

monomer. In order to find the average number of links per primary segment at the gel point, we 

set ሾܦሿ as the critical value extrapolated from scaling of ܯௐ and multiply by the degree of 

polymerization of a primary segment ؠ ݇ሾܯሿȀሺ݇ୀ  ݇௦ሻ. Figure 4 shows that at small 

conversions, the number of links per primary segment approaches the simple estimate 1/2 as 

expected for vulcanization of linear polymers. In semibatch reactor, for short reaction times, 

the macromonomer incorporation plays no role (their density is effectively zero). With 

increasing reaction time, the presence of three functional macromonomer induced branching 

reduces the number of diene induced four functional links required to reach gelation. The inset 

of Figure 4 shows the mole fraction of diene to that of monomer in the resins at gelation, 

estimated as ሾܦሿ൫ͳ െ exp ሺെ݇ݔሻ൯Ȁ൫ሾܯሿݔ൯. For short reaction times, most of the 

incorporated dienes remain as pendant short chains and do not have the possibility of 

undergoing the second incorporation to produce a long-chain branch. At conversion ݔ ൌ ʹͲͲ 

ݐ) ൎ ͷʹͳ s), for the particular values of rate constants we have chosen in this work, diene 

occupies 0.002 mole fraction. Even at this high conversion, only about 7% of these incorporated 

diene contributes to branch-points. 

3.2 Continuous stirred tank reactor 

The approach to gelation in CSTR conditions turns out to be quite different from classical mean-

field predictions for polycondensation reactions. First, we concentrate on ߬௦ ൌ ͳͲͲ s. The 
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weight averaged molar mass can be fit to a power-law to find an apparent critical diene 

concentration ሾܦሿ= 0.0373(1) mol/L (Figure 5). However, higher moments diverge before this 

concentration. Figure 6 shows apparent ሾܦሿ  calculated by fitting power-law divergence to the 

first five moments of the molar mass. In the figure, we denote the critical diene concentration 

estimated from the k-th moment as ሾܦሿǡ. These estimates of ሾܦሿǡ suggest that the first 

moment to diverge is the fourth moment at ሾܦሿ= 0.0237(3) mol/L. The inset of Figure 6 shows 

the ratios of apparent ሾܦሿ calculated by fitting a power-law to successive moments of the molar 

mass for a number of different ߬௦. For ߬ ௦ ൌ ͳͲͲ s, the critical diene concentration predicted 

from the power-law fit for ܯ is ̱ ͳͷΨ  higher than that estimated from the power-law fit for ܯସ. 

In Figure 7, we plot the number distributions for several different diene concentrations, and 

with ߬௦ ൌ ͳͲͲ s. In calculating these distributions, we used ʹ ൈ ͳͲଵ molecules to resolve ߶ேሺܯሻ  reliably at the high molar mass. Even at the highest diene concentration considered, 

the data looks qualitatively different from the semibatch case (Figure 2). At high diene 

concentrations, two distinct power-law regions can be identified (indicated by dashed lines in 

Figure 7) with exponents that depend on ሾܦሿ. 
To accommodate two power-law features, we fit a functional form 

 ߶ேሺܯሻ ൌ  ெഓభ  ଵି௫൬ି ಾಾ൨ഓషഓభ൰ ಾಾ൨ഓషഓభ ݔ݁   ቀെ ெெೌೝቁ, (9) 

with a cross-over molar mass ܯ. For ܯ ൏ ܯ ఛభ. Forିܯ ሻ decreases asܯ, ߶ேሺܯ   . Figure 8ܯ ఛ and eventually decreases exponentially beyondିܯ ሻ decreases asܯ, ߶ேሺܯ

shows the number distribution along with fit of the form in Equation 9 for ሾܦሿ ൌ ͲǤͲʹʹ mol/L. 

The variations of the exponents ߬ଵ, ߬ and the molar masses ܯ and ܯ with the distance to 

the gel-point İ are shown in Figure 9. The cross-over molar mass ܯ can be well-described for 
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small İ by a linear form: ܯ ൌ ǤͲͻሺሻ ൈ ͳͲହ െ ͷǤʹͳሺʹሻ ൈ ͳͲହ ɂ. The characteristic molar 

mass diverges as ିߝଵǤଶ଼ሺሻ.  Both the exponents ߬ଵ and ߬  vary with İ. A linear fit from the lowest 

four İ data gives the limiting ߬ଵ ൌ  ʹǤͶͺሺͳሻ and ߬ ൌ ͶǤͶͺሺʹሻ at the gel-point. Since only the 

moments of molar mass with  ݇   ߬ െ ͳ diverges, this is consistent with our previous finding 

in Figure 6 that the first three molar mass moments remain finite at the gel-point. 

We can qualitatively understand the long-tailed behavior of ߶ேሺܯሻ  by noting the exponential 

distribution in the residence time of individual molecules. Even in the absence of diene, a strand 

destined to remain for a long duration in the reactor has higher probability of being 

reincorporated in another growing strand. Since each of the primary strands are on average of 

the same length, molecules with longer than average residence times are typically more 

branched, resulting in higher molar mass from this macromonomer incorporation process. In 

the presence of diene, any pendant diene in a long-lived segment is almost certain of leading to 

a long-chain branch and hence to molecules with larger molar mass. To isolate the effect of 

diene, we have separately simulated the case where macromonomer incorporation is not 

allowed (݇  ൌ Ͳ). This can be achieved experimentally by using a catalyst that has very low 

reactivity for macromonomers. Figure 10 shows that even without macromonomer 

incorporation, the first moment of molar mass to diverge is the 4-th moment. Though in this 

case, the estimates of ሾܦሿ from the third moment is only about 5-10% higher than that from 

the fourth moment. 

Figure 11 shows the estimated critical diene concentration (estimates from the 4-th moment of 

the molar mass) as a function of ߬௦ both with (open circles) and without (filled squares) 

macromonomer incorporation. For small ߬௦, even when allowed, macromonomer 

incorporation induced branching has a low probability. Hence, the simulations predict the same ሾܦሿ irrespective of whether macromonomer incorporation is included or not. Since the 

probability of branch formation from incorporated diene increases with ߬௦, in both cases ሾܦሿ 
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decreases with ߬௦. When macromonomer incorporation is allowed, molecules residing for a 

long duration in the reactor also acquire 3-functional branches. This lowers the ሾܦሿ 

significantly at large ߬௦ compared to the case where macromonomer incorporation is not 

allowed. The inset in Figure 11 shows the estimated number of 4-functional branches from 

diene per primary segment at gelation, estimated as ݇݇ሾܻሿሾܦሿȀሼሺ݇ୀ  ݇௦ሻሺ݇ሾܻሿ ݏሻሽ. Without macromonomer insertion (solid symbols), the gel point is reached when the 

average number of 4-functional branches (H links) reaches about 0.1 per primary segment. 

When ߬ ௦ is large and macromonomer incorporation is allowed, the average number of diene 

branches required to reach gelation can be extremely small. For ߬௦ ൌ ͳͲͲͲ s and ݇  ൌ ͳ 

L/mol-s, only 0.014 diene induced branches per primary segment on average suffices to reach 

gelation. 

Polymer resin molar mass distribution is often characterized by a single measure of average 

(typically weight averaged molar mass ܯௐ) and a single measure of the width of the distribution 

(traditionally polydispersity index or PDI, defined as the ratio of ܯௐ and ܯே). When gelation 

is accompanied by diverging ܯௐ, as in the semibatch reactor considered in this paper, the PDI 

also diverges at the gel point. By contrast, with diverging fourth moment at gelation, PDI 

remains finite in the CSTR case. Figure 12 shows the PDI without diene and with the diene 

concentration set to the critical concentration ሾܦሿ (from extrapolation of ܯௐ and ܯே data 

obtained at lower diene concentrations). In the absence of diene, with increasing ߬௦, the PDI 

with macromonomer incorporation (open squares) increases. In the absence of macromonomer 

incorporation, the PDI remains close to a value 2.0 in the absence of diene. At the gel-point, the 

PDI increases compared to the diene free case. In the inset of Figure 12, we show the ratio of 

the PDI at critical diene concentration normalized by the PDI at zero diene concentration. The 

relative increase in maximum PDI that can be achieved in the pre-gel state in the absence of 
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macromonomer incorporation is ൎ ʹǤͷ, when the residence time is large. With macromonomer 

incorporation, the relative growth in PDI is much lower. 

 

4. Dynamic scaling 

 

Close to gelation, the stress relaxation and rheological responses also follow scaling 

forms:[5,6,50] the shear stress relaxation function ܩሺݐሻ behaves like a power-law in time ሺݐሻ 

 ௨ǡ (10)ିݐ ሻ̱ݐሺܩ 

and the complex viscosity כߟሺ߱ሻ follows a power-law in frequency (Ȧ) 

 ሺ߱ሻ̱ ߱௨ିଵǤ (11)כߟ 

As the gel point is approached, the zero shear viscosity ߟ diverges as 

 ௦ǡ (12)ିߝ ̱ߟ 

and the recoverable compliance ܬ diverges as 

 ௧Ǥ (13)ିߝ ̱ܬ 

To calculate the rheological properties of the polymers synthesized via our reaction scheme, we 

use a computational rheology software[43,51,52] developed by us. With only two main chemistry 

dependent parameter, viz. the entanglement molar mass ܯ and the entanglement time ߬ , melt 

state flow properties of entangled polymers are well described by the ‘tube theory’.[44,53] In a 

mean field sense, each polymer strand in the melt is confined in a tube-like potential due to the 

topological constraint of uncrossability of all the polymer molecules. Deformation is assumed 

to be affine down to the lengthscale of the tube diameter and relaxation proceeds hierarchically 

from outside in[54,55] as the molecules escape from the old deformed tube and attains equilibrium 

conformation. Because the tube potential in melt is due to the molecules themselves, the 
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potential softens (or equivalently the tube diameter increases) as relaxation proceeds.[56] This 

dynamic dilation couples the relaxation of all the molecules and necessitates numerical 

schemes[43,55,57] for a polydisperse (both architecturally and in molar mass) melt as in the present 

case. 

For these calculations we assume that ܯ and ߬  are independent of diene concentration and 

choose ܯ ൌ ͳͳʹͲ g/mol and ߬  ൌ ͳǤͳ ൈ ͳͲିଷ s at ͳͷͷ Ԩ  corresponding to high density 

polyethylene.[52] With density 0.784g/cc, the chosen ܯ is consistent with a plateau modulus of 

1.99MPa. Phenomenologically both ܯ and ߬  have been found to vary systematically with the 

comonomer content.[58,59] Also ring formation from diene has been implicated in variation of ߬.[45] As our results in the previous section show, one can decrease the amount of incorporated 

diene by increasing the time of reaction (or residence time). Similarly, longer dienes can avoid 

ring formation due to the low probability of both the double-bonded ends being in close 

proximity of the growing chain end at the same time. We use the commonly used values for the 

dynamic dilation exponent Į = 1 and the hopping parameter ଶ ൌ ͳȀͶͲ. 

 We fix ݔ ൌ ͷͲ for the semibatch case and ߬௦ ൌ ͳͲͲ s for the CSTR case. For a given diene 

concentration, we generate 106 molecules. For computational efficiency in the rheology 

calculation we separate the molecules in 1000 bins equidistant in the logarithm of molar mass, 

retain a maximum of 10 molecules per bin and reassign the weights of the deleted molecules to 

the surviving molecules from the same bin. The resulting ensemble was used to calculate the 

rheological properties. Resampling from the same initial 106 molecules give very similar 

results. At each diene concentration, we repeat the whole procedure five times to estimate the 

statistical errors in our results. 

Figure 13(a) and (b) respectively show the shear stress relaxation function ܩሺݐሻ and the 

complex viscosity כߟሺ߱ሻ for the semibatch case. The lines indicate power-law behavior fitted 

in the time range 10 − 100s for ܩሺݐሻ and frequency range 0.01 − 0.1 rad/s for כߟሺ߱ሻ. Either of 
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these plots can be used to estimate the exponent u = 0.36(1). The corresponding plots for the 

CSTR case in Figure 14(a) and (b) gives the exponent u = 0.48(1). By fitting the zero shear 

viscosity ߟ and the recoverable compliance ܬ in power-law forms as a function of distance to 

the gelpoint İ, we find the viscosity exponent s = 4.53(7) and the recoverable compliance 

exponent t = 3.45(5) for the semibatch case (Figure 13c and d), and s = 1.19(8) and t = 2.0(1) 

for the CSTR case (Figure 14 c and d). These fits used the data in the 0.2 ≤ İ ≤ 0.6 range. 

Even for the lowest value of İ considered here, ܩሺݐሻ shows a power-law decay only in a limited 

range of time. The exponent u is similar for either reactor reflecting the hierarchical relaxation 

of entangled polymers. However, the zero-shear viscosity and the steady state compliance are 

dominated by stress decay at long times from the relaxation of the largest and most branched 

molecules. The differences in the high molar mass tail between the resins from the two reactors 

show up as significantly different exponents for ߟ and ܬ between the semibatch and the CSTR 

case. The divergence of ߟ for the CSTR case is much slower (with and exponent s = 1.2) than 

the semibatch case (s = 4.5). The exponent for the semibatch case is consistent with gelation of 

well-entangled polymers with several entanglements between branch-points.[42] The viscosity 

exponent for the CSTR case is similar to the Rouse model prediction[42] ݏ ൎ ͳǤ͵͵ despite the 

inter-branch point segments being significantly longer than one entanglement. We can reconcile 

this by noting that due to the presence of trace amount of highly branched molecules the long-

time relaxation of the CSTR resins is dominated by constraint release Rouse motion,[60,61] 

having the same dynamical form as of un-entangled Rouse beads. 

5. Discussions 

 

In this work, we considered the copolymerization of a bi-functional monomer (ethylene) and a 

tetra-functional comonomer (non-conjugated diene) using a metallocene catalyst in either a 

CSTR or a semibatch reactor. Gelation can be achieved in either of the reactors by increasing 
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the concentration of diene. We used a Monte Carlo scheme to sample representative molecules 

and calculate the molecular weight distributions. This method avoids closure approximations 

used in commonly used moments-based calculations. Unlike most theoretical treatments of 

gelation,[1,2,7,8,39] consideration of realistic reactor conditions leads to a distribution of reaction 

probabilities. In spite of this distribution in the reaction probabilities, the approach to gelation 

in the semibatch reactor is characterized by diverging weight averaged molar mass with the 

static exponents identical to the simple theoretical picture that considers a constant reaction 

probability. The same conclusion was previously reached for the approach to gelation in a free-

radical polymerization scheme in a batch reactor.[10] For a diffusion limited lattice model of 

free-radical polymerization, the divergence of the weight averaged molar mass was found to 

hold,[9] albeit with an exponent that differs from polycondensation reactions. 

In contrast, the results for the CSTR case fails to fit in this traditional picture: the weight 

averaged molar mass remains finite at gelation with the first moment to diverge being the fourth 

moment of the molar mass. The molar mass distribution close to gelation is characterized by a 

power-law tail with a non-universal exponent that depends on the details of the simulation 

parameters. Qualitatively, this heavy tail distribution results from a cooperative effect of the 

residence time of a particular segment and the probability of crosslinking: a segment residing 

for longer than average times in the reactor has higher probability of crosslinking and the 

segments to which it crosslinks themselves reside for longer than average times in the reactor. 

While our calculations only considered a particular class of chain-growth polymerization, such 

cooperative effect should be active in all chain polymerization schemes in CSTR where some 

crosslinking reaction step exists (for example, chain transfer to polymer together with 

termination by combination in free radical polymerization). 

The heavy tailed nature of the molar mass distribution in CSTR for ethylene-diene 

copolymerization has implicitly been recognized in some theoretical calculations[32] and 
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experiments[31] by noting that the polydispersity index remains finite as the gel point is 

approached. However, the possibility that the weight averaged molar mass remain finite across 

the transition has been overlooked because of the approximate nature of the calculations. Since 

commonly measured low-ordered molar mass moments remain finite at gelation, predicting the 

gel-point from experimental data for this system should be difficult. 

Experimentally polymer molar mass distribution is traditionally represented as the weight 

distribution normalized on the ݈݃ଵሺܯሻ axis. In Figure 15, we show the molar mass 

distributions for two values of İ for both the CSTR and the semibatch reactor cases in log-log 

scale (main plot) and log-linear scale (inset). In the traditional log-linear scale plot, we have 

omitted the data where  
ௗ௪ௗ భబெ  ൏  ͳͲିଷ, the typical sensitivity of the concentration detector 

in routine gel permeation chromatography (GPC) measurements. The plots for İ = 0.79 for both 

the CSTR and the semibatch cases are very similar. The İ = 0.07 curves are representative of 

the distributions as gelation is approached. In the semibatch case, a broad distribution with a 

high molecular weight tail can be easily seen in the linear-log plot; here the approach to gelation 

is obvious. In contrast, for the CSTR case at İ = 0.07, the linear-log representation appears to 

have only a marginally broader distribution as compared to İ = 0.79. Such broadening could 

easily be masked in industrial scale reactors by the much larger broadening arising from any 

non-ideality in the reactor conditions (such as temperature or concentration variations across 

the reactor) or other sources of experimental uncertainty. The gelation is only evident when 

viewing the log-log representation of the data, at levels far below the typical sensitivity of the 

concentration detector. We conclude that the CSTR case produces gelation whose onset is 

practically difficult, and perhaps impossible, to observe via conventional measurements. 

Our calculations have focused here on idealized reactors (steady state CSTR and semibatch) 

and it is likely that additional complications will ensue in practical reactors. For example, it 

could take a very long time for a CSTR to achieve the steady state at which such large 
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molecules, as predicted by our algorithm, are actually generated.[12]  Once generated, there is a 

possibility that strong flow fields in the reactor may break the molecules apart.[62,63] 

Nonetheless, the practical point of this paper, that gelation can occur significantly in advance 

of practical detection, remains. 

 

Appendix 

Incorporation of macromonomers 

For the CSTR reactor, the concentration of macromonomers, ሾܲୀሿ is invariant in time and is 

given by 

 ሾܲୀሿௌ்ோ ൌ ݇ୀሾܻሿ݇ሾܻሿ   Ǥ (14)ݏ

Here, s is the flow rate defined as inverse of the mean residence time ߬ ௦. For the semibatch 

reactor, ሾܲୀሿ depends on the current conversion x and is given by 

 ሾܲୀሿௌ ൌ ݇ୀ݇  ቊͳ െ ݔ݁ ቆെ ݇݇  ቇቋǤ (15)ݔ

Starting from a randomly selected monomer on a segment, in both the reactor types, the mean 

length to a branch-point from macromonomer incorporation is estimated by comparing the 

monomer incorporation rate to the macromonomer incorporation rate: 

 ݈ ൌ ݇ሾܯሿ݇ ሾܲୀሿ Ǥ (16) 

For a segment growing at time ݐ in a CSTR reactor, ݐ, the time of creation of the incorporated 

macromonomer is estimated by considering the survival probability of macromonomers created 

at times prior to ݐ and is given by the cumulative distribution function (ܨܦܥ) 

ሻݐሺܨܦܥ  ൌ ሼെሺ݇ሾܻሿݔ݁  ݐሻሺݏ െ  ሻሽǤ (17)ݐ
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Similarly, for a segment growing at conversion ݔ in a semibatch reactor, the conversion ݔ at 

which an incorporated macromonomer was created is given by 

ሻݔሺܨܦܥ  ൌ ݔ݁ ൬݇݇ ൰ݔ െ ͳ݁ݔ ൬݇݇ ൰ݔ െ ͳ  Ǥ (18) 

 

Incorporation of unreacted diene 

Solely concentrating on the incorporated diene that eventually is incorporated in another 

growing chain at a later time before the end of the reaction, the mean-length to a branch-point 

of type ܾ ଵ for a chain growing at time ݐ in the CSTR reaction is 

 ݈ଵ ൌ ݇ሾܯሿ݇ ሾܦሿሼͳ െ  ሻሽ Ǥ (19)ݐሺ݇ሾܻሿݔ݁

The time at which this pendant once reacted diene is incorporated in another chain is given from 

ଵሻݐሺܨܦܥ  ൌ ͳ െ ݐ൫݇ሾܻሿ  ሺݔ݁ െ ଵሻ൯ͳݐ െ ሻݐ ሺ݇ሾܻሿݔ݁  Ǥ (20) 

For the semibatch reactor, concentration of available free diene depends on the conversion. 

Concentrating on a segment growing at conversion ݔ, mean length to a branch-point of type ܾଵ is given by 

 ݈ଵ ൌ ݇ሾܯሿ݇ ሾܦሿ ݔ݁  ൬݇݇ ൰ͳݔ െ ݔ݁ ቆെ ݇݇ ൫ݔ െ  ൯ቇ Ǥ (21)ݔ

Here, the exponential term in the numerator accounts for varying diene concentration with 

conversion, and the denominator accounts for the fraction of incorporated free diene that had 

the chance to be reincorporated before the final conversion ݔ. The conversion ݔଵ for this 

second incorporation event is given by  
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ଵሻݔሺܨܦܥ  ൌ ͳ െ ݔ݁ ቆെ ݇݇ ሺݔଵ െ ሻቇݔ
ͳ െ ݔ݁ ቆെ ݇݇ ൫ݔ െ ൯ቇݔ Ǥ (22) 

 

Incorporation of pendant diene 

The steady state concentration of a once reacted diene in the CSTR reactor is given by 

 ሾܦଵሿௌ்ோ ൌ ݇ሾܦሿሾܻሿ݇ሾܻሿ   Ǥ (23)ݏ

The mean length to a branch-point created by incorporation of a once reacted diene (݈ଶ) is 

given by comparing the polymerization rate to the incorporation rate of ܦଵ 

 ݈ଶ ൌ ݇ሾܯሿ݇ ሾܦଵሿ Ǥ (24) 

Considering a once reacted diene incorporation at a time ݐ, the chain on which this diene was 

first incorporated was created in the past at ݐଶ that follows 

ଶሻݐሺܨܦܥ  ൌ ሼെሺ݇ሾܻሿݔ݁  ݐሻሺݏ െ  ଶሻሽǤ (25)ݐ

In the semibatch reactor, the mean length to a branch-point created by incorporation of once 

reacted diene depends on the conversion ݔ at which a chain is growing and is given by 

 ݈ଶ ൌ ሾܯሿሾܦሿ  ቆ ݇݇ െ ݇݇ቇ ൭݁ݔ ቆെ ݇݇ ቇݔ െ ݔ݁ ቆെ ݇݇  ቇ൱ିଵǤ (26)ݔ

The conversion ݔଶ at which this incorporated ܦଵ had reacted for the first time is given by 

ଶሻݔሺܨܦܥ  ൌ ͳ െ ݔ݁ ൬െ ൬݇݇ െ ݇݇ ൰ ݔଶ൰ͳ െ ݔ݁ ൬െ ൬݇݇ െ ݇݇ ൰ ݔ൰ Ǥ (27) 

Reincorporation after termination 
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A fraction 
ససାೞ of growing chains terminates with a double bond in either of the reactors. For 

a chain growing at time ݐ in a CSTR and terminating with a double bond, a fraction ሼͳ െ exp ሺ݇ሾܻሿݐሻሽ is reincorporated before the chain exits from the reactor (ݐ ൌ Ͳ). The 

time of this reincorporation is decided from  

ሻݐሺܨܦܥ  ൌ ͳ െ ݐ൫݇ሾܻሿ  ሺݔ݁ െ ሻ൯ͳݐ െ ሻݐ ሺ݇ሾܻሿݔ݁  Ǥ (28) 

For the semibatch reaction with a chain ending with a double bond at a conversion ݔ, a fraction 

ቊͳ െ ݔ݁ ቆെ ುಽಳ ൫ݔ െ  ൯ቇቋ of chains ending with a double bond is reincorporated beforeݔ

the final conversion ݔ. The conversion for such a reincorporation  is given by 

ሻݔሺܨܦܥ  ൌ ͳ െ ݔ݁ ቆെ ݇݇  ሺݔ െ ሻቇݔ
ͳ െ ݔ݁ ቆെ ݇݇  ൫ݔ െ  ൯ቇ Ǥ (29)ݔ

 

Recursive construction of molecules 

For both reactors, we start by randomly selecting a reacted monomer (that is attached to some 

polymer molecule) as it exits the reactor in the CSTR case (arbitrarily chosen origin of time, ݐ ൌ Ͳ), or, at the end of the reaction in the semibatch case (ݔ ൌ  ). From the exponentialݔ

residence time in the CSTR,[13] the time ݐ at which the selected monomer reacted is given by 

ሻݐሺܨܦܥ  ൌ expሺݐ ݏሻǤ (30) 

We assign this ݐ by generating a random number uniformly between zero and one and setting 

the CDF equal to this random number. Analytical inversions are possible for all the ܨܦܥ  

expressions derived here. When considering the conversion ݔ as the time variable for semibatch 

reactor, the selected monomer has uniform probability of reacting between ݔ ൌ Ͳ and ݔ ൌ  .ݔ
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The two directions along the chain from the selected monomer are not equivalent because of 

the flow (in CSTR) or catalyst deactivation (in semibatch). Each segment has a unique end at 

which the termination event happens (the catalyst detaches). We denote this end the 

downstream end and the opposite end (at which the initiation starts) is designated as the 

upstream end. The average number of monomer in the downstream direction for either of the 

two reactors is given by considering the ratio of the monomer addition rate to that of the 

termination and is given by 

 ܰௗ௪ ൌ ݇ሾܯሿ݇ୀ  ݇௦Ǥ (31) 

The average number of monomer in the upstream direction is calculated by considering the 

ratio of the monomer addition rate to that of initiation, and for the CSTR case, is given by 

 ܰ௨ ൌ ݇ሾܯሿ݇ୀ  ݇௦   ǡ (32) ݏ

and in the semibatch case by 

 ܰ௨ ൌ ݇ሾܯሿ݇ୀ  ݇௦ െ ݇ௗ  Ǥ (33) 

Because of the high reactivity of metallocene catalysts, the synthesis of a primary segment 

(from initiation to termination) can be considered as instantaneous. Since the monomers are 

added at the catalyst site at a constant rate, we generate Flory distributed random numbers from 

these average values and use them as the upstream and the downstream segment lengths from 

the randomly chosen monomer. 

For the moment concentrating on the upstream direction, we calculate the mean distance to a 

branch-point created from the macromonomer insertion, ݈ from Equation 16; mean length to 

a branch-point formed by incorporating a free diene that reacted for the second time at a later 

stage of the reaction, ݈ଵ from Equation 19 for CSTR (or from Equation 21 for semibatch); and 
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the mean distance to a branch-point formed by incorporating a pendant diene that was part of 

another chain, ݈ଶ from Equation 24 for CSTR (or from Equation 26 for semibatch) case. The 

mean distance to a branch-point created from any of these three possibilities is given by 

 ݈ ൌ ቆ ͳ݈   ͳ݈ଵ   ͳ݈ଶቇିଵǤ (34) 

The distance to the next branch-point is determined by generating a Flory distributed random 

number with average given by ݈. If this distance is less than the current segment length, a 

branch-point is considered at that distance. The branch-point is due to macromonomer insertion 

with probability 

ሺ݉ሻܾݎܲ  ൌ ݈݈ ǡ  (35) 

and a similar method is applied for calculating the probabilities of the branch-point being due 

to incorporation of a free diene or due to incorporation of a pendant diene attached to another 

chain segment. 

Once we have decided on a branch-point, we move our focus recursively to the incorporated 

branch. If the branch-point is due to macromonomer incorporation, we only need to consider 

the upstream direction (since macromonomers are grafted at the terminal double bond). We 

assign the time of synthesis of the grafted macromonomer for the CSTR from Equation 17 or 

the conversion of the macromonomer from Equation 18. As with the initial segment, we 

associate a length with this segment and decide if branches should be added. 

If the branch is created through incorporating a free diene that subsequently got incorporated in 

another growing chain, we assign the time (or conversion for semibatch reactor) from Equation 

20 (or from Equation 22) to the chain that incorporated the diene for the second time. For the 

newly added segment, we need to consider both the upstream and the downstream directions. 

For a branch-point created by incorporating a pendant diene, the calculation is similar. 
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However, the time is now is determined from Equation 25 for the CSTR or the conversion from 

Equation 27. 

Moving back to our original segment, we repeat our attempt to find the next branch point along 

the upstream direction from the current branch point. If the next branch point is predicted to lie 

beyond the end of the current segment, we conclude there are no more branch points and the 

search for branch points ends. 

Starting from the first selected monomer, we follow the same steps along the downstream 

direction in creating branches. When the next branch-point in the downstream direction is 

predicted to be outside the segment, we decide if the segment terminated with a double bond 

and if so, if it was reincorporated in another growing chain at a later time (or conversion) 

following the probability expressions in the subsection titled “Reincorporation after 

termination”. If the chain is decided to have been reincorporated, new segments are grown from 

the terminal monomer in both the upstream and downstream directions with time given from 

Equation 28 for the CSTR (or conversion from Equation 29 for semibatch reactor). 

Since our attention is always on one segment considered to have grown instantaneously, the 

algorithm sketched above can be coded in a simple recursive form. Since we start with a 

randomly selected monomer, the algorithm selects molecules in a weight-biased ensemble, with 

each of the generated molecules carrying the same weight fraction. 
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Figure 1. Schematic reaction scheme for ethylene-diene copolymerization with a metallocene 

catalyst: (a) propagation, (b) termination with a terminal double bond (macromonomer), (c) 

termination with a saturated chain end, (d) incorporation of macromonomer to generate three 

functional long-chain branches, and (e) incorporation of pendant diene to generate (f) four 

functional long-chain branches. 
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Figure 2. (a) Number distribution at ݔ ൌ ͷͲ and ሾܦሿ ൌ ͲǤʹͻͶ mol/L. The fit line has 

the functional form ͷͷǤʹ exp ቀെ ெହǤൈଵళቁ ܯ ଶǤସଽ for which data aboveିܯ ൌ ʹ ൈ ͳͲହ g/mol 

(indicated by the arrow) was used. (b) Weight averaged molar mass as a function of ሾܦሿ for ݔ ൌ ͷͲ. The line shows the fit ܯௐ ൌ ͶͳǤʹ ൈ ͳͲଷሺͳ െ ሾܦሿȀͲǤ͵ͲͻͷሻିଵǤହ. The data for ሾܦሿ  ͲǤʹͶ mol/L  (indicated by the arrow) was used for the fit. 
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Figure 3. (a) ܯ diverges as a power of İ. The line is a fit ܯ ൌ ͳǤʹ ൈ ͳͲହ ɂିଶǤ. The 

data for the largest two values of İ was excluded in the fitting. (b) Initial diene concentration 

required to reach gelation as a function of reaction time in the semibatch reactor. 
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Figure 4. Diene links per primary segment at gelation (at the critical diene concentration) as a 

function of time of reaction. Inset: Mole fraction of incorporated diene as a function of reaction 

time. 
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Figure 5. Weight averaged molar mass as a function of diene concentration in CSTR with 

residence time ߬௦ ൌ ͳͲͲ s. The line is a power-law fit yielding ሾܦሿ ൌ ͲǤͲ͵͵ሺͳሻ mol/L and 

exponent -0.513(2). For the fit, only the data above ሾܦሿ  ͲǤͲͳ mol/L (indicated by the arrow) 

was considered. 
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Figure 6. Critical diene concentration ሾܦሿǡ estimated from power-law fit of the ݇-th moment 

of the molar mass  for resins generated in CSTR conditions with ߬௦ ൌ ͳͲͲ s. Inset: Ratio of 

critical diene concentrations estimated from successive molar mass moments as a function of ߬௦. 
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Figure 7. Number distributions for the indicated diene concentrations in CSTR with ߬௦ ൌ ͳͲͲ 

s. For the highest diene concentration, we show two different local power-law trends that 

describes the data in the intermediate range (with power -3.2) and in the high molar mass tail 

(with power -4.78). 
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Figure 8. Number distribution (symbols) with ሾܦሿ ൌ ͲǤͲʹʹ mol/L and ߬ ௦ ൌ ͳͲͲ s in CSTR. 

The solid line is a fit of the form Equation 9 with ߬ଵ ൌ ͵ǤʹͲሺͳሻ, ߬ ൌ ͶǤͺሺʹሻ, ܯ ൌ ͷǤͺሺʹሻ ൈͳͲହ g/mol, and ܯ ൌ ͳǤሺͳሻ ൈ ͳͲ଼ g/mol. Only data for molar mass greater than ͺ ൈ ͳͲସ 

g/mol (indicated by the dashed arrow) was used for the fit. 
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Figure 9. (a) Exponents that describe the number distribution in the intermediate molar mass 

(߬ଵ), and  in the high molar mass (Ĳ) regions as a function of closeness to the gel-point İ  in 

CSTR with ߬ ௦ ൌ ͳͲͲ s. (b) The cross-over molar mass between the two power-law regions ܯ, and  the characteristic molar mass ܯ as a function of İ. The dashed line is a fit of the 

form ܯ ൌ ͷǤͶ ൈ ͳͲ ିߝଵǤଶ଼ሺሻ  in the drawn region. 
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Figure 10. Ratio of diene concentrations at which successive moments of molar mass is 

extrapolated to diverge as a function of ߬௦ for the case where macromonomer incorporation 

is not allowed. 
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Figure 11. Critical diene concentration as a function of residence time: Open circles and filled 

squares correspond to the case with macromonomer incorporation (with ݇ ൌ ͳ L/mol-s) 

and to the case where macromonomer incorporation is prohibited, respectively. Inset: Estimated 

number of diene links per (weight averaged) segment at gelation. 



    

 - 45 - 

 

Figure 12. Polydispersity index as a function of ߬௦. Square symbols are PDI without diene, 

circles are extrapolated values at critical diene concentrations corresponding to the relevant ߬௦. Open symbols are from simulations with ݇ ൌ ͳ L/mol-s, closed symbols are from 

simulations with ݇  ൌ Ͳ. Inset: Ratio of PDI at critical diene concentration to diene-free 

reactions. Open and closed symbols respectively refer to the case with and without 

macromonomer incorporation. The dashed line is a fit for ݇ ൌ Ͳ data of the form ͳǤͶ  ͲǤͺ expሺെͶͻͲ ߬௦ሻ.  
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Figure 13. Dynamic scaling for relaxation in the melt for semibatch reactor: (a) Shear stress 

relaxation function and (b) dynamic viscosity show power-law behaviours in time and 

frequency respectively. (c) The zero shear viscosity and (d) the recoverable compliance 

diverges as a power of closeness to the gel point. 
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Figure 14. Dynamic scaling for relaxation in the melt for the CSTR case: (a) Shear stress 

relaxation function and (b) dynamic viscosity show power-law behaviours in time and 

frequency respectively. (c) The zero shear viscosity and (d) the recoverable compliance 

diverges as a power of closeness to the gel point. 
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Figure 15. Molar mass distributions at fixed separations from gelation at İ=0.79 and İ=0.07 for 

CSTR (lines) and semibatch (symbols) reactors. Inset: Molar mass distribution in traditional 

linear-log scale. 
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