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Because of the familiarity of gelation theories in polycondensation reaction of multifunctional
groups, often the gel-point is defined as the point of diverging weight averaged molar mass. We
present an industrially-relevant counter-example to this common perception. Chain-growth
polymerization in realistic reactors introduces history dependent crosslinking probability. For
copolymerization of a two functional monomer (ethylene) with a four functional comonomer
(non-conjugated diene), we show from a Monte Carlo scheme that standard gelation scaling

exponents remain valid for a semibatch reactor. However, for syntheses in a continuous stirred
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tank reactor (CSTR), all commonly measured molar mass moments (number, weight and "z'-
averaged moment) remain finite at the gel-point; the first moment to diverge is the fourth
moment. Hence, identification of the gel point from experimental observations is difficult, and
cannot be achieved through monitoring of the weight averaged molar mass. We use a numerical
scheme based on the tube model of polymer melts to predict the rheology of the generated
molecules. Stress relaxation follows a power-law decay, but due to dynamic dilution effects the
CSTR resins exhibit much slower increase in the zero shear viscosity as the gel point is

approached as compared to the semibatch reactor resins.



1. Introduction

In many branched polymer synthesis, certain reaction conditions lead to gelation with diverging
molar mass of the largest molecule (network formation). Since the seminal analysis &f Flory
and Stockmayéef! step-growth polymerization (or polycondensation reacdfiserved as the
archetypal example of this sol-gel transition in polymer synthesis. During polycondensation
reaction involving monomers with functionality>f3, the molar mass of the largest molecule
diverges as the reaction probability p of the functional groups reaches a certain critical value
p.. Close to the gel point, the resins exhibit universal features in both the static progétties
(high molar mass tail of the molar mass distribution follows a power-law with a universal
exponent, the weight averaged molar mass diverges as a power of normalized distance to the
critical probability) and in dynami€! (relaxation follows a power-law in time, incorporating
self-similar distribution of modes). The success and simplicity of the statistical description of
gelation in polycondensation has often led to usage of the same results in other polymerization

processes, often without any real justification.

In classical models of gelation via a polycondensation reaéttdi§! one usually considers

eqgual probability of reaction for each of the functional groups. Similarly, in vulcanization one
considers equal probability of crosslinking of preexisting chains. This assumption of equal
probability of crosslinking fails when one considers realistic reactors. In chain growth
polymerization (or, addition polymerizatidf)unsaturated monomers add onto the active site

of a growing chain one at a time. In many synthesis processes, polymerization and crosslinking
occur in the same reactor: a monomer with multiple terminal unsaturated bonds first gets
incorporated in a growing chain. At a later time, another terminal unsaturated bond of the same
monomer can be incorporated in another growing chain leading to brandkinge show

below, the probability of such branching becomes dependent on the details of the reaction
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history of this particular monomer. Different multifunctional monomers acquire different
crosslinking probability because of the different available times for the second reaction to
happen in the reactor. So far, a systematic study looking at the scaling properties in chain growth
polymerization as the gel point is approached has received little attention, mainly limited to
free-radical polymerizatiol§;*? often with the a priori assumption that the gel point is defined

by divergence of the weight-averaged molar mass.

In this paper, we consider copolymerization of a bi and a tetra functional monomers (phrased
in terms of ethylene and non-conjugated diene) with a metal catalyst in realistic reactor
conditions: in a semibatch reactor and in a continuous stirred tank reactor (ESTR).
Comparing with polycondensation reactions, the ethylene monomer is equivalent to a
bifunctional polycondensation monomer in the sense that its incorporation into a growing
polymer gives rise to locally linear chain sections. In contrast, the diene comonomer is
equivalent to a four-functional polycondensation monomer in that, when all groups are reacted,
a branchpoint is formed linking four linear chain sections at their ends. In a batch reactor, all
reactants are placed in the reactor at the start of the reaction. In a semibatch seae of

the gaseous monomer types are replenished by maintaining a constant gas pressure during the
reaction. In the CSTR, all reactants are introduced in the reactor at a constant rate and product
resin is removed continuously. We assume ideal mixing for both reactors here. A small amount
of long-chain branching (LCB) can drastically alter the flow properties of polymer molétules

16l and is often exploited for better processability when shear thinning or extension hardening
at low rates are desired. In the past few decades, constra@ioeétgy metal catalysts’! like
metallocenes, have allowed synthesis of polyolefin resins of well-defined structure and
comparatively narrow polydispersity. Under certain reaction conditions, vinyl terminated
segments (macromonomers) can be incorporaethother chain growing at a later tifiie

forming three-functional branches. However, the density of such macromonomer-induced

branches is typically small. Non-conjugated dienes (small molecules, often short linear alkenes,
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with two terminal double bonds at each end) can be used to increase the amount of branching
in polyolefin resind!®2% Contrary to the single terminal double bond in a macromonomer,

copolymerization with diene introduces pendant double bonds at each of the incorporated diene
sites. Thus copolymerization with diene provides a route to create much more branched resins

than is possible in homopolymerization of olefins.

Understanding and eventually predicting the molecular structures created during this
copolymerization can help in optimizing reactor conditions for desired flow properties of the
manufactured resif® Equally importantly, such a knowledge would help in avoiding reactor
fouling (while often high level of branching is preferred, reaching post-gel conditions in the
reactor results in reactor downtime and costly cledfitiss). Because of its commercial
relevance, ethylene-diene copolymerization (often considered along with another comonomer
like hexene, octene or propylene to control crystallinity by introducing short-chain brdfighes

has been the focus of a number of pat&ém¥ and publication&%?%31 However, the
theoretical modeling of this important class of polymerizattold! has been mostly limited to
calculations based on the method of moments. In this methodology, the branch-formation step
couples the equations relating different moments. The set of infinite equations is reduced to a
smaller set of equations (often just two), by introducing a closure hypothesis for higher
moments, or by assuming some particular form of chain length distribution beyond a certain
molar mass. The gel point is identified by considering either the divergence of the weight-
averaged molar ma&¥l or the non-existence of any real root for the weight averaged molar
mas§? from the closed equations with untested closure hypothesis. In general, the divergence
of molar mass of the largest polymer does not ensure concomitant divergence of the second
moment of the molar mass distribution. Close to gelation, the number distribution of molecules
scales as a powéaw of molar mass with some exponent 1. The second moment of the molar

mass distribution at gelation is the first moment to diverge only for 2 < t < 3. For

polycondensation reaction, t satisfies this inequality. But as we show in this paper, this is not
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the case for all polymerization schemes. Another possible route for calculating the molar mass
distribution is direct numerical solution for the “population balance” of different species in the

reactor (e.g. using finite element methd¥y. We expect that this method, properly applied,
would result in similar conclusions to ours. However, for the particular set of reactions
considered in this work, the balance equations would need to track the concentration of species
varying with respect to five separate variables (degree of polymerization, number of branches
of two different types, number of unsaturated groups of two different types), paying close
attention to the tails of the distribution for each variable. We believe that under such
circumstances our Monte Carlo approach detailed below is a competitive method, despite the

care needed in obtaining a statistically significant number of large molecules.

A route to gain detailed information about the structure of the molecules, which does not suffer
from the closure problem of moment-based calculations, is a stochastic simulation of the
polymerization process. Two quite distinct stochastic approaches have been developed for
generating polymers from a certain reaction scheme. The first, direct stochastic simulation of
the rate equatiorid? remains computationally costly with much of the computational cost being
used in creating a library of branched structures that would be present in steady state. The
second, stochastic Monte Carlo sampling at the segmentfefféstarts with calculations of

the probabilities for different branching scenarios. Armed with the probabilities of various
branching events, one can avoid the necessity of having a library of shapes and can generate
representative in silico molecules one at a time. By generating a large ensemble of molecules

for given reaction conditions, one can calculate both the structural and flow properties.

In the following section (Section 2), we start by introducing such a segment level Monte Carlo
scheme for ethylene-diene copolymerization with a metallocene catalyst. Next we use the
Monte Carlo scheme in Section 3 to generate numerical ensembles of molecules and probe the

static properties of the resins as gelation is approached with increasing diene concentration. The



sol-gel transition can be viewed as a geometric phase transition and has been modeled as a
percolation transition on a latti€€:*% In the simplest form of the bond-percolation mdeéfel,

one considers a regular lattice (for example, a cubic lattice) with bonds forming between
adjacent lattice points with some fixed probability p. The size of the largest connected cluster
diverges at a critical value of probability and the various measurable quantities scale as
power-laws close t@. with exponents that are independent of the details of the underlying
lattice. The mean-field description of the classical gelation Hiétleian be viewed as a
percolation on a Bethe lattice (Cayley tree) and, hence, neglects loop formation. During
polymerization under usual conditions, except in a narrow window that decreases with the
segment length between branchpolfifsthe influence of loops can be neglected and the
exponents are expected to be mean-fidd- Polycondensation of tri-functional oligomers of
increasing length has been used to experimentally observe the exponents changing from the

percolation-like to mean-field-like valu&gl

Our modeling neglects loop-formation and hence, at a first glance, is expected to give classical
mean-field exponents. However, percolation models (either critical percolation on a regular
lattice or mean-field gelation on a Bethe lattice) typically assumes a fixed probability of bond-
formation. This is an appropriate choice for vulcanization, but not for realistic reactors
considered in this work. With a fixed rate of incorporation of a pendant diene, a polymer
segment that is created just before the reaction ended has effectively zero probability for cross-
linking at the incorporated pendant diene sites. Similarly, a polymer segment that survives in
the reactor for very long times will have all the pendant dienes eventually incorporated in
another growing segment. For the parameter space explored in this work, we find that the
exponents for the divergence of the static structures remain classical mean-field-like in the
semibatch reactor with the weight averaged molar mass diverging as gel-point is approached.
Changing the parameters only affects the critical amplitudes without modifying the exponents.

The divergence of the molar mass in the CSTR case is dominated by a very small population
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of molecules that remain in the reactor for longer than average duration. All commonly

measured low-order moments of molar mass are found to remain finite at the gel-point with the
4-th moment of the molar mass being the first moment to diverge. Associated with these finite
lower-order moments are exponents that are different from the classical mean-field model for
gelation. Unlike the semibatch case, the exponent describing the power-law region of the molar

mass distribution reaches a constant value only very close to the gel-point.

Close to gelation, the shear relaxation modulus decays as a power-law [RSkiffiee
dynamical exponents are not universal and cannot be calculated without additional assumptions
about the relaxation dynamics. In Section 4 we use the numerical ensembles of molecules
generated from our Monte Carlo simulations to calculate the rheological responses in the melt
state using a numerical schdffiebased on the tube theory of entangled polyiiéras the

gel point is approached for resins from either of the reactors, the shear relaxation moduli were
found to decay as power-law in time (over suitable time range that increases with proximity to
the gel point) with very similar exponents. However, the zero shear viscosity or the recoverable
compliance for resins synthesized in CSTR shows much gentler increase as the gel-point is

approached when compared to the resins synthesized in semibatch reactor.

We end this paper (Section 5) with a detailed discussion on the relevance of our modeling to
experimental synthesis of ethylene-diene copolymers, and to other chain-growth

polymerization processes.

2. Monte Carlo scheme

2.1. Reaction Kinetics

We consider a set of reaction steps that has been used to describe polymerization of polyolefins

with metallocene catalyst$! supplemented by reaction steps involving non-conjugated



dienel® Schematically the reaction steps are showFigare 1. An activated catalyst binds to

a monomer to initiate polymerization. Ethylene and unreacted diene are incorporated with
respective rate constankg andk,, . The catalyst detaches itself from the growing chain
leaving behind a double bond with rdte or a saturated chain end with réte Molecules

having terminal double bond, macromonomery,(&re incorporated in a growing chain with

rate constankp;.5. Irrespective of the presence or absence of the terminal double bond,
molecules can be incorporated in a growing chain with rate corisjasnt at the point where

a once reacted diene leaves a pendant double bond. For semibatch reactor, we assume that the
catalyst is deactivated at a ratg during termination events without assigning any particular

mechanism behind this deactivation process.
2.2. Monte Carlo sampling

We consider the population balance equations implied by the rate equations and analytically
compute the concentrations of the various species and the probabilities of branch formation.
Starting from a randomly chosen reacted monomer in the final product, we use these
probabilities to recreate a probable life history of a single molecule. Repeating this a (potentially
large) number of times, we generate an ensemble of molecules that collectively follows the

analytically determined probabilities of branching.

We consider a well-mixed CSTR reactor at steady state or a well-mixed semibatch reactor with
monomer being continuously replenished. For the semibatch reactor, the monomer
concentrationNM] remains fixed, but the concentration of active catdly$t) and that of
unreacted dieng¢D](t) decreases with time. For this case, it is convenient to consider the
monomer conversion (concentration of reacted mononi#f; | normalized by the equilibrium
monomer concentratio/]) as the proxy for time. Note that the monomer conversion defined

in this way can be larger than unity. The monomer conversion x and the time t are related by



kp [Y] 0

k. [1— e~Fat], 1)

X =

Here,[Y], is the initial catalyst concentration. We denote the final monomer conversion in the

semibatch reactor by and the corresponding time of reactiontpy

Once a free diene is incorporated in a growing chain, there is a pendant double bond created.
We denote the density of such pendant double bond from once-incorporated difpg as
Concentrating on a particular growing chain, we will distinguish between two different kind of
diene-induced long-chain branching: (i) the growing chain can incorporate a free diene creating
a pendant diene. The pendant diene is incorporated in another chain growing at a later time. We
denote this branching event as of typg. (ii) the growing chain can incorporate a pendant
diene that is already part of another chain grown in the past. We denote this branching event as
of typebp,. Chains ending with a terminal double bond can be incorporated in another growing

chain at a later time. We term this branching from macromonomer as df,type

The derivation of the Monte Carlo scheme follows closely existing sttidi&®! for other

polymerization scenarios and we only present an outline of the algorithm in the appendix.
2.3 Simulations

For our numerical explorations, we chod#¢| = 0.3 mol/L, k,, = 500 L/mol-s, k,, = 30

L/mol-s, k- = 0.2 /s, k, = 0.005 /s, kp;cg =1 L/mol-s, andkp; g = 0.2 L/mol-s. The
monomer molar mass is chosen to be 28 g/mol corresponding to that of ethylene. Because the
relative concentration of incorporated diene remains very small even at gelation, we neglect the
molar mass contribution from diene. For the CSTR calculations, we explicitly consider an
active catalyst concentration ff] = 10~3 mol/L. For the semibatch reactor, we consider a
catalyst deactivation ratk; = 1073 /s. While the orders of magnitude of these parameters
correspond to some previous modeling of experimental resins with metallocene céfthilysts,

individual values of the parameters are probably not so relevant. Only a small number of

-10 -



nontrivial combinations of these parameters determine the long-chain branched structure of the
molecules*’ For both the CSTR and the semibatch reactor, we rgtarting from a small
concentration (18 mol/L) until the point we can no longer reliably estimate the moments of
the molar mass or until the level of recursion reaches a predetermined value (see below). For
the CSTR case, we consider a number of different mean residencedigaesSimilarly, for

the semibatch reactor, we consider a number of different final conversions.

With increasing diene concentration, some of the molecules can become highly branched with
many segments. Equivalently, our recursive algorithm can reach many levels of recursion,
eventually exceeding the available stack size. For a particular parameter set, if the level of
recursion reaches more than 260 during generation of a molecule, we reject the molecule. If
two such rejections are found while generatingrh@lecules, we consider numerically being
close enough to the gel-point and do not proceed any further in increasing the diene
concentration. The maximum recursion level of 260 is arbitrarily fixed from the observation
that for recursion levels slightly more than this, the memory requirement becomes larger than
that is available (2GB) for the particular computer in which simulations were performed. For
the semibatch reactor, this exhaustion of available stack is the limiting resource that determines

how close we can approach the gel-point.

For each values dD], we calculate the first five moments of the molar mass by considering

10° molecules (the choice of the first five moments was from some exploratory simulations that
suggested that for the CSTR reactor, the divergences of the fourth and the fifth moments occur
at the same diene concentration with the lower moments remaining finite at that concentration).
From 9 separate such simulations, we calculate the error estimates on the molar mass moments.
If the relative error in the fourth moment was found to be larger than 1%, we generate another
9x1C® molecules and recalculate the averages and error estimates using all the additional

molecules generated. We continue this process of increasing the generated number of molecules
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until we either reach error estimates within our chosen criteria or the number of molecules
generated becomes larger thafl 1This provides a second criterion for how close to the gel-
point we can go numerically: If with $0nolecules we cannot estimate the fourth moment
within 1% relative error, then we discard the simulation. For the CSTR case, this lack of

convergence of higher moments decides how close we can approach the gel-point.

Using the highest calculated decade in diene concentration, we use the nonlinear Levenberg-
Marquardt algorithit® to fit the molar mass moments in a power-law form. The initial values

for the critical diene concentrations were set from a linear extrapolation to zero value of the
inverse of the moment and the initial values of the amplitudes were set to the value of the molar

mass moment at low diene concentration.

For the CSTR case, we also separately considered catalysts that do not allow macromonomer

incorporation (i.ekp; -5 Was set to zero with all other rate constants kept the same).

For a single value of conversion in semibatch reactor and a single residence time in CSTR, we
use the generated molecules at various diene concentrations to calculate the rheological

responses and investigate the dynamical scaling close to gelation.

3. Scaling of molar mass distributions

Concentrating on the pre-gel conditions, we define the closeness to the gelffloint as

g= o 2)

with [D]. being the critical concentration of diene at which the characteristic molar mass
(defined below via Equation 3) diverges. Clos@lify., the number distribution of polymers of

molar mass is expected to scalelds
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(M) ~ M~ f (2), 3)

with an exponent t. The cut-off functiorf is a function which is equal to 1 f&f < M, and
which decays rapidly fa¥l > M_,,,, so thatM,,,, is a characteristic molar mass above which
the power-law scaling is suppressed. As gelation is approadhggd, diverges with an

exponent 1/ as
Mcpar~ e~o, (4)
The moments of molar mass

_ [ on(m) M¥ dM

M = T 400D M7 amr

(5)

diverge for allk > t — 1 as powers (or logarithmically whén= t — 1) of M_;,,- and hence

as powers ofe from Equation 4.

In both lattice-percolationr(= 2.2 in 3-dimensions) and mean-field gelation mede= 5/2),
the first (integer) moment to diverge is the weight averaged molar Mass M,,,, defining

another exponent y
MW ~ S_y. (6)

Keeping the possibility open that the first moment to diverge may not be the second one, we

define a more general version of this power-law dependence as
My ~ g7 Vk, )

In trying to estimate the exponents, we first calculate different mongnfer k <5 as a

function of [D].

We emphasize here that the gel point is correctly defined as the point Mjlgrediverges,
irrespective of the exponent Other works on branched polymer formation in C8¥#! have

noted a variation in an apparent expornemith reactor variables and have (erroneously)
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defined gelation as the point where t decreases past a value of 3. This, of course, is the value of

T below which the weight averaged molar mass diverges, but it does not define the gel point.
3.1 Semibatch reactor

For the semibatch reactdfigure 2(a) shows the number distribution of molar massrfor

50 (t; =~ 105 s) and[D], = [D](t = 0) = 0.294 mol/L. The high molar mass end of the data
can be described well over three decades with a power-law dependence and an expatrential ¢
off function characteristic of mean-field theBtyThe exponent = 2.492(2) from the fit in

Figure 2 is close to the mean-field prediction of 5/2.

Figure 2(b) shows the weight averaged molar mdgs as a function of initial diene
concentration. The fit gives an expongnt 1.005(8) for the scaling oMy, that is consistent

with the mean-field prediction of 1. The fit also provides estimate of the critical diene
concentration at whichf,, diverges a$D].= 0.3095(2). Repeating the fitting exercise with the
number averaged molar maag, (first moment of the molar mass distribution) gives an
apparent critical concentrati¢p].=1.04(2), showing that,, remains finite as the gel-point is
approached. For moments higher than 2, the fitting retrieves the same critical diene

concentration as withfy,. In particular, fitting of third momen, predicts[D].= 0.3097(2).

From fitting the molar mass distribution with mean-field exponential cufFeffure 2), we
calculatedM,,,,,- for different values ofD], and hence for different Figure 3(a) shows the
plot of M., as a function ot. The fit gives 1/c = 2.06(2), a value close to the mean-field

prediction of 2.

From a series of simulations at different final conversions, we calculated the critical diene
concentration required for gelation at each of these final conversions. Increasing the time of
reaction leads to gelation at lower initial diene concentrations (Figure 3b). A physically more

meaningful quantity is the average number of diene links per primary segment (defined as the
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segment generated from initiation until termination) at gelation threshold. To calculate the
number of links per primary segment, we start with the concentration of twice reacted diene at

a certain conversion

k k
— __pD DLCB
lpD KpLca 1 —exp( kp x) 1—exp(— _kp X)

[D.](x) = [D]

0
kprce — kpp kpp kpice

The ratio of[D,] and [M]x,; evaluated atc gives the number of diene link per reacted
monomer. In order to find the average number of links per primary segment at the gel point, we
set[D], as the critical value extrapolated from scaling\pf and multiply by the degree of
polymerization of a primary segmest k,[M]/(k- + k). Figure 4 shows that at small
conversions, the number of links per primary segment approaches the simple estimate 1/2 as
expected for vulcanization of linear polymers. In semibatch reactor, for short reaction times,
the macromonomer incorporation plays no role (their density is effectively zero). With
increasing reaction time, the presence of three functional macromonomer induced branching
reduces the number of diene induced four functional links required to reach gelation. The inset
of Figure 4 shows the mole fraction of diene to that of monomer in the resins at gelation,
estimated as[D].(1 — exp(—kppx;))/([M]xs). For short reaction times, most of the
incorporated dienes remain as pendant short chains and do not have the possibility of
undergoing the second incorporation to produce a long-chain branch. At conwersi&00

(tr = 521 s), for the particular values of rate constants we have chosen in this work, diene
occupies 0.002 mole fraction. Even at this high conversion, only about 7% of these incorporated

diene contributes to branch-points.
3.2 Continuous stirred tank reactor

The approach to gelation in CSTR conditions turns out to be quite different from classical mean-

field predictions for polycondensation reactions. First, we concentratg,os 100 s. The
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weight averaged molar mass can be fit to a power-law to find an apparent critical diene
concentratiojD].=0.0373(1) mol/L Figure5). However, higher moments diverge before this
concentrationFigure 6 shows apparefiD],. calculated by fitting power-law divergence to the
first five moments of the molar mass. In the figure, we denote the critical diene concentration
estimated from theé-th moment a [D].,. These estimates ¢D]., suggest that the first
moment to diverge is the fourth momeni@j.=0.0237(3) mol/L. The inset of Figure 6 shows

the ratios of apparefiP]. calculated by fitting a power-law to successive moments of the molar
mass for a number of different,. Fort,.; = 100 s, the critical diene concentration predicted
from the power-law fit foM, is ~15% higher than that estimated from the power-law fit for

M,.

In Figure 7, we plot the number distributions for several different diene concentrations, and
with 7, = 100 s. In calculating these distributions, we uged 101° molecules to resolve

¢y (M) reliably at the high molar mass. Even at the highest diene concentration considered,
the data looks qualitatively different from the semibatch case (Figure 2). At high diene
concentrations, two distinct power-law regions can be identified (indicated by dashed lines in

Figure 7) with exponents that depend[Dr).

To accommodate two power-law features, we fit a functional form

dn(M) = % l_exfg][ﬁ]l ) exp (— ﬁ) 9

with a cross-over molar masg,. For M < My, ¢ (M) decreases a¥d ~*t. For M > My,
¢y (M) decreases a¥~* and eventually decreases exponentially beyMngl,,.. Figure 8

shows the number distribution along with fit of the form in Equation $f¢r= 0.022 mol/L.

The variations of the exponents t and the molar massés, andM,,;,,, with the distance to

the gel-point are shown in Figure 9. The cross-over molar makk can be well-described for
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small € by a linear form My = 6.09(7) x 10° — 5.21(2) x 10° . The characteristic molar
mass diverges as 128(®), Both the exponents andr vary with . A linear fit from the lowest
four ¢ data gives the limiting; = 2.48(1) andt = 4.48(2) at the gel-point. Since only the
moments of molar mass witkh > t — 1 diverges, this is consistent with our previous finding

in Figure 6 that the first three molar mass moments remain finite at the gel-point.

We can qualitatively understand the long-tailed behavigry@) by noting the exponential
distribution in the residence time of individual molecules. Even in the absence of diene, a strand
destined to remain for a long duration in the reactor has higher probability of being
reincorporated in another growing strand. Since each of the primary strands are on average of
the same length, molecules with longer than average residence times are typically more
branched, resulting in higher molar mass from this macromonomer incorporation process. In
the presence of diene, any pendant diene in a long-lived segment is almost certain of leading to
a long-chain branch and hence to molecules with larger molar mass. To isolate the effect of
diene, we have separately simulated the case where macromonomer incorporation is not
allowed &p.-g = 0). This can be achieved experimentally by using a catalyst that has very low
reactivity for macromonomersFigure 10 shows that even without macromonomer
incorporation, the first moment of molar mass to diverge is the 4-th moment. Though in this
case, the estimates @], from the third moment is only about 5-10% higher than that from

the fourth moment.

Figure 11 shows the estimated critical diene concentration (estimates from the 4-th moment of
the molar mass) as a function gf,; both with (open circles) and without (filled squares)
macromonomer incorporation. For smatl..,, even when allowed, macromonomer
incorporation induced branching has a low probability. Hence, the simulations predict the same
[D]. irrespective of whether macromonomer incorporation is included or not. Since the

probability of branch formation from incorporated diene increasesmwithin both casefD].
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decreases with,... When macromonomer incorporation is allowed, molecules residing for a
long duration in the reactor also acquire 3-functional branches. This lowerfDihe
significantly at larger,..; compared to the case where macromonomer incorporation is not
allowed. The insein Figure 11 shows the estimated number of 4-functional branches from
diene per primary segment at gelation, estimatég ag k,p [Y1[D]./{(k= + ks) (kpcplY] +

s)}. Without macromonomer insertion (solid symbols), the gel point is reached when the
average number of 4-functional branches (H links) reaches about 0.1 per primary segment.
Whenrt,, is large and macromonomer incorporation is allowed, the average number of diene
branches required to reach gelation can be extremely smati, 56t 1000 s andkp; 5 = 1

L/mol-s, only 0.014 diene induced branches per primary segment on average suffices to reach

gelation.

Polymer resin molar mass distribution is often characterized by a single measure of average
(typically weight averaged molar ma¥sg,) and a single measure of the width of the distribution
(traditionally polydispersity index or PDI, defined as the ratidfgf andMy). When gelation

is accompanied by divergind,,, as in the semibatch reactor considered in this paper, the PDI
also diverges at the gel point. By contrast, with diverging fourth moment at gelation, PDI
remains finite in the CSTR cadeigure 12 shows the PDI without diene and with the diene
concentration set to the critical concentrat[®j. (from extrapolation oM;, and M, data
obtained at lower diene concentrations). In the absence of diene, with increagitige PDI

with macromonomer incorporation (open squares) increases. In the absence of macromonomer
incorporation, the PDI remains close to a value 2.0 in the absence of diene. At the gel-point, the
PDI increases compared to the diene free case. In the inset of Figure 12, we show the ratio of
the PDI at critical diene concentration normalized by the PDI at zero diene concentitation.

relative increase in maximum PDI that can be achieved in the pre-gel state in the absence of
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macromonomer incorporation4s 2.5, when the residence time is large. With macromonomer

incorporation, the relative growth in PDI is much lower.

4. Dynamic scaling

Close to gelation, the stress relaxation and rheological responses also follow scaling
forms650the shear stress relaxation functdf) behaves like a power-law in tinge)
G(t)~t™, (10)
and the complex viscosity (w) follows a powertaw in frequency (®)
n*(w)~ 0¥ L. (11)
As the gel point is approached, the zero shear visogsitiwverges as
Mo~ €7, (12)
and the recoverable complianfediverges as
Jo~ et (13)

To calculate the rheological properties of the polymers synthesized via our reaction scheme, we
use a computational rheology softwéte'-5? developed by us. With only two main chemistry
dependent parameter, viz. the entanglement molar Miagaad the entanglemetitne 7., melt

state flow properties of entangled polymers are well describebebiyube theory’.[*45% In a

mean field sense, each polymer strand in the melt is confined in a tube-like potential due to the
topological constraint of uncrossability of all the polymer molecules. Deformation is assumed
to be affine down to the lengthscale of the tube diameter and relaxation proceeds hierarchically
from outside iff*% as the molecules escape from the old deformed tube and attains equilibrium

conformation. Because the tube potential in melt is due to the molecules themselves, the

-19 -



potential softens (or equivalently the tube diameter increases) as relaxation pfScékiss.
dynamic dilation couples the relaxation of all the molecules and necessitates numerical
scheméé35557lfor a polydisperse (both architecturally and in molar mass) melt as in the present

case.

For these calculations we assume tiatandt, are independent of diene concentration and
chooseM, = 1120 g/mol andr, = 1.1 x 1073 s at155°C corresponding to high density
polyethylend®? With density 0.784g/cc, the choskfy is consistent with a plateau modulus of
1.99MPa. Phenomenologically baty andz, have been found to vary systematically with the
comonomer contefit®>% Also ring formation from diene has been implicated in variation of
7,.%%1 As our results in the previous section show, one can decrease the amount of incorporated
diene by increasing the time of reaction (or residence time). Similarly, longer dienes can avoid
ring formation due to the low probability of both the double-bonded ends being in close
proximity of the growing chain end at the same time. We use the commonly used values for the

dynamic dilation gponent a = 1 and the hopping parameter p? = 1/40.

We fixx; = 50 for the semibatch case and; = 100 s for the CSTR case. For a given diene
concentration, we generate ®1folecules. For computational efficiency in the rheology
calculation we separate the molecules in 1000 bins equidistant in the logarithm of molar mass,
retain a maximum of 10 molecules per bin and reassign the weights of the deleted molecules to
the surviving molecules from the same bin. The resulting ensemble was used to calculate the
rheological properties. Resampling from the same initidl @lecules give very similar
results. At each diene concentration, we repeat the whole procedure five times to estimate the

statistical errors in our results.

Figure 13(a) and (b) respectively show the shear stress relaxation fungfionand the
complex viscosityy*(w) for the semibatch case. The lines indicate power-law behavior fitted

in the time range 10 — 100s for G (t) and frequency rard).01 — 0.1 rad/s for n*(w). Either of
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these plots can be used to estimate the expaner@.36(1). The corresponding plots for the
CSTR case irfFigure 14(a) and (b) gives the exponemt= 0.48(1). By fitting the zero shear
viscosityn, and the recoverable complianfein power-law forms as a function of distance to
the gelpoint &, we find the viscosity exponent s = 4.53(7) and the recoverable compliance
exponentt = 3.45(5) for the semibatch case (Figure 13c and d)sant.19(8) and = 2.0(1)

for the CSTR case (Figure 14 c and d). seHfés used the data in the 0.2 < & < 0.6 range.

Even for the lowest value efconsidered heré; (t) shows a power-law decay only in a limited
range of time. The exponeants similar for either reactor reflecting the hierarchical relaxation

of entangled polymers. However, the zero-shear viscosity and the steady state compliance are
dominated by stress decay at long times from the relaxation of the largest and most branched
molecules. The differences in the high molar mass tail between the resins from the two reactors
show up as significantly different exponentsifgrand/? between the semibatch and the CSTR
case. The divergence gf for the CSTR case is much slower (with and exposent.2) than

the semibatch case £ 4.5). The exponent for the semibatch case is consistent with gelation of
well-entangled polymers with several entanglements between branch{5bifite viscosity
exponent for the CSTR case is similar to the Rouse model pre#fiétion 1.33 despite the
inter-branch point segments being significantly longer than one entanglement. We canereconcil
this by noting that due to the presence of trace amount of highly branched molecules the long-
time relaxation of the CSTR resins is dominated by constraint release Rouse ##&tion,

having the same dynamical form as of un-entangled Rouse beads.

5. Discussions

In this work, we considered the copolymerization of a bi-functional monomer (ethylene) and a
tetra-functional comonomer (non-conjugated diene) using a metallocene catalyst in either a

CSTR or a semibatch reactor. Gelation can be achieved in either of the reactors by increasing
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the concentration of diene. We used a Monte Carlo scheme to sample representative molecules
and calculate the molecular weight distributions. This method avoids closure approximations
used in commonly used moments-based calculations. Unlike most theoretical treatments of
gelationl>783%consideration of realistic reactor conditions leads to a distribution of reaction
probabilities. In spite of this distribution in the reaction probabilities, the approach to gelation

in the semibatch reactor is characterized by diverging weight averaged molar mass with the
static exponents identical to the simple theoretical picture that considers a constant reaction
probability. The same conclusion was previously reached for the approach to gelation in a free-
radical polymerization scheme in a batch reaétbFor a diffusion limited lattice model of
free-radical polymerization, the divergence of the weight averaged molar mass was found to

hold®! albeit with an exponent that differs from polycondensation reactions.

In contrast, the results for the CSTR case fails to fit in this traditional picture: the weight
averaged molar mass remains finite at gelation with the first moment to diverge being the fourth
moment of the molar mass. The molar mass distribution close to gelation is characterized by a
power-law tail with a non-universal exponent that depends on the details of the simulation
parameters. Qualitatively, this heavy tail distribution results from a cooperative effect of the
residence time of a particular segment and the probability of crosslinking: a segment residing
for longer than average times in the reactor has higher probability of crosslinking and the
segments to which it crosslinks themselves reside for longer than average times in the reactor.
While our calculations only considered a particular class of chain-growth polymerization, such
cooperative effect should be active in all chain polymerization schemes in CSTR where some
crosslinking reaction step exists (for example, chain transfer to polymer together with

termination by combination in free radical polymerization).

The heavy tailed nature of the molar mass distribution in CSTR for ethylene-diene

copolymerization has implicitly been recognized in some theoretical calculéficasd
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experiments¥ by noting that the polydispersity index remains finite as the gel point is
approached. However, the possibility that the weight averaged molar mass remain finite across
the transition has been overlooked because of the approximate nature of the calculations. Since
commonly measured low-ordered molar mass moments remain finite at gelation, predicting the

gel-point from experimental data for this system should be difficult.

Experimentally polymer molar mass distribution is traditionally represented as the weight
distribution normalized on théog,,(M) axis. In Figure 15, we show the molar mass
distributions for two values of € for both the CSTR and the semibatch reactor cases in log-log

scale (main plot) and log-linear scale (inset). In the traditional log-linear scale plot, we have

omitted the data Wher%% < 1073, the typical sensitivity of the concentration detector
10

in routine gel permeation chromatography (GPC) measureni@etslots for € = 0.79 for both

the CSTR and the semibatch cases are very similar. The € = 0.07 curves are representative of

the distributions as gelation is approached. In the semibatch case, a broad distribution with a
high molecular weight tail can be easily seen in the linear-log plot; here the apprgeletitm

is obvious. In contrast, for the CSTR case at € = 0.07, the linear-log representation appears to

have only a marginally broader distribution as corep@o € = 0.79. Such broadening could

easily be masked in industrial scale reactors by the much larger broadening arising from any
non-ideality in the reactor conditions (such as temperature or concentration variations across
the reactor) or other sources of experimental uncertainty. The gelation is only evident when
viewing the log-log representation of the data, at levels far below the typical sensitivity of the
concentration detector. We conclude that the CSTR case produces gelation whose onset is

practically difficult, and perhaps impossible, to observe via conventional measurements.

Our calculations have focused here on idealized reactors (steady state CSTR and semibatch)
and it is likely that additional complications will ensue in practical reactors. For example, it

could take a very long time for a CSTR to achieve the steady state at which such large
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molecules, as predicted by our algorithm, are actually genétdté@hce generated, there is a
possibility that strong flow fields in the reactor may break the molecules [&5art.
Nonetheless, the practical point of this paper, that gelation can occur significantly in advance

of practical detection, remains.

Appendix
I ncor poration of macromonomers

For the CSTR reactor, the concentration of macromonorffr,is invariant in time and is

given by

k_[Y]

kprcp[Y] + s 14)

[P =]CSTR =

Here, s is the flow rate defined as inverse of the mean resideneertyn For the semibatch

reactor,[P~] depends on the current conversion x and is given by

[P=]sg = kk=C {1 — exp (— kl;(LCB x>} (15)
PLCB p

Starting from a randomly selected monomer on a segment, in both the reactor types, the mean

length to a branch-point from macromonomer incorporation is estimated by comparing the

monomer incorporation rate to the macromonomer incorporation rate:

7 KelM]

" Trcs P71 “e

For a segment growing at timein a CSTR reactot,,, the time of creation of the incorporated
macromonomer is estimated by considering the survival probability of macromonomers created

at times prior ta, and is given by the cumulative distribution functié® )

CDF (tn) = exp{—(kprcplY] + s)(tc — tm)}- (17)
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Similarly, for a segment growing at conversignin a semibatch reactor, the conversignat

which an incorporated macromonomer was created is given by

exp (klic%xm> -1

exp (—k’;chCB xc) -1

CDF(x,,) = (18)

I ncor poration of unreacted diene

Solely concentrating on the incorporated diene that eventually is incorporated in another
growing chain at a later time before the end of the reaction, the mean-length to a branch-point

of typebp, for a chain growing at time. in the CSTR reaction is

kp [M]

o1 = kpp [DI{1 — exp(kprcp[Y]t)} (19)

The time at which this pendant once reacted diene is incorporated in another chain is given from

1 — exp(kprcplY] (tc = tp1)) (20)

CDF(tp1) = 1 —exp(kpicelY] ty)

For the semibatch reactor, concentration of available free diene depends on the conversion.
Concentrating on a segment growing at convergjgnmean length to a branch-point of type
by, is given by

[M] ew (25

k p

p

5 )
pp [Plo 1—exp (_ kl;{l;fB (xf _ xc)>

ZDl = k (21)

Here, the exponential term in the numerator accounts for varying diene concentration with
conversion, and the denominator accounts for the fraction of incorporated free diene that had

the chance to be reincorporated before the final convessiomhe conversiorxy, for this

second incorporation event is given by
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1—exp (‘ k?cLCB (xp1 — xc))
p

1—exp <— —kl;(LCB (xf — xc))
p

CDF(xp1) = (22)

Incor poration of pendant diene

The steady state concentration of a once reacted diene in the CSTR reactor is given by

kpp[DI[Y]

kprcglY]+s (23)

[Dl]CSTR =

The mean length to a branch-point created by incorporation of a once reacted gipie (

given by comparing the polymerization rate to the incorporation radg of

- ky,[M]

lpp = 77— +5- 24
P2 kpyep [D1] (@)

Considering a once reacted diene incorporation at attintee chain on which this diene was

first incorporated was created in the past,atthat follows

CDF (tpy) = exp{—(kprcalY] + s)(t. — tpz)}. (25)

In the semibatch reactor, the mean length to a branch-point created by incorporation of once

reacted diene depends on the conversjoat which a chain is growing and is given by

-1

z [M] < kp ky ) < kpp > < kpice >

[ = - exp| ——x. | —exp|— x : (26)
P27 [D]o \kpp  kpics P ky ~° P k, ~°

The conversiomn,, at which this incorporatell; had reacted for the first time is given by

k k
1—exp (— (kL; - —L;CLpCB) xDz)
CDF(xDz) = . (27)

k
1—exp (— (kL;) - —k’;chCB) Xc)

Reincor poration after termination
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k=

A fraction P

of growing chains terminates with a double bond in either of the reactors. For

a chain growing at time. in a CSTR and terminating with a double bond, a fraction
{1 —exp(kprcelY]t.)} is reincorporated before the chain exits from the reacter). The
time of this reincorporation is decided from

1 —exp(kpyelY] (tc —t))

(28)
1 —exp(kprcplY] te)

CDF(t,) =

For the semibatch reaction with a chain ending with a double bond at a conwersidraction
{1 —exp <—k’;ﬂ(xf - xc)>} of chains ending with a double bond is reincorporated before
14

the final conversion,. The conversion for such a reincorporation is given by

1- exp <_kl;{ﬂ (xr - xc))
p

1—exp <—k’;cﬂ (xf — xc)>
p

CDF(x,) = (29)

Recursive construction of molecules

For both reactors, we start by randomly selecting a reacted monomer (that is attached to some
polymer molecule) as it exits the reactor in the CSTR case (arbitrarily chosen origin of time,

t =0), or, at the end of the reaction in the semibatch casex). From the exponential

residence time in the CSTR) the timet, at which the selected monomer reacted is given by
CDF(t.) = exp(s t,). (30)

We assign this, by generating a random number uniformly between zero and one and setting
the CDF equal to this random number. Analytical inversions are possible for @bDthe
expressions derived here. When considering the conversistthe time variable for semibatch

reactor, the selected monomer has uniform probability of reacting betweédhandx = x;.
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The two directions along the chain from the selected monomer are not equivalent because of
the flow (in CSTR) or catalyst deactivation (in semibatch). Each segment has a unique end at
which the termination event happens (the catalyst detaches). We denote this end the
downstream end and the opposite end (at which the initiation starts) is designated as the
upstream end. The average number of monomer in the downstream direction for either of the
two reactors is given by considering the ratio of the monomer addition rate to that of the

termination and is given by

_ k, [M]
Ndown:kp+k- (31)
= s

The average number of monomer in the upstream direction is calculated by considering the

ratio of the monomer addition rate to that of initiation, and for the CSTR case, is given by

— k,[M]
Y ko4 kst s’ (32)
and in the semibatch case by

W Yk, —ky

Because of the high reactivity of metallocene catalysts, the synthesis of a primary segment
(from initiation to termination) can be considered as instantaneous. Since the monomers are
added at the catalyst site at a constant rate, we generate Flory distributed random numbers from
these average values and use them as the upstream and the downstream segment lengths from

the randomly chosen monomer.

For the moment concentrating on the upstream direction, we calculate the mean distance to a

branch-point created from the macromonomer insertjgritom Equation 16; mean length to

a branch-point formed by incorporating a free diene that reacted for the seconddimatent

stage of the reactiofi,; from Equation 19 for CSTR (or from Equation 21 for semibatch); and
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the mean distance to a branch-point formed by incorporating a pendant diene that was part of

another chainlj,, from Equation 24 for CSTR (or from Equation 26 for semibatch) case. The
mean distance to a branch-point created from any of these three possibilities is given by

ZB=(_1+ N _i) | (34)

lm lDl lDZ
The distance to the next branch-point is determined by generating a Flory distributed random

number with average given ly. If this distance is less than the current segment leagth,
branch-point is considered at that distance. The branch-point is due to macromonomer insertion
with probability

z, (35)

Prob(m) = —
I
and a similar method is applied for calculating the probabilities of the branch-point being due

to incorporation of a free diene or due to incorporation of a pendant diene attached to another

chain segment.

Once we have decided on a branch-point, we move our focus recursively to the incorporated
branch. If the branch-point is due to macromonomer incorporation, we only need to consider
the upstream direction (since macromonomers are grafted at the terminal double bond). We
assign the time of synthesis of the grafted macromonomer for the CSTR from Equation 17 or
the conversion of the macromonomer from Equation 18. As with the initial segment, we

associate a length with this segment and decide if branches should be added.

If the branch is created through incorporating a free diene that subsequently got incorporated in
another growing chain, we assign the time (or conversion for semibatch reactor) from Equation
20 (or from Equation 22) to the chain that incorporated the diene for the second time. For the
newly added segment, we need to consider both the upstream and the downstream directions.
For a branch-point created by incorporating a pendant diene, the calculation is similar.
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However, the time is now is determined from Equation 25 for the CSTR or the conversion from

Equation 27.

Moving back to our original segment, we repeat our attempt to find the next branch point along
the upstream direction from the current branch point. If the next branch point is predicted to lie
beyond the end of the current segment, we conclude there are no more branch points and the

search for branch points ends.

Starting from the first selected monomer, we follow the same steps along the downstream
direction in creating branches. When the next branch-point in the downstream direction is
predicted to be outside the segment, we decide if the segment terminated with a double bond
and if so, if it was reincorporated in another growing chain at a later time (or conversion)
following the probability expressions in the subsectiitied “Reincorporation after
termination”. If the chain is decided to have been reincorporated, new segments are grown from
the terminal monomer in both the upstream and downstream directions with time given from

Equation 28 for the CSTR (or conversion from Equation 29 for semibatch reactor).

Since our attention is always on one segment considered to have grown instantaneously, the
algorithm sketched above can be coded in a simple recursive form. Since we start with a
randomly selected monomer, the algorithm selects molecules in a weight-biased ensemble, with

each of the generated molecules carrying the same weight fraction.
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Figure 1. Schematic reaction scheme for ethylene-diene copolymerization with a metallocene

catalyst: (a) propagation, (b) termination with a terminal double bond (macromonomer), (c)
termination with a saturated chain end, (d) incorporation of macromonomer to generate three
functional long-chain branches, and (e) incorporation of pendant diene to generate (f) four

functional long-chain branches.
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Figure 2. (a) Number distribution &t = 50 and[D], = 0.294 mol/L. The fit line has

the functional form55.2 exp (— )M‘“9 for which data abové/ = 2 x 10°> g/mol

5.76x107

(indicated by the arrow) was used. (b) Weight averaged molar mass as a fun¢iigy fof
x; = 50. The line shows the fiM,, = 41.2 X 103(1 — [D],/0.3095)"1%%>. The data for

[D], > 0.264 mol/L (indicated by the arrow) was used for the fit.
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data for the largest two values of € was excluded in the fitting. (b) Initial diene concentration

required to reach gelation as a function of reaction time in the semibatch reactor.
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Figure 4. Diene links per primary segment at gelation (at the critical diene concentration) as a
function of time of reaction. Inset: Mole fraction of incorporated diene as a function of reaction

time.

-37-



70000

65000

60000

55000

M, (g/mol)

50000

45000 ¢

40000 | I | I | I |
0 0.005 0.01 0.015 0.02

[D] (mol/L)
Figure 5. Weight averaged molar mass as a function of diene concentration in CSTR with
residence time,,.; = 100 s. The line is a power-law fit yieldif@®]. = 0.0373(1) mol/L and

exponent -0.513(2). For the fit, only the data aj@je> 0.016 mol/L (indicated by the arrow)

was considered.
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Figure 11. Critical diene concentration as a function of residence time: Open circles and filled

squares correspond to the case with macromonomer incorporationkppigh= 1 L/mol-s)
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Tres. OpeN symbols are from simulations with, -5 = 1 L/mol-s, closed symbols are from
simulations withkp; -5 = 0. Inset: Ratio of PDI at critical diene concentration to diene-free
reactions. Open and closed symbols respectively refer to the case with and without
macromonomer incorporation. The dashed line is a fikfprs = 0 data of the form.64 +

0.86 exp(—490 1,5).
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Figure 13. Dynamic scaling for relaxation in the melt for semibatch reactor: (a) Shear stress
relaxation function and (b) dynamic viscosity show power-law behaviours in time and
frequency respectively. (c) The zero shear viscosity and (d) the recoverable compliance

diverges as a power of closeness to the gel point.
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Figure 14. Dynamic scaling for relaxation in the melt for the CSTR case: (a) Shear stress
relaxation function and (b) dynamic viscosity show power-law behaviours in time and
frequency respectively. (c) The zero shear viscosity and (d) the recoverable compliance

diverges as a power of closeness to the gel point.
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