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GLOBAL PARAMETER TEST IDEALS

MORDECHAI KATZMAN, SERENA MURRU, JUAN D. VELEZ, AND WENLIANG ZHANG

Abstract. This paper shows the existence of ideals whose localizations and com-

pletions at prime ideals are parameter test ideals of the localized and completed

rings. We do this for Cohen-Macaulay localizations (resp., completions) of non-

local rings, for generalized Cohen-Macaulay rings, and for non-local rings with

isolated non Cohen-Macaulay points, each being an isolated non F -rational point.

The tools used to prove this results are constructive in nature and as a conse-

quence our results yield algorithms for the computation of these global parameter

test ideals.

Finally, we illustrate the power of our methods by analyzing the HSL numbers

of local cohomology modules with support at any prime ideal.

1. Introduction

This paper studies certain properties of commutative rings of prime characteristic

p. Such rings A are equipped with Frobenius maps fe : A → A defined as fe(a) =

ap
e

and these give a good handle on various problems which is not available in

characteristic zero. One such handle is provided by the machinery of tight closure

introduced by Mel Hochster and Craig Huneke in the 1990’s (cf. [HH90]) which we

now review.

The tight closure of an ideal I ⊆ A is the set of all a ∈ A for which for some

element c ∈ A not in any minimal prime one has cap
e
∈ I [p

e] for all e ≫ 0, where

I [p
e] denotes the ideal of A generated by all peth powers of elements in S.

This rather unnatural looking concept of tight closure has been a very rich source

of new results in commutative algebra. It has also simplified dramatically the proofs

of previously known results and it has been crucial in the generalization of certain

geometric concepts from characteristic zero to prime characteristic, especially in the

study of singularities.

One of the basic properties of tight closure is that for ideals I of regular rings

one has I∗ = I (we refer to ideals with this property as being tightly closed), or

equivalently, that c = 1 and e ≥ 0 can be used in the definition above to test

membership in the tight closure of ideals. This suggests that measuring the failure
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of the tight closure operation to be trivial might be a useful way of measuring how

bad the singularity of a ring is, and one thus obtains a hierarchy of singularities:

(a) regular rings,

(b) F -regular rings: all ideals in all localizations are tightly closed,

(c) weakly F -regular rings: all ideals are tightly closed,

(d) F -rational rings: all ideals generated by parameters are tightly closed.

From this point of view, the object of interest is the set of elements c in the definition

of tight closure which can be used to test membership in the tight closure of ideals.

Definition 1.1. An element c not in any minimal prime is a test element if for all

ideals I and all e ≥ 0, cI∗[p
e] ⊆ I [p

e]. The test ideal is defined as the ideal generated

by all test elements.

An element c not in any minimal prime is a parameter test element if for all ideals

I generated by parameters and all e ≥ 0, cI∗[p
e] ⊆ I [p

e]. The parameter test ideal is

the ideal generated by all parameter test elements.

Thus properties (c) and (d) above can be restated as the test ideal and the

parameter test ideal being the unit ideal, respectively.

In this paper we construct global parameter test ideals of finitely generated alge-

bras, i.e., ideals whose localization are parameter test ideals of the localized rings.

Among other things, our explicit description of these ideals yields an explicit de-

scription of the F -rational locus of finitely generated algebras, recovering the fact

that these are open (cf. [Vél95]) and in the process also providing a method for

computing these.

2. Prime characteristic tools

In this section we introduce various tools and notation used in rings of prime

characteristic and their modules.

We start with the elementary observation that if A is a ring of prime characteristic

p, the eth iterated Frobenius map f e : A → A taking a ∈ A to ap
e
(e ≥ 0) is an

homomorphism of rings. The usefulness of these homomorphisms lies in the fact that

given an A-module M , we may endow it with a new A-module structure via f e: let

F e
∗M denote the additive Abelian group M denoting its elements {F e

∗ a | a ∈ M},

and endow F e
∗M with the A-module structure is given by aF e

∗m = F e
∗ a

pem.

Given any A-linear map g : M → F e
∗M , we have an additive map g̃ : M → M

obtained by identifying F e
∗M with M . This map g̃ is not A-linear: it satisfies

g̃(am) = ap
e

g̃(m) for all a ∈ A and m ∈ M . We call additive maps with this



GLOBAL PARAMETER TEST IDEALS 3

property eth Frobenius maps. Conversely, a Frobenius map h : M → M defines an

A-linear map M → F e
∗M given by m 7→ F e

∗h(m).

A convenient way to keep track of Frobenius maps is provided by the use of

certain skew-polynomial rings, defined as follows. Let A[Θ; f e] be the free A-

module
⊕

i≥0AΘ
i and give A[Θ; f e] the structure of a ring by defining the (non-

commutative) product (aΘi)(bΘj) = abp
ei
Θi+j. (This is an instance of a skew-

polynomial ring: cf. [Lam01, Chapter 1].) Now an A-module M equipped with an

eth Frobenius map g̃ is nothing but an A[Θ; f e]-module where the action of Θ on

M is given by Θm = g̃(m) for all m ∈ M .

A crucial set of tools in the prime characteristic toolkit are the Frobenius functors

which we now define. For any A-module M and e ≥ 1, we can extend scalars and

obtain the F e
∗A-module F e

∗A ⊗A M . If we now identify the rings A and F e
∗A we

obtain the A-module A⊗RM where for a, b ∈ A, and m ∈ M a(b⊗m) = ab⊗m and

ap
e
b⊗m = b⊗am and we denote this by F e

A(M). Clearly, homomorphisms M → N

induce A-linear maps F e
A(M) → F e

A(M) and thus we obtain the aforementioned eth

Frobenius functors.

An eth Frobenius map g : M → M gives rise to A-linear map 1⊗g : F e
R(M) → M ;

this is well defined since for all a, b ∈ A and m ∈ M

1⊗ g(ap
e

b⊗m) = ap
e

bg(m) = bg(am) = 1⊗ g(b⊗ am).

In the special case when M is an Artinian module over a complete regular ring, this

gives a way to define a “Matlis-dual which keeps track of Frobenius” functor we

describe next.

Throughout the rest of this section we adopt the following notation.

Notation 2.1. Let (R,m) denote a d-dimensional complete regular local ring of

prime characteristic p and S its quotient by an ideal I ⊂ R. We will denote E =

ER(R/m) and ES = ES(S/mS) = annE I the injective hulls of the residue fields of

R and S, respectively. The Matlis dual functor HomR(−, E) will be denoted (−)∨.

A crucial ingredient for the construction that follows is the fact that for both

Artinian and Noetherian modules R-modules M , there is a natural identification of

F e
R(M)∨ with F e

R(M
∨) ([Lyu97, Lemma 4.1],) and henceforth we use this identifica-

tion tacitly. A map of Artinian R[Θ; f e]-modules ρ : M → N , yields a commutative

diagram

F e
R(M)

F e
R
(ρ)

//

1⊗Θ
��

F e
R(N)

1⊗Θ
��

M
ρ

// N
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and an application of the Matlis dual gives the commutative diagram

N∨
ρ∨

//

1⊗Θ∨

��

M∨

1⊗Θ∨

��

F e
R(N)

F e
R(ρ∨)

// F e
R(M)

.

Define Ce to be the category of Artinian R[Θ; f e]-modules and De the category of

R-linear maps N → F e
R(N) for Noetherian R-modules N , where morphisms in De

are commutative diagrams

(1) N
ϕ

//

ξ
��

M

ζ
��

F e
R(N)

F e
R
(ϕ)

// F e
R(M)

.

The construction above yields a contravariant functor ∆e : Ce → De, and this

functor is exact [BS98, Chapter 10]. Furthermore, an application of the Matlis dual

to (1) yields

(2) F e
R(M

∨)
F e
R(ϕ∨)

//

ζ∨

��

F e
R(N

∨)

ξ∨

��

M∨
ϕ∨

// N∨

.

which can be used to equip M∨ and N∨ with R[Θ; f e]-module structures given by

Θm = ζ∨(1 ⊗ m) and Θn = ξ∨(1 ⊗ n), respectively. With these structures, ϕ∨ is

R[Θ; f e]-linear. This construction yields an exact contravariant functor Ψe : De →

Ce. Now, after the identification of the double Matlis dual (−)∨∨ with the identity

functor on Artinian and Noetherian R-modules, the compositions Ψe◦∆e and ∆e◦Ψe

yield the identity functors on Ce and De, respectively. In this sense, we can think

of ∆e as the Matlis dual that keeps track of a given Frobenius map. An immediate

corollary of this is the following.

Corollary 2.2. (a) Let M ∈ Ce. The action of Θ on M is zero if and only if

the map ∆e(M) is zero.

(b) The map
(
N

ϕ
−→ F e

R(N)
)

∈ De is zero if and only if the action of Θ on

Ψe
(
N

ϕ
−→ F e

R(N)
)
is zero.
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3. Natural Frobenius maps on local cohomology modules

For any commutative ring S of prime characteristic p the local cohomology mod-

ules H•
m
(S) come equipped with a natural Frobenius map described as follows. We

have an R-linear map g : S → F e
∗S given by g(s) = sp

e

and this induces an R-linear

maps h : H•
m
(S) → H•

m
(F e

∗S). Now the Independence Theorem for local cohomology

[BS98, 4.1] gives

H•
m
(F e

∗S) = H•
mF e

∗
R(F

e
∗S) = H•

F e
∗
m

[p](F
e
∗S) = H•

F e
∗
m
(F e

∗S)

and this, as an F e
∗S-module, can be identified with F e

∗ H
•
m
(S).

Our next aim is to give a more explicit description of these Frobenius maps with

the aid of Local Duality over R [BS98, 11.2.5].

We adopt henceforth in this section the notation as in 2.1.

Proposition 3.1. (cf. [Lyu06, section 2]) Consider Hi
m
(S) as an R[T ; f e] module

where T acts as the natural Frobenius map.

Then ∆e(Hi
m
(S)) is isomorphic to the map Extd−i

R (R/I,R) → Extd−i
R (R/I [p

e], R)

induced by the surjection R/I [p
e] → R/I.

Proof. Let h : Hi
m
(S) → F e

∗ H
i
m
(S) be the R-linear map described above. We

apply Local Duality over the regular ring R to identify the functors Hi
m
(−) and

Extd−i
R (−, R)∨ and hence also hwith the map (which we also call h) h : Extd−i

R (S,R)∨ →

F e
∗ Ext

d−i
R (S,R)∨. This map is also induced by the R-linear map g above.

Now the map 1⊗h̃ : F e
R(H

i
m
(S)) → Hi

m
(S) is identified with 1⊗h̃ : F e

R(Ext
d−i
R (S,R)∨) →

Extd−i
R (S,R)∨ and the natural identification F e

R(Ext
d−i
R (S,R)∨) = F e

R(Ext
d−i
R (S,R))∨

yields the map 1 ⊗ h̃ : F e
R(Ext

d−i
R (S,R))∨ → Extd−i

R (S,R)∨ which is the dual

of the map w : Extd−i
R (S,R) → F e

R(Ext
d−i
R (S,R)) = Extd−i

R (F e
RS,R) induced by

1⊗ g̃ : F e
R(S) → S. �

Proposition 3.1 is the key ingredient that will allow use to answer questions about

local cohomology modules and their natural Frobenius actions in terms of R-linear

maps of Noetherian modules into their Frobenius functors. To do so we expand our

prime characteristic toolbox in the next section.

4. Further prime characteristic tools: roots and ⋆-closures

In this section we introduce two crucial constructions: the first is a generalization

of the pe-root operation on ideals introduced in [BMS08] (denoted there as (−)[1/p
e])

and in [Kat08].

Definition 4.1. Let e ≥ 0. Let T be a commutative ring.
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(a) Given any matrix (or vector) A with entries in T , we define A[pe] to be the

matrix obtained from A by raising its entries to the peth power.

(b) Given any submodule K ⊆ Tα, we define K [pe] to be the R-submodule of

Tα generated by {v[p
e] | v ∈ K}.

Henceforth in this section, T will denote a regular ring with the property that

F e
∗T are intersection flat T -modules for all e ≥ 0, i.e., for any family of T -modules

{Mλ}λ∈Λ,

F e
∗T ⊗T

⋂

λ∈Λ

Mλ =
⋂

λ∈Λ

(F e
∗T ⊗T Mλ) .

These include rings T for which F e
∗T are free T -modules (e. g., polynomial rings

and power series rings with F -finite coefficient fields,) and also all complete regular

rings (cf. [Kat08, Proposition 5.3]). These rings have that property that for any

collection of submodules {Lλ}λ∈Λ of Tα ,
(⋂

λ∈Λ Lλ

)[pe]
=
⋂

λ∈Λ L
[pe]
λ : indeed, the

regularity of T implies that for any submodule L ⊆ Tα, L[pe] can be identified with

F e
T (L) and and the intersection-flatness of F e

∗T implies

F e
T (
⋂

λ∈Λ

Lλ) = F e
∗T ⊗T

⋂

λ∈Λ

Lλ =
⋂

λ∈Λ

F e
∗T ⊗T Lλ =

⋂

λ∈Λ

F e
T (Lλ).

The theorem below extends the Ie(−) operation defined on ideals in [Kat08, Sec-

tion 5] and in [BMS08, Definition 2.2] (where it is denoted (−)[1/p
e]) to submodules

of free R-modules. Recall that for an ideal J of a regular ring, Ie(J) was defined

as the smallest ideal whose peth Frobenius power contains J . We extend this as

follows.

Theorem 4.2. Let e ≥ 1.

(a) Given a submodule K ⊆ Tα there exists a minimal submodule L ⊆ Tα for

which K ⊆ L[pe]. We denote this minimal submodule Ie(K).

(b) Let U be a α × α matrix with entries in T and let V ⊆ Tα. The set of all

submodules W ⊆ Tα which contain V and which satisfy UW ⊆ W [pe] has a

unique minimal element.

Proof. See [KZ14, Theorem 3.2].

�

Definition 4.3. With notation as in Theorem 4.2, we call the unique minimal

submodule in 4.2(b) the star closure of V with respect to U and denote it V ⋆U .

The effective calculation of the ⋆-closure boils down to the calculation of Ie.

When F e
∗T is T -free, this is a straightforward generalization of the calculation of Ie
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for ideals. To do so, fix a free basis B for F e
∗T and note that every element v ∈ Tα

can be expressed uniquely in the form v =
∑

b∈B u
[pe]
b b where ub ∈ Tα for all b ∈ B.

Proposition 4.4. Let e ≥ 1.

(a) For any submodules V1, . . . , Vℓ ⊆ Rn, Ie(V1+ · · ·+Vℓ) = Ie(V1)+ · · ·+Ie(Vℓ).

(b) Let B be a free basis for F e
∗T . Let v ∈ Rα and let

v =
∑

b∈B

u
[pe]
b b

be the unique expression for v where ub ∈ Tα for all b ∈ B. Then Ie(Tv) is

the submodule W of Tα generated by {ub | b ∈ B}.

Proof. See [KZ14, Proposition 3.4].

�

The behavior of the Ie operation and the ⋆ closure under localization and com-

pletion will be crucial for obtaining the main result of this paper. To investigate the

latter we need the following generalization of [LS01, Lemma 6.6].

Lemma 4.5. Let T be a completion of T at a prime ideal P . Let α ≥ 0 and let W

be a submodule of Tα. For all e ≥ 0, W [pe] ∩ Tα = (W ∩ Tα)[p
e].

Proof. If T is local with maximal ideal P , the result follows from a straightforward

modification of the proof of [LS01, Lemma 6.6].

We now reduce the general case to the previous case which implies that W [pe] ∩

Tα
P = (W ∩ Tα

P )
[pe]. Intersecting with Tα now gives

W [pe] ∩ Tα = (W ∩ Tα
P )

[pe] ∩ Tα = (W ∩ Tα
P ∩ Tα)[p

e] = (W ∩ Tα)[p
e].

�

Lemma 4.6 (cf. [Mur13]). Let T be a localization of T or a completion at a prime

ideal.

For all e ≥ 1, and all submodules V ⊆ Tα, Ie(V ⊗TT) exists and equals Ie(V )⊗TT.

Proof. Let L ⊆ Tα be a submodule, such that L[pe] ⊇ V ⊗T T. We clearly have

L[pe]∩Tα = (L∩Tα)[p
e] when T is a localization of T and when T is a completion of

T this follows from the previous Lemma. We deduce that (L∩Tα) ⊇ Ie(V ⊗T T∩T
α)

and hence L ⊇ (L ∩ Tα)⊗T T ⊇ Ie(V ⊗T T ∩ Tα)⊗T T.

But since Ie(V ⊗T T ∩ Tα)⊗T T satisfies

(Ie(V ⊗T T ∩ Tα)⊗T T)[p
e] = Ie(V ⊗T T∩T

α)[p
e]⊗T T ⊇ (V ⊗T T∩T

α)⊗T T ⊇ V ⊗T T

we deduce that Ie(V ⊗T T ∩ Tα)⊗T T is the smallest submodule K ⊆ Tα for which

K [pe] ⊇ V ⊗T T. We conclude that Ie(V ⊗T T) equals Ie(V ⊗T T ∩ Tα)⊗T T.
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We always have

Ie(V ⊗T T) = Ie(V ⊗T T ∩ Tα)⊗T T ⊇ Ie(V )⊗T T.

On the other hand

(Ie(V )⊗T T)[p
e] = Ie(V )[p

e] ⊗T T ⊇ V ⊗T T

hence Ie(V ⊗T T) ⊆ Ie(V )⊗T T and thus Ie(V ⊗T T) = Ie(V )⊗T T.

�

Lemma 4.7. Let e ≥ 1, let U be a α×α matrix with entries in T and let V ⊆ Tα.

For any prime P ⊂ T ,

V̂P
⋆U

= V̂ ⋆U
P .

Proof. As in Theorem 4.2 Define inductively V0 = V and Vi+1 = I1(UVi) + Vi for

all i ≥ 0, and also W0 = V̂P and Wi+1 = I1(UWi) +Wi. An easy induction shows

that Wi = V̂i for all i ≥ 0, and the result follows. �

5. Another look at Ce

Throughout this section we adopt the notation of 2.1 and have a closer look at

Artinian R[Θ; f e]-modules, starting with the possible R[Θ; f e]-modules structures

of Eα for α ≥ 1.

The module Fe(E) of Frobenius maps on E is isomorphic to R ([LS01, Example

3.7]) and the generator of this module, the natural Frobenius map on E, can be

described explicitly as follows. The regular local ring R is isomorphic to a power

series ringK[[x1, . . . , xn]] for some field K of characteristic p, and E is then isomorphic

to the module of inverse polynomials K[x−1 , . . . , x
−
n ] (cf. Example 12.4.1 in [BS98])

which has a Frobenius map given by Tλxα1
1 · . . . · xαn

n = λpxpα1
1 · . . . · xpαn

n for all

α1, . . . , αn < 0. Now Θ = T e is a generator for Fe(E), and Fe(Eα) can be identified

with the R-module of α×α matrices with entries in R: we associate to such a matrix

U the Frobenius map Θ : Eα → Eα given by

Θ




z1
...

zα


 = U t




T ez1
...

T ezα


 .
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Now any Artinian R[Θ; f e]-module M can be embedded into Eα for some α ≥ 1

and an application of the Matlis dual yields a diagram with exact rows

(3) Rα h
// M∨

(1⊗Θ)∨

��

// 0

Rα

F e
R(h)

// F e
R(M

∨) // 0

.

where the vertical map is ∆e(M). Choose a presentation ImRβ A
−→ Rα of kerh.

If we identify M∨ with CokerA, we can then identify the vertical map above with

multiplication by some α× α matrix U (which must satisfy ImUA ⊆ ImA[pe].) An

application of Ψe to the commutative diagram

(4) Rα h
//

U
��

CokerA

U
��

// 0

Rα

F e
R(h)
// CokerA[pe] // 0

.

gives an embedding annEα At ⊆ Eα of R[Θ; f e]-modules where annEα At is isomor-

phic to M as R[Θ; f e]-modules and where the action of Θ on Eα is given by U tT .

We summarize this discussion with the following corollary.

Corollary 5.1. Any Artinian R[Θ; f e]-module can be embedded as R[Θ; f e]-module

into some Eα on which the action of Θ is given by U tT . Consequently, any such

module is isomorphic to annEα At for some β × α matrix A and where the action

of Θ is the restriction of the action of U tT e of Eα to annEα At where U is a α× α

matrix satisfying ImUA ⊆ ImA[pe].

6. The global parameter test ideal

As the first application of the tools we have developed thus far, in this section we

will construct a global parameter test ideal, i.e. an ideal whose localization at each

prime ideal is the parameter test ideal of the localization of the ring. To this end,

we will use R to denote a regular noetherian ring of prime characteristic p such that

F e
∗R are intersection flat for all e ≥ 0. We will use S to denote an homomorphic

image of R which has a completely stable parameter test element (cf. [HH90, Section

6]). If such an ideal τ exists, the F -rational locus of S is given by V (τ), and we

recover the well known fact that the F -rational locus is open (cf. [Vél95]).
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Given any local ring (S,m) we denote

τS =
⋂

parameter ideals I in S

(I : I∗)

the parameter test ideal of S. In [Smi95] Karen Smith showed that when S is

local and Cohen-Macaulay, τS localizes to parameter test ideals of the localization.

The results of this section extend the existence of such ideals to the non-local case

(Theorem 6.3), to the generalized Cohen-Macaulay case (Theorem 6.8), and to rings

with finitely many isolated non-Cohen Macaulay point, each being an isolated non-

F rational points (Theorem 6.9). Furthermore, these ideals τ are given explicitly in

terms of operations on ideals which are readily computable.1

First we note that rings with completely stable test elements are abundant.

Theorem 6.1. The following rings possess completely stable test elements:

• Geometrically reduced, finitely generated algebras over any field of character-

istic p ([HH06, Corollary 1.5.5]) In this setting completely stable test elements

are easily computable as minors of a Jacobian matrix.

• F -finite and reduced rings (cf. [HH94, Theorem 5.10]).

• Reduced, finitely generated B-algebras where (B,m,K) is a complete local

ring with coefficient field K of characteristic p (cf. [HH94, Theorem 6.20]).

The result of this section rely of the following result.

Theorem 6.2 (cf. Proposition 2.5 in [Smi97]). Let (S,m) be a local Cohen-Macaulay

ring with parameter test-element c. Write H = HdimS
m

(S), G = {a ∈ H | ca = 0}

and let L be the largest S-submodule of G stable under the natural Frobenius map

on H. The parameter test ideal τ of S is the annihilator of 0∗
HdimS

m
(S)

and is given

by (0 :S L).

Proof. The first statement is a restatement of [Smi95, Proposition 4.4(i)]. Fix any

system of parameters x1, . . . , xd ∈ m; H can be constructed as a direct limit of

Koszul cohomology, resulting in

(5) H = lim
→

t

S/(xt1, . . . , x
t
d)

where the maps in the direct limit system are given by multiplication by x =

x1 . . . xd. If S is Cohen-Macaulay, as in the hypothesis of this theorem, x1, . . . , xd

form a regular sequence and the maps in the direct limit system (5) are injective.

Now every element in H is the image of some s + (xt1, . . . , x
t
d) ∈ S/(xt1, . . . , x

t
d)

in the direct limit, and we denote such an element [s + (xt1, . . . , x
t
d)]. We can also

1See Macaulay2 package “FSing” [GS].
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describe the action of natural Frobenius T on H: [s + (xt1, . . . , x
t
d)] is mapped to

[sp + (xpt1 , . . . , x
pt
d )].

Let t ≥ 1 and pick any s ∈ S. Since c is a test-element, csp
e
∈ (xp

et
1 , . . . , xp

et
d ) for

all e ≥ 0 if and only if s ∈ (xt1, . . . , x
t
d)

∗, hence

L =
⋂

e≥0

annH cT e = lim
→

t

(xt1, . . . , x
t
d)

∗/(xt1, . . . , x
t
d).

Clearly, τL = 0 and τ ⊆ (0 :S L). Also (0 :S L)L = 0 and the injectivity of the

maps in (5) implies (0 :S L)
(
(xt1, . . . , x

t
d)

[pe]
)∗

⊆ (xp
et

1 , . . . , xp
et

d ) for all e ≥ 0, hence

(0 :S L) ⊆ τ .

�

Write S = R/I where R is a regular noetherian ring of prime characteristic

p such that F e
∗R are intersection flat for all e ≥ 0. We represent the map θ :

Ext
dim(R)−dim(S)
R (R/I,R) −→ Ext

dim(R)−dim(S)
R (R/I [p], R) as CokerA

U
−→ CokerA[p]

for a α× β matrix A and α× α matrix U with entries in R.

We now obtain the following non-local result.

Theorem 6.3. Let c ∈ R be such that its images in all completions of S at all

prime ideals are parameter test-elements. The localization (resp. completion) of
(
0 :R

Rα

(ImA+ cRα)⋆U

)

at any prime ideal P in the Cohen-Macaulay locus of S is a parameter test-ideal of

SP (ŜP , resp.).

Proof. Let P ⊂ R be a prime ideal in the Cohen-Macaulay locus of S. Since

HdimSP

PRP
(SP ) is a ŜP -module and is isomorphic to Hdim ŜP

PR̂P

(
ŜP

)
as ŜP -modules,

Theorem 6.2 implies that it is enough to show that the completion at P of
(
0 :R

Rα

(ImA+ cRα)⋆U

)

is a parameter test-ideal of ŜP .

With the notation as in section 2

∆1
(
Hdim ŜP

PR̂P

(SP )
)

is isomorphic to Coker Â
Û
−→ Coker Â[p], the completion at P of CokerA

U
−→ CokerA[p].

Let V ⊆ Hdim ŜP

PR̂P

(SP ) be any R̂P [Θ; f ]-submodule killed by c. An application

of ∆1 (−) to this inclusion of R̂P [Θ; f ]-modules yields a commutative diagram with
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exact rows

(6) Coker Â //

U
��

CokerB //

U
��

0

Coker Â[p] // CokerB[p] // 0

.

where B is a α× γ matrix with entries in R̂P with the following three properties

(a) ImB ⊇ Im Â,

(b) ImUB ⊆ ImB[p], and

(c) cRα
P ⊆ ImB.

If V = (CokerB)∨ is the largest R̂P [Θ; f ]-submodule of Hdim ŜP

PR̂P

(SP ) killed by c,

then the matrix B has the smallest image among those matrices satifying (a), (b)

and (c) above. Such a matrix is given by one whose image is
(
Im Â+ cR̂P

α
)⋆U

We

apply Theorem 6.2 and deduce that the parameter test ideal at the completion is

given by (
0 :

R̂P

R̂P
α

(Â+ cR̂P
α
)⋆U

)
.

We established in Lemma 4.7 that the (−)⋆ operation commutes with localization

and completion, and the additional use of the flatness of completion implies that

parameter test ideal of SP (resp. ŜP ) is given by the localization (resp. completion)

of (
0 :R

Rα

(A+ cRα)⋆U

)

at P . �

The rest of this section extends Theorem 6.3 to a wider class of rings, and we

start with the following.

Definition 6.4. A local ring (S,m) is called a generalized Cohen-Macaulay if Hi
m
(S)

has finite length for all i < dimS.

Given any local ring (S,m) we denote

τS =
⋂

parameter ideals I

(I : I∗)

the parameter test ideal of S; [Smi97, Proposition 2.5] shows that τS ⊆ (0 :S

0∗
HdimS

m
(S)

).

Definition 6.5. Let (S,m) be a noetherian local ring. An element c ∈ S is called a

colon-killer if c((x1, . . . , xi) : xi+1) ⊆ (x1, . . . , xi) for all parameters x1, . . . , xi+1 in
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S. It is straightforward to check that the set of colon-killers forms an ideal which

we will denote with c.

Lemma 6.6. Let (S,m) be a noetherian commutative local ring of characteristic p

and let c be as above. We have

c
d(0 :S 0∗

Hd
m(S)

) ⊆ τS.

Proof. Let c1, . . . , cd be elements of c. It suffices to show that c1 · · · cd annS(0
∗

Hd
m
(S)

) ⊆

τS . Let x1, . . . , xd be a system of parameters and z be an element of S. Then

according to [Smi94, Proposition 3.3] one has z ∈ (x1, . . . , xd)
∗ if and only if

[ z
x1···xd

] ∈ 0∗
Hd

m
(S)

. Assume that δ ∈ annS(0
∗

Hd
m
(S)

) and hence δ[ z
x1···xd

] = 0. This

is equivalent to the existence of an integer n such that

δz ∈ (xn+1
1 , . . . , xn+1

d ) : (x1 · · · xd)
n

Write δz(x1 · · · xd)
n =

∑
i aix

n+1
i ; we have xn1 (δz(x2 . . . xd)

n−a1x1) ∈ (xn+1
2 , . . . , xn+1

d )

and c1(δz(x2 . . . xd)
n − a1x1) ∈ (xn+1

2 , . . . , xn+1
d ), since c1 is a colon-killer. Write

c1δz(x2 . . . xd)
n = ca1x1+

∑
i bix

n+1
i . Then xn2 (c1δz(x3 · · · xd)

n−b2x2) ∈ (x1, x
n+1
3 , . . . , xn+1

d ).

So,

c2

(
c1δz(x3 · · · xd)

n − b2x2

)
∈ (x1, x

n+1
3 , . . . , xn+1

d ),

i. e.,

c1c2δz(x3 · · · xd)
n ∈ (x1, x2, x

n+1
3 , . . . , xn+1

d ).

Continuing this process, we obtain c1 · · · cdδz ∈ (x1, . . . , xd), i. e., c1 · · · cdδ ∈

(x1, . . . , xd) : (x1, . . . , xd)
∗. �

Lemma 6.7. Let (S,m) be a noetherian commutative local ring of characteristic p

that satisfies Serre’s condition S2. Then

annRP
(0∗

Hh
PRP

(RP )
) ⊆ annR(0

∗

Hd
m
(R)

)P

for each prime ideal P of R, where h = ht(P ).

Proof. This is essentially proved on page 3468 in [Smi95]; The key ingredient of the

proof there is [Smi95, Lemma 2.1] which holds in any noetherian ring satisfying the

S2 condition. �

Theorem 6.8. Let (S,m) be a d-dimensional generalized Cohen-Macaulay local ring,

and write τ = τS. Then τP is the parameter test ideal of RP for each prime ideal

P of R.
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Proof. If S is Cohen-Macaulay, the result follows from Theorem 6.3 so we assume

that S is not Cohen-Macaulay.

First, we prove that τP ⊆ τSP .

Let x be an element of τ . We may assume that P 6= m; by definition of τ , it is the

parameter test ideal of S. Set h = ht(P ). Let x1, . . . , xd be a full system of param-

eters such that x1
1 , . . . ,

xh

1 is a system of parameters for SP . Since S is generalized

Cohen-Macaulay, x1
1 , . . . ,

xh

1 is a regular sequence; consequently it suffices to show

that
x

1
(
xt1
1
, . . . ,

xth
1
)∗ ⊆ (

xt1
1
, . . . ,

xth
1
)

for all t ≥ 1. It is proved in [AHH93] that tight closure commutes with localization

for ideals parameters. Thus, if z
1 ∈ (

xt
1
1 , . . . ,

xt
h

1 )∗, then there is an element u ∈ R\P

such that uz ∈ (xt1, . . . , x
t
d)

∗. Then xuc ∈ (xt1, . . . , x
t
d) and hence x

1
z
1 ∈ (

xt
1
1 , . . . ,

xt
h

1 ).

This finishes the proof of τP ⊆ τSP .

To prove the reverse inclusion, we write J =
∏dimS−1

i=0 ann(H i
m
(S)) and apply

[BH93, Corollary 8.1.3], to deduce that J ⊆ c, and by Lemma 6.6, we have

Jd annS(0
∗

Hd
m(S)

) ⊆ τ.

Therefore, we have τP = annS(0
∗

Hd
m
(S)

)P for each prime ideal P 6= m, since Jd is

m-primary. Now Lemma 6.7 implies that

τSP = annSP
(0∗

Hh
PSP

(SP )
) ⊆ annS(0

∗

Hd
m(S)

)P = τP ,

where the first equality follows from our assumption that SP is Cohen-Macaulay. �

Next we extend Theorem 6.8 to non-local cases.

Theorem 6.9. Let c ∈ R be as in Theorem 6.1. Write h = dim(R) − dim(S)

and Z = ann
(

Rα

(A+cRα)⋆

)
as in the previous paragraph. Assume that S has isolated

non-Cohen-Macaulay points m1, . . . ,mt, and that each of these is an isolated non-

F -rational point. Write τi = τSmi ∩ S for 1 ≤ i ≤ t and τ := Z ∩ τ1 ∩ · · · ∩ τt. Then

τ is the global parameter test ideal of S in the sense that τP is the parameter test

ideal of RP for each prime ideal P .

Proof. The fact that m1, . . . ,mt are isolated non-F -rational points implies that τi

is mi primary for each 1 ≤ i ≤ t. Now for any m /∈ {m1, . . . ,mt}, τm = Zm is the

parameter-test-ideal of the Cohen-Macaulay localization Sm. Let m = mi for some

1 ≤ i ≤ t.

Note that

Zm = annSm
0∗
HdimS

m
(S)
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hence τim ⊆ Zm and τm = Zm∩τim = τim is the parameter-test-ideal of the generalized

Cohen-Macaulay localization Sm. �

It turns out that the idea in this section, in particular the use of ∆e (the Matlis

dual that keeps track of Frobenius), can also be applied to study HSL numbers of

local cohomology modules, which will occupy our last section.

7. HSL numbers

In this section we will apply the machinery we have developed to investigate HSL

numbers of local cohomology modules, which are defined as follows.

Given any commutative ring T of prime characteristic and T [Θ; f ]-module M , we

declare m ∈ M to be nilpotent under the action of Θ if Θem = 0 for some e ≥ 0.

The set Nil(M) of nilpotent elements under θ forms a T [Θ; f ]-submodule of M .

Theorem 7.1. (cf. [HS77, Proposition 1.11], [Lyu97, Proposition 4.4]) Let R be a

complete regular ring, and let M be an Artinian R[Θ; f ]-module. There exists an

η ≥ 0 such that Θη Nil(M) = 0.

Definition 7.2. The HSL number of a T [Θ; f ]-moduleM is inf{η ≥ 0 |Θη Nil(M) =

0}.

Thus, under the hypothesis of Theorem 7.1, HSL numbers are finite.

We will first compute the HSL numbers of local cohomology modules of quotients

of complete regular local rings, and later describe the loci of primes P in quotients

of polynomial rings on which the HSL numbers of local cohomology modules of the

localization at P are bounded by a given integer.

Let (R,m) be a complete regular ring and let H be an R[Θ; f ]-module. Write

∆1(H) = (CokerA
U
−→ CokerA[p]) where A is a α× β matrix with entries in R, and

U is a α×α matrix with entries in R. Note that H is a R[Θe; f e]-module, and that

∆e(H) = (CokerA
U [pe−1]···U [p]U
−−−−−−−−−→ CokerA[p]).

Define now the R[Θe, f e] submodule He = {h ∈ H |Θeh = 0}. An application of

∆e to the inclusion of R[Θe, f e]-modules He ⊆ H yields a commutative diagram

(7) CokerA //

U [pe−1]···U [p]U
��

CokerB

U [pe−1]···U [p]U
��

// 0

CokerA[pe] // CokerB[pe] // 0

.

for some α×γ matrix B. Since the action of Θe is zero on He, the rightmost vertical

map must vanish too. Furthermore, as ∆e(H) is the largest R[Θe, f e]-submodule

of H which is killed by Θe, B is characterized as the matrix with smallest image
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containing the image of A and making (7) commute. In other words, ImB =

ImA+ Ie(ImU [pe−1] · · ·U [p]U).

Write now Be = ImA+Ie(ImU [pe−1] · · ·U [p]U) and consider the descending chain

{Be}e≥0 of submodules of Rα. We can now conclude that the HSL number of H is

the smallest value of e ≥ 0 for which Be/Be+1 = 0.

This calculation also shows that the HSL numbers obtained after localization at a

prime P are bounded by the HSL numbers obtained after localizing at any maximal

ideal containing P . Thus we obtain the following corollary.

Corollary 7.3. F -injectivity localizes for complete local rings.

A special case of Corollary 7.3 was proved in [Sch09, Proposition 4.3] under the

additional hypothesis of F -finiteness.

We now turn our attention to the non-local case. Let R be a polynomial ring over

a field of prime characteristic p, I ⊆ R and ideal and write S = R/I. For each prime

P ⊆ R, we obtain local cohomology modules Hj

P R̂P

(ŜP ), wherêdenotes completion

at the maximal ideal, each equipped with a natural Frobenius map as described in

section 3. For these Artinian R̂P [Θ; f ]-modules

(8) ∆e(Hj

P R̂P

(SP )) = ExtdimRP−j
R (R/I, R) ⊗ R̂P → ExtdimRP−j

R (R/I[p], R)⊗ R̂P

and this map is induced by the surjection R/I[p] → R/I.

Fix now presentations ExtiR(R/I, R) = Coker
(
Rβi

Ai−→ Rαi

)
and let the maps

CokerAi
Ui−→ CokerA

[p]
i be isomorphic to the map

ExtiR(R/I, R) → F 1
R ExtiR(R/I, R) = ExtiR(R/I[p], R)

induced by the surjection R/I[p] → R/I.

For any prime P ⊆ R containing I define η(P, j) to be the HSL number of

HhtP−j

P R̂P

(SP )) equipped with its natural R̂P [Θ; f ]-module structure.

Theorem 7.4. For all j ≥ 0 fix a presentation Rβj
Aj
−→ Rαj → Extj(R/I, R) and

an αj × αj matrix Uj for which Uj : CokerAj → CokerA
[p]
j is isomorphic to the

map ExtjR(R/I, R) → ExtjR(R/I[p], R) induced by the surjection R/I[p] → R/I.

For all j, e ≥ 0 write Bj,e = ImAj + Ie(ImU
[pe−1]
j · · ·U

[p]
j Uj). Then η(P, j) < e if

and only if P is not in the support of Bj,e−1/Bj,e.

Proof. Note that ∆1(HhtP−j

P R̂P

(SP )) is the completion at P of the map CokerAj
Uj
−→

CokerA
[p]
j . The discussion above of the local case now implies that η(P, j) < e if
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and only if

R̂P ⊗R ImAj + Ie−1(R̂P ⊗R ImU
[pe−2]
j · · ·U

[p]
j Uj)

R̂P ⊗R ImAj + Ie(R̂P ⊗R ImU
[pe−1]
j · · ·U

[p]
j Uj)

= 0.

But Lemma 4.5 shows that this quotient is

R̂P ⊗R ImAj + R̂P ⊗R Ie−1(ImU
[pe−2]
j · · ·U

[p]
j Uj)

R̂P ⊗R ImAj + R̂P ⊗R Ie(ImU
[pe−1]
j · · ·U

[p]
j Uj)

= R̂P ⊗R (Be−1/Be).

�

Corollary 7.5. The set {η(P, j) | I ⊆ P ⊂ R prime, j ≥ 0} is bounded.

Proof. Each set Uj,e = {P ∈ SpecR | η(P, j) < e} is open, since it is the complement

of Supp(Bj,e−1/Bj,e). Also SpecR =
⋃

j≥0,e≥1Uj,e hence the result follows from the

quasicompactness of R. �
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