
This is a repository copy of UNDERSEA:An Exemplar for Engineering Self-Adaptive
Unmanned Underwater Vehicles.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/113455/

Version: Accepted Version

Proceedings Paper:
Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260, Gerasimou, Simos
orcid.org/0000-0002-2706-5272, Shevtsov, Stepan et al. (1 more author) (Accepted: 2017)
UNDERSEA:An Exemplar for Engineering Self-Adaptive Unmanned Underwater Vehicles.
In: 12th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2017). IEEE , pp. 1-7. (In Press)

https://doi.org/10.1109/SEAMS.2017.19

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

UNDERSEA: An Exemplar for Engineering

Self-Adaptive Unmanned Underwater Vehicles

Simos Gerasimou, Radu Calinescu

Department of Computer Science

University of York, UK

{simos.gerasimou, radu.calinescu}@york.ac.uk

Stepan Shevtsov* and Danny Weyns*+

Department of Computer Science

*Linnaeus University, Sweden
+KU Leuven, Belgium

stepan.shevtsov@lnu.se; danny.weyns@kuleuven.be

Abstract—Recent advances in embedded systems and under-
water communications raised the autonomy levels in unmanned
underwater vehicles (UUVs) from human-driven and scripted
to adaptive and self-managing. UUVs can execute longer and
more challenging missions, and include functionality that enables
adaptation to unexpected oceanic or vehicle changes. As such,
the simulated UUV exemplar UNDERSEA introduced in our
paper facilitates the development, evaluation and comparison
of self-adaptation solutions in a new and important application
domain. UNDERSEA comes with predefined oceanic surveillance
UUV missions, adaptation scenarios, and a reference controller
implementation, all of which can easily be extended or replaced.

Index Terms—unmanned underwater vehicle exemplar; self-
adaptive embedded systems; oceanic surveillance

I. INTRODUCTION

Computer science researchers have long advocated the use

of exemplars and benchmarks as a way to promote good

practice and encourage high-quality research [1], [2]. These

artifacts do not only enable replication and extension of

published research, but they also support easy exploration,

rapid prototyping and rigorous evaluation of new techniques

and approaches. Illustrative examples include well-known

benchmark suites for computer vision [3], [4] and probabilistic

model checking [5], test problems for multi-objective optimi-

sation [6], and machine learning repositories for data mining,

classification and regression. 1

Despite the advances in the area of adaptive and self-

managing systems over the past fifteen years, the use of

exemplars for standardising research conducted in the area

is still immature [7]. The successful Znn.com news service

exemplar [8] paved the way to change this. An ongoing

effort is in progress to providing exemplars from different

application domains, and several have been proposed recently.

For instance, the TAS [9] and Hogna [10] exemplars enable

research in the domains of service-based systems and cloud

computing, respectively. Feed me, Feed me [11] provides the

means to explore and analyse the requirements and characteris-

tics of modern Internet-of-Things-based self-adaptive systems.

In this paper, we propose UNDERSEA, an exemplar for

conducting research on self-adaptive systems in the domain

of unmanned underwater vehicles (UUVs). These vehicles are

1e.g., archive.ics.uci.edu/ml, kdnuggets.com/datasets/index.html

used in a wide range of oceanographic and military tasks,

including oceanic surveillance (e.g., to monitor pollution levels

and ecosystems), undersea mapping, and mine detection [12].

Increasingly UUVs have more powerful on-board process-

ing components, are equipped with sensors with improved

capabilities in terms of cost, size, and power consumption,

and employ better underwater communication mechanisms.

These advances made longer and more complex UUV missions

possible. As a result, there is a growing need for fully

autonomous and self-adaptive UUVs capable of completing

successfully long missions, and self-adapting in response to

the unexpected ocean environment and vehicle changes.

The UUV case study was originally introduced in [13] and

has already been used in the evaluation of self-adaptation

solutions [14], [15], albeit based on ad-hoc implementations

and scenarios that make the comparison of these solutions

with other solutions difficult. To address these limitations, we

developed UNDERSEA, which is packaged with predefined

scenarios for evaluating self-adaptation solutions.

UNDERSEA is a simulated UUV exemplar built on top

of the open-source middleware MOOS-IvP2, a widely used

platform for the implementation of autonomous applications

on UUVs [16]. As such, the code of self-adaptation solutions

developed with UNDERSEA can be directly used on actual

UUVs that run MOOS-IvP. Like many approaches to engineer-

ing self-adaptive systems (e.g., [17], [18], [19]), UNDERSEA

adopts the conventional MAPE-K control loop [20] and com-

prises a simulated managed system (UUV) and its controller.

However, other types of control loops can be plugged in, for

example, controllers based on principles from control theory.

The exemplar is available preinstalled on an easy-to-use virtual

machine and supports a range of UUV missions and adaptation

scenarios. Also, new missions and adaptation scenarios can

be defined with limited effort. Finally, the real-time update

of the UUV simulator combined with the decoupling of the

observation side (shoreside) from the operation side (UUV)

provides a realistic UUV mission in which the effect of

adaptation decisions is timely visualised on the shoreside.

The rest of the paper is structured as follows. Section II

overviews UNDERSEA and its supported missions. Section III

presents the architecture of the exemplar. Section IV describes

2Mission Oriented Operating Suite - Interval Programming

the process of engineering a self-adaptation solution with

UNDERSEA, and illustrates it for a solution whose MAPE

controller uses runtime probabilistic model checking. Finally,

Section V concludes the paper with a short summary.

II. UNDERSEA OVERVIEW

UNDERSEA simulates a UUV deployed to carry out an

environmental surveillance/data gathering mission. The UUV

is equipped with n ≥ 1 on-board sensors that can measure

a parameter of the ocean environment such as water current,

salinity or temperature. The n sensors can be switched on and

off individually (e.g., to save battery power when not required),

but these operations consume an amount of energy. The energy

consumed to switch on sensor i is denoted eon
i

, and the energy

to switch off sensor i is eoff
i

, for 1≤ i≤n. When sensor i is

switched on, it takes measurements of the oceanic parameter

under study with a variable rate ri. Finally, the probability that

a measurement is sufficiently accurate for the purpose of the

mission depends on the UUV speed sp, and is given by pi.
3

The UUV needs to be augmented with a controller that

dynamically adjusts:

(a) the UUV speed sp

(b) the sensor configuration x1, x2, . . . , xn (where xi = 1 if

the i-th sensor is switched on and xi = 0 otherwise)

so that the self-adaptive system obtained through the inte-

gration of the UUV and the controller handles the generic

adaptation scenarios from Table I.

Within these scenarios, we propose the evaluation and com-

parison of different self-adaptation solutions based on:

• Ability to resume compliance with requirements after the

unpredictable events and changes;

• Utility achieved by the UUV;

• Distance covered by the UUV during the mission;

• Computational overhead to run the controller.

III. UNDERSEA ARCHITECTURE

A. The MOOS-IvP Middleware

UNDERSEA is developed using MOOS-IvP, an established

open-source middleware for engineering autonomous appli-

cations on unmanned marine vehicles [16]. When used for

the execution of oceanic missions, MOOS-IvP is deployed

on the payload computer of an autonomous vehicle, so as to

decouple vehicle autonomy from the navigation and control

system running on the main vehicle computer [16].

A MOOS-IvP-based system is a community of independent

applications running in parallel. These applications communi-

cate through a MOOS database (MOOSDB) using a publish-

subscribe architecture (Fig. 1). To this end, applications can

publish messages in the form of key–value pairs with agreed

frequencies. These messages can provide information about

the vehicle components monitored by an application, e.g.,

3This information can be extracted from the technical specification of sen-
sors; for example, see http://www.ashtead-technology.com/rental-equipment/
teledyne-rdi-600khz-navigator/

after an on-board sensor from the UNDERSEA exemplar

performs a reading, it publishes a message which summarises

the performed action. Any interested “listener” applications

can subscribe to these messages (using the appropriate keys)

and act upon receiving an update, e.g., the UUV middleware

from Fig. 1 subscribes to the messages transmitted by its on-

board sensors, and when a new message arrives it adjusts its

estimate of the average rate of the relevant sensor.

Vehicle autonomy in MOOS-IvP is guided by a collection of

behaviours, i.e., combinations of boolean logic constraints and

piecewise-linear utility functions parameterised, for instance,

by parameters of the navigation and control system such as

heading, speed or depth. User-defined MOOS applications

can propose behaviours and thus affect vehicle autonomy. Dur-

ing a mission, the IvP Helm, the decision-making component

of the platform, periodically collects the proposed behaviours.

When multiple behaviours are active, this component carries

out Interval Programming (IvP) multi-objective optimisation

to establish the optimal action, i.e., an optimal point in the

decision space defined by the constraints and utility functions.

This optimal action is expressed as a set of key–value pairs

and is published to the MOOSDB so that other interested

applications can receive it.

B. UNDERSEA Realisation with MOOS-IvP

UNDERSEA (Fig. 2) comprises a shoreside, a UUV con-

troller and a managed UUV system. These components run

independently and communicate through a client-server archi-

tecture. The configuration parameters for the three components

are specified in a mission file, expressed in an easy-to-use

domain-specific language (DSL) (Fig. 3). The Mission parser,

built using the Antlr parser generator (http://www.antlr.org)

checks that the mission file contains all the required settings,

and extracts the configuration parameters for the three UN-

DERSEA components. For example, a new sensor can be

included by adding a new SENSOR block (lines 12–18 in

Fig. 3); if another sensor with the same name exists or a

required setting is omitted, the parser will throw an exception.

The Managed UUV system comprises the UUV middleware,

a Sensor application that we specifically built for UNDER-

SEA, and other standard applications required by MOOS-IvP

to run the system (e.g., IvP Helm, MOOSDB) that cannot

be adapted by the UUV controller (not shown in Fig. 2).

All configuration information for the UUV is provided in the

MOOS Application

MOOS Application

MOOS Application

Sensor 1

IvP Helm

UUV Middleware

MOOSDB
Sensor 2

Sensor n

.

.

.

Fig. 1. MOOS-IvP architecture, adapted from [16]

TABLE I
GENERIC ADAPTATION SCENARIOS FOR OCEANIC SURVEILLANCE UUV SYSTEMS

Scenario Type of uncertainty [21] Type of adaptation [13], [14] Type of requirements

S1 Unpredictable environment: sensor degradation Switch on additional/alternative sensor(s);
Switch off degraded sensor

QoS: Throughput, energy usage

S2 Unpredictable environment: sensor failure Switch on functionally-equivalent sensor(s) QoS: Performance, reliability,
utility

S3 Unpredictable environment: sensor repair Switch on repaired sensor; Switch off ex-
pensive sensor(s)

QoS: Performance, utility

S4 Changing requirements: new goals Change set of active sensors QoS: Performance, cost

Mission

file

Shoreside

configuration

UUV mission and

simulation parameters

Mission

parser

Shoreside

(observation)

UUV controller

AnalyserMonitor Planner Executor

Simulated UUV system

Managed UUV system

UUV middleware

Sensor 1 ...Sensor 2 Sensor n

UUV middleware

MOOSDB

Probes Effectors

UUV and

sensors state

Quality metrics

and performance

results

Fig. 2. High-level UNDERSEA architecture.

mission file, including the hostname and port used by the on-

board sensors and the UUV middleware to communicate with

MOOSDB and exchange messages (lines 3 and 4 in Fig. 3).

The UUV configuration settings include the UUV name, the

port through which the managed UUV system communicates

with the controller, and the range of possible speed values

in the format MinSpeed :MaxSpeed :Intervals (lines 6–10).

For example, the command on line 9 specifies that the UUV

speed sp ∈ {0, 0.25, 0.50, ..., 4.75, 5.00}. For each on-board

sensor, a relevant configuration block is defined (lines 12–

18), and MOOS-IvP launches a new Sensor instance with the

given configuration. Measurement-rate change patterns for a

sensor are specified using the change command (e.g., line 16)

in the format StartTime :EndTime :NewRate . For instance,

the command on line 16 means that during the simulated time

interval [50, 100] Sensor1 will operate with a rate of 3Hz.

The UUV controller is where new self-adaptation solutions

(e.g., new adaptation algorithms, optimisation strategies, or

learning techniques) can be developed and integrated for eval-

uation. To facilitate the implementation of new solutions, the

UNDERSEA distribution provides abstract Java classes that

delineate the functionality of each MAPE loop element. Fig. 4,

for instance, shows the abstract Executor class. Developing a

new controller requires simply the extension of these abstract

classes, to specialise their unimplemented methods, and to

inform the UUV controller component about the new classes.

1 simulation time = 2000
2 time window = 5
3 host = localhost
4 port = 9999
5

6 UUV {
7 name = Nautilus
8 port = 8888
9 speed = 0:5:20

10 }
11

12 SENSOR {
13 name = Sensor1
14 rate = 5
15 reliability = 0.9
16 change = 50:100:3
17 change = 150:200:4.5
18 }

Fig. 3. Fragment of a mission file specified in the UNDERSEA DSL.

At regular time intervals (defined by time window in Fig. 3

– lines 2), the UUV controller uses the Probes to retrieve

the current system state from the UUV middleware, i.e., the

average rate of the on-board sensors and the UUV speed.

The controller then runs a MAPE loop, selects the desired

vehicle speed and sensors configuration, and communicates its

decision to the managed UUV system through Effectors. The

UUV middleware receives this decision and enforces the IvP

Helm to adapt the behaviour of the UUV system by realising

the new configuration.

Extending the set of data associated with the managed

1 package controller;
2

3 public abstract class Executor {
4 /∗∗ Create a new executor instance∗/
5 public Executor() {...}
6

7 /∗∗ Where the actual work is done∗/
8 public abstract void run();
9

10 /∗∗ Get the command in the form:
11 speed=value, sensor name=x, sensor name=x,... ∗/
12 public abstract String getCommand();
13 ...
14 }
15

Fig. 4. Executor abstract class.

1) Download and

 start virtual machine

2) Implement controller

 in Java
3) Generate mission file 4) Run experiment

5) Collect data and

 analyse results

Fig. 5. Workflow for engineering and evaluating self-adaptive solutions with UNDERSEA.

system state (e.g., with depth or coast proximity data) requires

(i) enhancing the sensor applications currently available within

the managed UUV system (i.e., Sensor 1, ..., Sensor n) or de-

veloping new data specific applications (e.g., Depth Sensor);

(ii) making the UUV middleware aware of the new data; and

(iii) modifying the Probes to enable retrieving the new data

from the UUV middleware. Interested researchers can follow

the guide available at [22]. These extensions enable exploring

adaptation scenarios beyond those reported in Table I and

facilitate the design and evaluation of controllers that can cope

with a wider range of uncertainty and requirement types.

In line with the MOOS-IvP design principles, we decoupled

the shoreside “observation room” and the (simulated) UUV

system. We made this decision to simplify the implementation

of multi-UUV missions in future versions of the exemplar.

Such multi-UUV missions could be used to assess simulta-

neously the performance of different controllers running on

the same platform. Alternatively, we could deploy a multi-

UUV mission (with all UUVs running the same controller) on

separate platforms (e.g., on a standard laptop and a Raspberry

Pi) and compare the controller performance on these machines.

Once simulation finishes (given by simulation time in

Fig. 3), UNDERSEA exports a set of files for analysing the

controller performance. This set includes a summary of quality

metrics for the executed mission, a log file with data about the

state of the managed system and the configuration selected by

the controller, and a synopsis of CPU and memory usage.

IV. USING UNDERSEA

A. Overview

Researchers using UNDERSEA need to carry out the activ-

ities shown in Fig. 5. All the dependencies in the system are

preinstalled and the system is fully configured within a virtual

machine that researchers can obtain in Step 1 from our project

websitehttp://www-users.cs.york.ac.uk/simos/UNDERSEA. 4

Step 2 involves the implementation of the controller by

specialising the abstract Java classes of the UUV controller.

One of our existing controllers can be selected or a dedicated

controller can be implemented. We use the build automation

tool Apache Maven (maven.apache.org) to manage the con-

troller and its dependencies.

Step 3 involves defining the mission file with the structure

described in the previous section. For convenience, the virtual

machine includes a set of predefined missions. Executing an

UNDERSEA build script causes the invocation of the Mission

parser (Fig. 2) to verify and extract the parameters for the

shoreside, the controller and the managed UUV system.

4The project website includes also a step-by-step guide for installing
UNDERSEA locally.

Step 4 involves starting the experiment by using an UN-

DERSEA launch script. The UUV simulator console is au-

tomatically displayed, presenting mission-related information

(e.g., active sensors and UUV speed) as shown in Fig. 7. This

can help to identify and correct early any controller or mission

configuration problems.

Finally, Step 5 involves collecting the mission data, and

analysing the mission and the performance of the controller.

B. Case Study

We illustrate the five-step engineering process described

above and the UNDERSEA capabilities using a case study

adapted from our previous work [13]. The UUV used in

this case study is travelling with speed sp ∈ [0, 5m/s] and

is equipped with three on-board sensors that operate with

nominal reading rates r1 = 5Hz and r2 = r3 = 4Hz,

and consume energy per reading e1 = 3J, e2 = 2.4J and

e3 = 2.1J. The amounts of energy consumed to switch the

sensors on and off are eon1 = 10J, eon2 = 8J, eon3 = 5J and

eoff1 = 2J, eoff2 = 1.5J, eoff3 = 1J, respectively. A reading

is accurate with probability pi = 1− αisp, 1 ≤ i ≤ 3,

where αi ∈ (0, 0.15) is a sensor-dependent accuracy factor.

Finally, the UUV should self-adapt so that the following QoS

requirements are satisfied:

R1 (throughput): The UUV should take at least 20 readings

of sufficient accuracy per 10 metres of mission distance.

R2 (resource usage): The energy consumption of the sensors

should not exceed 120 Joules per 10 surveyed metres.

R3 (cost): If requirements R1 and R2 are satisfied by multiple

configurations, the UUV should use one of these configu-

rations that minimises the cost function

cost = w1E + w2sp
−1,

where E is the energy used by the sensors per 10m

travelled by the UUV, and the weights w1, w2 > 0 express

the desired trade-off between carrying out the mission with

reduced battery usage and completing the mission faster.

We assume that Step 1 of the UNDERSEA engineering

process from Fig. 5 is completed, and present Steps 2–4 below.

Step 2: Implementing the UUV controller

The proposed controller employs probabilistic model checking

(PMC) at runtime [23], [24], [25] to assess UUV compliance

with QoS requirements R1–R3 and to perform runtime recon-

figurations when needed. To this end, MonitorPMC5 inspects

the current sensor rates and determines whether the change

specified by this data should be analysed — the controller can

5We use the suffix ‘PMC’ for controller elements implemented using
probabilistic model checking at runtime, e.g., MonitorPMC and AnalyserPMC.

1 package controllerPMC;
2

3 public class AnalyserPMC extends Analyser{
4

5 /∗∗ PRISM API instance (developed in our previous work)∗/
6 PrismAPI prism;
7

8 /∗∗ Stochastic model and properties files∗/
9 String modelFile = ”models/uuv/uuv.sm”;

10 String propertiesFile = ”models/uuv/uuv.csl”;
11

12 /∗∗ Create a new AnalyserPMC instance∗/
13 public AnalyserPMC() {
14 /∗∗ Instantiate PRISM and assign the properties file∗/
15 prism = new PrismAPI(propertiesFile);
16 ...
17 }
18

19 /∗∗ Run the analyser (using probabilistic model checking)∗/
20 public void run(){
21 /∗∗ Get current sensors rate∗/
22 double rates[] = Knowledge.getSensorsRates();
23

24 /∗∗ For all UUV system configurations∗/
25 for (int config=0; config<UUV CONFIGS; config++){
26 //1) Instantiate parametric stochastic model
27 String model = instantiateStochasticModel(config, rates);
28

29 //2) load the model to PRISM
30 prism.loadModel(model);
31

32 //3) run PRISM
33 List<Double> propertiesResults = prism.runPrism();
34

35 //4) save configuration results to Knowledge
36 Knowledge.updateResult(config, propertiesResults);
37 }
38 }
39 ...
40 }
41

Fig. 6. Excerpt of Analyser class (AnalyserPMC) that uses probabilistic model
checking at runtime.

terminate early if there is no (significant) change in the UUV

state since its previous invocation.

AnalyserPMC uses the probabilistic model checker

PRISM [26] programatically to verify stochastic models of

the UUV parametrised with the possible speed and sensor

configurations. Fig. 6 shows an excerpt of AnalyserPMC

in which we first instantiate the PRISM API and specify

the stochastic model and properties files (lines 5–17). When

AnalyserPMC runs, it extracts the current sensor rates, in-

stantiates the stochastic model, loads the model into PRISM,

invokes the model checker, and finally stores the verification

results to Knowledge (lines 19–38) for later use. No further

implementation effort is required to complete AnalyserPMC.

PlannerPMC examines the verification results, and chooses

the vehicle speed and sensor configuration that satisfy the

throughput and resource usage requirements R1 and R2, and

minimises the cost (cf. requirement R3). Next, PlannerPMC

assembles a reconfiguration plan specifying which sensors

Fig. 7. Self-adaptive UUV simulator

need to be switched on or off, and in which order, so that

the selected configuration is achieved.

ExecutorPMC uses the reconfiguration plan to synthesise

the sequence of commands that will be transmitted by the

Effectors to the managed UUV system, ensuring the imple-

mentation of the plan.

A fully-working PMC-based controller is available in UN-

DERSEA distribution for further experimentation. Note that

UNDERSEA does not require specialising all MAPE classes,

especially if they are not useful for a new controller. UNDER-

SEA comes with default classes that could be used to complete

the controller in such self-adaptation solutions.

Step 3: Specifying the mission file

The mission file for our case study is the one presented in

Fig. 3, with two additional ‘SENSOR’ configuration blocks

(lines 12–18) that we did not include in the paper due to

space constraints. The full mission file for the case study is

available as part of the UNDERSEA distribution. Running

the UNDERSEA build script validates the mission file and

extracts the required parameters for the shoreside, controller

and managed system UNDERSEA components (into separate

configuration files).

Step 4: Running the experiment

We start the experiment by executing the UNDERSEA launch

script. While UNDERSEA executes the mission (Step 3) and

our PMC-based controller (Step 2) drives the UUV adapta-

tion, we receive a summary of the mission evolution in the

UNDERSEA console. For instance, Fig. 7 shows a screenshot

of our three-sensor mission at a time moment when sensors 1

and 3 are switched on (i.e., x1=x3=1), sensor 2 is switched

off (i.e., x2=0), and the UUV speed is sp=3.6m/s.

Step 5: Collecting the data and analysing the results

When UNDERSEA terminates its execution, we obtain a set

of experiment-related data. The analysis of this data provides

useful insights regarding the CPU and memory overheads of

the controller, and its ability to respond adequately to changes

affecting the UUV system. For instance, Fig. 9 shows the

changes in sensor rates and the new UUV configurations

1 2 3 4 5
speed [m/s]

0

40

80

120

160

200

240

280

E
x
p

e
c
te

d
 e

n
e

rg
y
 u

s
a

g
e

 p
e

r
1

0
m

 [
J
]

(a)

1 2 3 4 5
speed [m/s]

0

20

40

60

80

E
x
p

e
c
te

d
 a

c
c
u

ra
te

 m
e

a
s
u

re
m

e
n

ts
 p

e
r

1
0

m

1 2 3 4

speed [m/s]

160

200

240

280

c
o

s
t

Key: x1=1, x2=1, x3=1x1=1, x2=0, x3=1x1=0, x2=0, x3=1x1=1, x2=0, x3=0 x1=0, x2=1, x3=0 x1=0, x2=1, x3=1x1=1, x2=1, x3=0

(b) (c)

Fig. 8. Verification results for requirement (a) R1, (b) R2, and (c) cost of the feasible configurations. The best configuration (circled) corresponds to
x1 = x2 = 1, x3 = 0 (i.e. UUV using only its first two sensors) and sp = 3.2m/s, and the shaded regions correspond to requirement violations.

s
p
 [
m

/s
]

Time [s]

r 3
 [
s

-1
]

CB

r 1
 [
s

-1
]

A

r 2
 [
s

-1
]

D E F G

Fig. 9. Change scenarios for the self-adaptive UUV system over 2100 seconds
of simulated time. Extended shaded regions indicate the sensors switched on
at each point in time.

selected by the PMC-based controller. The labels A–G from

Fig. 9 are associated with the following adaptation decisions:

A) The UUV starts with the initial state and configuration;

B) Sensor 3 experiences service degradation (rnew3 =1Hz), so

the higher-rate but less energy efficient sensor 1 is switched

on (allowing a slight increase in speed to sp=3.2m/s) and

sensor 3 is switched off;

C) Sensor 3 recovers and the initial configuration is resumed;

D) Sensor 2 experiences a degradation, and is replaced by

sensor 1, with the speed increased to sp=3.1m/s;

E) Sensor 2 recovers and the initial configuration is resumed;

F) Both sensor 2 and sensor 3 experience degradations, so

sensor 1 alone is used, with the UUV travelling at a lower

speed sp=2.1m/s;

G) Sensors 2 and 3 resume operation at nominal rates and the

initial UUV configuration is reinstated.

Finally, using the data available we can perform a deeper

analysis of the adaptation decisions made by the PMC-based

controller. Fig. 8, for example, depicts the verification results

corresponding to label B from Fig. 9 for QoS requirements

R1–R3 and the configuration selected by the controller.

V. CONCLUSION

We introduced UNDERSEA, an exemplar that can help

researchers to quickly explore, develop, evaluate and compare

new self-adaptation solutions in the unmanned underwater

vehicle domain. The exemplar provides a reference imple-

mentation that is built on top of the established open-source

middleware MOOS-IvP and comes with a set of predefined

scenarios for experimentation. We illustrated the use of the

exemplar with an example where the controller employs prob-

abilistic model checking at runtime to assess UUV compliance

with a set of QoS requirements. The exemplar is extendable

and other self-adaptation solutions (e.g., based on control-

theory [15] or stochastic search [27]) can be developed easily.

We plan to implement a number of extensions in the near

future. First, in the current version, the user gets the data of

the simulation, which is the basis for analysing and comparing

solutions. In the next release, we plan to provide additional

support for automated analysis and comparison of controller

solutions. Second, we plan to support research on distributed

adaptation by supporting multi-UUV missions. Third, we plan

to add complementary scenarios for the evaluation of adapta-

tion solutions, e.g., scenarios focussing on optimising the accu-

racy of measurements and testing the scalability of adaptation

solutions. The exemplar and a video demonstration are avail-

able at https://www-users.cs.york.ac.uk/simos/UNDERSEA.

REFERENCES

[1] M. S. Feather, S. Fickas, A. Finkelstein, and A. V. Lamsweerde,
“Requirements and specification exemplars,” Automated Software En-

gineering, pp. 419–438, 1997.

[2] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking
to advance research: A challenge to software engineering,” in 25th

International Conference on Software Engineering (ICSE’03), 2003, pp.
74–83.

[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’12), 2012, pp. 3354–
3361.

[4] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–
27:27, 2011.

[5] M. Kwiatkowska, G. Norman, and D. Parker, “The PRISM benchmark
suite,” in 9th International Conference on Quantitative Evaluation of

SysTems (QEST’12), 2012, pp. 203–204.

[6] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” Trans.

Evol. Comp, vol. 10, no. 5, pp. 477–506, 2006.

[7] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. M. Goeschka, A. Gorla, V. Grassi, P. Inverardi,
G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè,
C. Prehofer, W. Schäfer, R. Schlichting, B. Schmerl, D. B. Smith,
J. P. Sousa, G. Tamura, L. Tahvildari, N. M. Villegas, T. Vogel,
D. Weyns, K. Wong, and J. Wuttke, “Software engineering for self-
adaptive systems: A second research roadmap,” in Software Engineering

for Self-Adaptive Systems II, ser. LNCS, 2013, vol. 7475, pp. 1–32.

[8] S. W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the effectiveness
of the rainbow self-adaptive system,” in 4th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS’09), 2009, pp. 132–141.

[9] D. Weyns and R. Calinescu, “Tele assistance: A self-adaptive service-
based system examplar,” in 10th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS’15),
2015, pp. 88–92.

[10] C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern, “Hogna: A platform
for self-adaptive applications in cloud environments,” in 10th Inter-

national Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS’15), 2015, pp. 83–87.

[11] A. Bennaceur, C. McCormick, J. G. Galán, C. Perera, A. Smith, A. Zis-
man, and B. Nuseibeh, “Feed me, feed me: An exemplar for engineering
adaptive software,” in 11th International Symposium on Software Engi-

neering for Adaptive and Self-Managing Systems (SEAMS’16), 2016,
pp. 89–95.

[12] M. Seto, L. Paull, and S. Saeedi, “Introduction to autonomy for marine
robots,” in Marine Robot Autonomy, 2013, pp. 1–46.

[13] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient runtime quantita-
tive verification using caching, lookahead, and nearly-optimal reconfig-
uration,” in 9th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS’14), 2014, pp. 115–124.

[14] R. Calinescu, S. Gerasimou, and A. Banks, “Self-adaptive software
with decentralised control loops,” in 18th International Conference on

Fundamental Approaches to Software Engineering (FASE’15), 2015, pp.
235–251.

[15] S. Shevtsov and D. Weyns, “Keep it simplex: Satisfying multiple
goals with guarantees in control-based self-adaptive systems,” in 24th

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE’16), 2016, pp. 229–241.

[16] M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, “Autonomy
for unmanned marine vehicles with MOOS-IvP,” in Marine Robot

Autonomy, 2013, pp. 47–90.

[17] D. Garlan, S.-W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, Oct 2004.

[18] D. Weyns, S. Malek, and J. Andersson, “FORMS: Unifying reference
model for formal specification of distributed self-adaptive systems,”
ACM Trans. Auton. Adapt. Syst., vol. 7, no. 1, p. 8, 2012.

[19] R. Calinescu, “Implementation of a generic autonomic framework,” in
Fourth International Conference on Autonomic and Autonomous Systems

(ICAS’08), 2008, pp. 124–129.
[20] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-

puter, vol. 36, no. 1, pp. 41–50, 2003.
[21] A. Ramirez, A. Jensen, and B. Cheng, “A taxonomy of uncertainty for

dynamically adaptive systems,” in 7th International Symposium on Soft-

ware Engineering for Adaptive and Self-Managing Systems (SEAMS’12),
2012, pp. 99–108.

[22] “An Overview of MOOS-IvP and a Users Guide to the IvP Helm -
Release 15.5,” http://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php, May
2015.

[23] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Communi-

cations of the ACM, vol. 55, no. 9, pp. 69–77, 2012.
[24] S. Gerasimou, “Runtime quantitative verification of self-adaptive sys-

tems,” Ph.D. dissertation, University of York, York, UK, 2017.
[25] R. Calinescu, K. Johnson, and Y. Rafiq, “Developing self-verifying

service-based systems,” in 28th International Conference on Automated

Software Engineering (ASE’13), 2013, pp. 734–737.
[26] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: verification

of probabilistic real-time systems,” in 23rd International Conference on

Computer Aided Verification (CAV’11), 2011, pp. 585–591.
[27] Z. Coker, D. Garlan, and C. Le Goues, “SASS: Self-adaptation using

stochastic search,” in 10th International Symposium on Software Engi-

neering for Adaptive and Self- Managing Systems (SEAMS’15), 2015,
pp. 168–174.

	Introduction
	UNDERSEA Overview
	UNDERSEA Architecture
	The MOOS-IvP Middleware
	UNDERSEA Realisation with MOOS-IvP

	Using UNDERSEA
	Overview
	Case Study

	Conclusion
	References

