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Abstract

Background and Purpose— Despite the rapidly increasing global burden of ischemic stroke, 

no therapeutic options for neuroprotection against stroke currently exist. Recent studies have 

shown that autophagy plays a key role in ischemic neuronal death and treatments that target 

autophagy may represent a novel strategy in neuroprotection. We investigated whether autophagy 

is regulated by carnosine, an endogenous pleiotropic dipeptide which has robust neuroprotective 

activity against ischemic brain damage.

Methods— We examined the effect of carnosine on mitochondrial dysfunction and autophagic 

processes in rat focal ischemia and in neuronal cultures.

Results— Autophagic pathways such as reduction of phosphorylated mTOR/p70S6K and the 

conversion of LC3-I to LC3-II were enhanced in the ischemic brain. However, treatment with 

carnosine significantly attenuated autophagic signaling in the ischemic brain, with improvement of 

brain mitochondrial function and mitophagy signaling. The protective effect of carnosine against 

autophagy was also confirmed in primary cortical neurons.

Conclusion— Taken together, our data suggest that the neuroprotective effect of carnosine is at 

least partially mediated by mitochondrial protection, and attenuation of deleterious autophagic 

processes. Our findings shed new light on the mechanistic pathways that this exciting 

neuroprotective agent influences.
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Introduction

Despite the high prevalence and the increasing global burden of ischemic stroke, there are 

no approved neuroprotective agents in clinical use. The only approved therapy is 

thrombolysis with tissue plasminogen activator (tPA), which has a narrow therapeutic 

window and hemorrhagic side effects that limit clinical use. There have been extensive 

efforts to develop novel therapeutic candidates for ischemic stroke.1,2 However, numerous 

promising candidates have failed in clinical trials due to a number of factors which include 

poor preclinical study design, illogical clinical translation of preclinical data, poor efficacy 

and serious side effects.3,4 Moreover, understanding the precise mechanisms through which 

candidate agents exert their protective effects is an important and critical part of therapy 

development. Agents that influence multiple deleterious pathways are more likely to be 

efficacious clinically.5,6

There is increasing evidence that autophagy, a highly regulated cellular process that involves 

degradation of cellular proteins and organelles, can contribute to neuronal death during brain 

ischemia. Enhancement of autophagic processes was observed in brain after hypoxic-

ischemia,7 and the occurrence of autophagy measured by conversion of LC3-I to LC3-II 

during brain ischemia has been confirmed by in vivo imaging.8 Although controversy exists 

whether autophagy contributes to cell death or cell survival,9-11 recent observations using 

inhibitors or modulators of autophagy revealed that autophagy mediates neuronal cell death 

during ischemia.12,13 Wen et al14 observed autophagy in focal cerebral ischemia, and 

demonstrated that treatment with inhibitors of autophagy significantly reduced brain 

damage. Data also exist showing that neuronal death during ischemia is mediated by 

oxidative stress generated from autophagosomes and mitochondria that are participating in 

the autophagic process.15

Activation of autophagic pathways is associated with perturbations in mitochondrial 

function.16 Mitochondrial damage is known to result in activation of mitophagy, a specific 

type of autophagy that eliminates dysfunctional mitochondria,17,18 under normal as well as 

pathological conditions including cerebral ischemia.19 Despite the increasing attention on 

autophagy as a novel target for stroke therapy development, studies on agents that modulate 

autophagy and that could be used clinically are still limited.

Carnosine, an endogenous dipeptide, is a pleotropic agent that exhibits diverse activities 

including anti-oxidant, anti-matrix metalloproteinase, heavy metal chelating and anti-

excitotoxic properties.20,21 We recently showed that carnosine robustly reduced brain 

damage after ischemic stroke.22-25 Post-treatment with carnosine protected against 

histological brain damage both in permanent- and transient-ischemic rat models with a wide 

clinically relevant therapeutic window of 9 hr and 6 hr, respectively, along with 

improvements in functional outcomes.23 Carnosine did not exhibit any side effects or organ 

toxicity.23,25 Along with our observation, others have also reported the robust 
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neuroprotective activity of carnosine.26-28 However, it is not known whether carnosine can 

influence autophagy in the ischemic brain.

In the current study, we have investigated whether carnosine has the ability to modulate 

autophagic processes in the ischemic brain using both in vitro and in vivo approaches. We 

extended our studies to mitochondria and showed that carnosine has a significant and 

profound effect on autophagy and associated mitochondrial perturbations that occur during 

ischemia. Our findings support the pleiotropic multimodal action of carnosine and provide, 

for the first time, proof of its influence on autophagy.

Materials and Methods

More details are provided in the online supplemental material.

Animals

All animal experiments were conducted using adult male Sprague-Dawley rats weighing 250 

to 300 g (Harlan, Koatech, Korea) and performed in accordance with the NIH Policy and 

Animal Welfare Act under the approval by Institutional Animal Care and Use Committee 

(IACUC) at Hanyang University.

Blinding and Randomization

Treatment groups were allocated in a randomized fashion. Investigators were blind to the 

allocation of treatment during surgeries and outcome evaluations.

Treatments

Carnosine was obtained from Sigma and dissolved in saline. Carnosine (1,000 mg/kg) was 

administered into the lateral tail vein at 6 hr after ischemic onset both in permanent and 

transient models. The choice of this dose and time window is based on previous dose finding 

studies.22-25

Ischemic stroke in rats

Permanent or transient focal cerebral ischemia was induced by intraluminal middle cerebral 

artery occlusion (MCAO).23 Ischemia was initiated by a silicone-coated 4-0 monofilament 

nylon suture (Doccol Co.) as described previously.23,29

Calculation of infarct volume

At 24 hr after onset of ischemia, rats were euthanized by isoflurane overdose, and the 

isolated brains were cut into 2 mm sections. The infarct volume for each section was 

calculated by 2% triphenyltetrazolium chloride (TTC).30

Assessment of neurological function

Deficit in neurological function was evaluated by behavioral tests including the adhesive 

tape removal test and a Rota Rod test, at 24 hr after tMCAO (6 hr ischemia).23,31 All rats 

were trained to the tests for 5 consecutive days before focal ischemia.
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Brain homogenization and mitochondria isolation

Brain samples between bregma levels +2 and -4 mm, which include ischemic core and 

penumbra, were rapidly isolated at 24 hrs after MCAO, and brain homogenates were 

obtained by homogenization in isolation buffer. Brain mitochondria was further isolated 

using Percoll gradient centrifugation.32

Western Blot of brain homogenate or isolated brain mitochondria

Processed brain homogenates or brain mitochondria were examined in western blot using 

Tris-HCl SDS-PAGE.23,32 Detailed information on primary antibodies is described in the 

online supplemental material.

Complex I activity

Complex I activity in isolated brain mitochondria was measured using colorimetric method 

as previously described with 2,6 dichloroindophenol (DCIP).33

In vitro culture of primary cortical neurons

Primary cortical neuronal cultures were established as described previously.22 Neuronal 

cultures were maintained in a CO2 incubator at 37°C, and used between days in vitro (DIV) 

7 and 11.

NMDA-induced excitotoxicity

Ischemic neuronal damage was examined by N-methyl-daspartate (NMDA)-induced 

excitotoxicity.34 NMDA-induced cytotoxicity was measured at 24 hr after NMDA exposure 

by leakage of lactate dehydrogenase (LDH). Alterations in cellular proteins were assessed 

by western blot as described earlier, with cell lysates extracted from neuronal cells using 

RIPA buffer (Thermo Scientific). To examine carnosine protection, cells were pretreated 

with carnosine for 30 min prior to NMDA stimulation.

Statistics

We calculated the means and standard errors of means (SEM) for all treatment groups. 

Differences in values were analyzed using Student t-test or analysis of variance (ANOVA), 

as appropriate, using SPSS software (Chicago, IL). Multiple comparisons were made using 

one-way ANOVA followed by Tukey test. Two-tailed Student’ s t-test analysis was used for 

comparing values between two groups. In all cases, a p value of < 0.05 was considered 

significant.

Results

Carnosine protects the ischemic brain in focal stroke

First, we examined the neuroprotective effect of carnosine in rat focal ischemia. All 

physiological variables including body temperature and cerebral blood flow (CBF) were 

maintained in the reference range. Induction of focal ischemia was attained by middle 

cerebral artery occlusion (MCAO) and verified by monitoring of CBF. Post-treatment with 

carnosine (1000 mg/kg) at 6 hr significantly reduced brain infarct volume (Fig. 1A), 
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measured by TTC-staining. Similarly, we found that carnosine improved functional 

outcomes following 6 hr transient MCAO, using a variety of tests which included the 

latency for removal of adhesive tape placed on forelimbs and the latencies to fall off from 

the accelerating Rota Rod, respectively.23,31 (Fig. 1B and 1C).

Carnosine reduced autophagy in brain homogenates

To investigate whether autophagic processes are involved in carnosine mediated protection, 

we examined the extent of conversion of LC3-I to LC3-II, an important marker of autophagy 

that is responsible for formation of autophagosome.35 A significant increase in LC3-II 

formation was observed in the ipsilateral hemisphere following ischemia. However, this 

increase in LC3-II formation was attenuated by treatment with carnosine (Fig. 2A). It is also 

well established that inhibition of the mTOR pathway plays a key role in autophagy.36 To 

investigate the effect of carnosine on the autophagic signaling pathway, we measured the 

levels of phospho-mTOR (p-mTOR) and phospho-p70S6K (p-p70S6K), a representative 

downstream target of mTOR,37 in brain homogenates after ischemia. Carnosine did not 

affect the basal activity of mTOR; similar levels of p-mTOR were observed in hemispheres 

contralateral to the ischemia in both saline- and carnosine-treated rats (Figure 2B). Ischemia 

inhibited the phosphorylated levels of mTOR, but this inhibition was blocked by carnosine. 

Similarly, reductions in the levels of p-p70S6K in ischemic brain were also reversed by 

carnosine (Fig. 2B). Taken together, these findings support the modulating role of carnosine 

on autophagy in the ischemic brain. While mTOR-autophagy pathways were significantly 

influenced by ischemia and reversed by carnosine, the level of phosphorylated ERK 1/2 was 

not changed either by ischemia or carnosine treatment (Fig. 2B), showing that the 

modulation of autophagic proteins by carnosine is not a non-specific epi-phenomenon.

Carnosine attenuates ischemic injury to mitochondria

We have previously reported that carnosine reversed the impairment of mitochondrial 

permeability transition in primary neurons and astrocytes. Since it is well established that 

mitochondrial dysfunction contributes to autophagy induction,16,18 we examined whether 

carnosine protected against mitochondrial damage and mitophagy. Ischemia resulted in 

decreased activity of complex I in isolated brain mitochondria suggesting impairment in 

mitochondrial respiratory function. Ischemic mitochondrial dysfunction was significantly 

reversed in mitochondria isolated from carnosine-treated rats (Fig. 3A). To determine if 

there is a link between mitochondrial dysfunction and autophagy, we examined the levels of 

p-Drp1 and Parkin which play key roles in mitochondrial fragmentation and mitophagy 

during cell death, respectively.38-40 The mitochondrial levels of p-Drp1 and Parkin were 

significantly increased by ischemia, but the increase of p-Drp1 and Parkin were attenuated 

by carnosine treatment (Fig. 3B).

While the levels of p-Drp1 and Parkin were increased by ischemia, the levels of cytochrome 

C and apoptosis-inducing factor (AIF) were significantly decreased in brain mitochondria 

following ischemic insult. Since cytochrome C and AIF are released from mitochondria to 

the cytosol during mitochondrial damage,32,41 these results were consistent with 

mitochondrial dysfunction. Carnosine potently inhibited the release of AIF and cytochrome 

C, demonstrating its protective activity on mitochondrial damage (Fig. 3B).
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Carnosine protects against neuronal autophagy in culture

Primary cortical neurons were transiently exposed to toxic levels NMDA, and cytotoxicity 

and autophagic signaling pathways were examined. As shown in Figure 4A, NMDA induced 

significant cytotoxicity in primary cortical neurons, and NMDA-cytotoxicity was reduced by 

carnosine treatment. Interestingly, autophagic signaling pathways including LC3-II 

formation and mTOR de-phosphorylation were significantly enhanced by NMDA exposure, 

and carnosine reversed these changes (Fig. 4B), confirming the protective effect of 

carnosine against ischemia-induced neuronal autophagy.

Discussion

Stroke involves a cascade activation of multiple deleterious pathways,2,42,43 and therefore a 

drug candidate that specifically modulates a single pathway is not likely to show clinical 

efficacy against ischemic brain damage. Many therapeutic candidates including 

neuroprotectants which had strong protective activity pre-clinically have failed in clinical 

trials.1,4 One major reason for this is that past strategies have focused on targeting one 

pathway. We have shown that carnosine is an exciting candidate for development as a stroke 

therapy.23,25 It is safe and efficacious with a large clinically relevant therapeutic time 

window. Moreover, it is a pleiotropic agent that favorably modulates several deleterious 

pathways that contribute to cell injury and cell death during and after ischemia.21,44 We 

show here, using in vitro and in vivo approaches that carnosine has a profound and 

significant effect on autophagy, a recently identified noxious pathway in ischemic stroke. 

We believe that the current study underlines the translational importance of carnosine as a 

therapeutic candidate against ischemic stroke where multiple deleterious pathways aggravate 

neuronal damage.

Autophagy is the cellular process that mediates degradation of cellular proteins and 

organelles and maintains homeostasis.45 Despite its essential role in normal cellular 

physiology, excessive activation of autophagic pathways is also reported to be highly 

associated with many disease states including brain damage.46,47 Autophagic cell death has 

been referred to as type II cell death, which is one of the major types of cell death along with 

apoptotic (type I) and necrotic (type III) cell death.48,49 While necrotic and apoptotic cell 

deaths have long been considered as the main pathological events in ischemic stroke,50,51 

autophagy has been recently recognized as a possible deleterious event also. Activation of 

autophagic signaling was observed in ischemic brain,52 mediating ischemic neuronal 

death.10 Notably, autophagic cell death was found to be the most important contributing 

pathway in neonatal cerebral ischemia relative to apoptosis and necrosis.53 Autophagy-

inhibitors such as 3-MA significantly reverse ischemic brain damage14 and inhibition of 

autophagy was suggested to be the main mechanism of ischemic post-conditioning 

neuroprotection.54 Conversely, it has also been reported that autophagy may play a dual role 

in neuronal survival and death during ischemia,10 and further studies on the exact molecular 

targets which switch beneficial autophagy to detrimental autophagy would give valuable 

insights for development of treatments that modulate autophagy.

The role of mitochondrial dysfunction has been proposed as a contributor to autophagy.16 

We and others have previously shown that ischemic insults to the brain induced 
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mitochondrial permeability transition (MPT) resulting in damage to mitochondrial function 

in neurons.23,41 Onset of mitochondrial dysfunction is closely linked to initiation of 

autophagy in I/R injured myocytes,46 in rat hepatocytes,55 and in neurons.15 Damaged 

mitochondria releases cytochrome C (cyt C), AIF, and reactive oxygen species,17 which 

promote mitophagy, a form of autophagy that is involved in the removal of dysfunctional 

mitochondria. Recent data suggests that Parkin, an ubiquitin ligase that mediates 

mitophagy,40 is recruited to the damaged mitochondria.36,56 In this report, we observed the 

increased recruitment of Parkin to the mitochondria, and loss of AIF and cyt C from 

mitochondria in ischemic brain, which were significantly attenuated by carnosine, 

demonstrating its protective effect against mitophagy and ultimately autophagic neuronal 

death. Similarly, Mehta et al57 showed that selenium conserved mitochondrial function and 

stimulated mitochondria biogenesis, along with reduced autophagy in glutamate-induced 

neuronal toxicity.

Interest in the development of carnosine as an endogenous pleiotropic molecule for 

therapeutic use clinically has been increasing.20,44,58-60 Here we focused on the potential of 

carnosine against ischemic stroke. Several previous reports showed that carnosine also had 

beneficial activities in neurodegenerative diseases including Alzheimer diseases,61 and 

dementia.62 Of note, dysregulation of autophagic processes have been recently recognized to 

contribute to the progress of these neurodegenerative diseases.63,64 Further elucidation of 

carnosine's effects on autophagy in these neurodegenerative diseases is needed.

In summary, we have demonstrated that carnosine inhibits ischemia-induced autophagy and 

mitochondrial damage. This novel action of carnosine adds to the other body of compelling 

data that supports the development of carnosine as a therapeutic agent against ischemic 

stroke.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Protective effect of carnosine against brain damage during ischemic stroke
Ischemic stroke was achieved by middle cerebral artery occlusion (MCAO) in rats. (A) 
Carnosine (1000 mg/kg) was administered 6 hr after onset of ischemia. Infarct volume was 

determined by 2,3,5-triphenyltetrazolium chloride staining at 24 hr after MCAO. The 

representative photos are shown. N=13-15. *p<0.05 vs. saline-treated rats. (B and C) 
Carnosine (1000 mg/kg) was administered to rats at 6 hr after ischemic onset during 

transient MCAO (6 hr ischemia/18 hr reperfusion). Behavioral tests were performed at 24 hr 

before and after ischemia. (B) Somatosensory deficit was determined using the Adhesive 

Tape tests, where required time to remove adhesives on fore limbs were measured. (C) In 

the RotaRod test, motor-ambultatory function was determined. Latencies to fall off from the 

rotarod with accelerated speeds were measured. B: N=13-15, C: N=15-16. **p<0.01, 

#p<0.05 vs. the corresponding group. Data were expressed as mean ± SEM and analyzed by 

Student's t-test.
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Figure 2. Inhibitory effect of carnosine on autophagy in ischemic brain
Brain homogenates were isolated from contralateral (Contra) or ipsilateral (Ipsi) 

hemispheres from saline- or carnosine (1000 mg/kg; 6 hr post treatment)-administered rats 

following pMCAO. (A) The extent of autophagy was examined using the conversion of 

LC3-II from LC3-I. (B) Autophagic signaling was examined by phosphorylation of mTOR, 

p70S6K and ERK. The representative bands are shown. Relative density of each band was 

analyzed by ImageJ. N=4. *p<0.05, **p<0.01 vs. contralateral hemisphere from saline-

treated rats. #p<0.05 vs. ipsilateral hemisphere from saline-treated rats. Data were expressed 

as mean ± SEM and analyzed by Student's t-test.
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Figure 3. Protective effect of carnosine on mitochondrial damage in ischemic brain
Brain mitochondria were isolated from contralateral (Contra) or ipsilateral (Ipsi) 

hemispheres from saline- or carnosine (1000 mg/kg; 6 hr post treatment)-administered rats 

following pMCAO. (A) Complex I activity was measured using colorimetric method. (B) 
The extent of mitochondrial fragmentation and mitophagy was examined using the level of 

p-Drp 1 and Parkin. Mitochondrial levels of apoptosis inducing factor (AIF) and cytochrome 

C were measured. Relative density of each band was analyzed by ImageJ. N=4. *p<0.05, 

**p<0.01 vs. contralateral hemisphere from saline-treated rats. #p<0.05 vs. ipsilateral 

hemisphere from saline-treated rats. Data were expressed as mean ± SEM and analyzed by 

Student's t-test.
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Figure 4. Inhibitory effect of carnosine on neuronal autophagy following NMDA stimulation
Primary cortical neurons were pre-treated with carnosine 30 min prior to exposure to 

NMDA (N-methyl-d-aspartate; 25 μM). (A) Neuronal cell death was determined by extent 

of lactate dehydrogenase leakage at 24 hr after NMDA stimulation. N=5. (B and C) The 

conversion of LC3-II from LC3-I (B) and the phosphorylation of mTOR (C) in NMDA (25 

μM)-stimulated primary neurons with or without carnosine (100 μM) pretreatment. The 

representative bands are shown. Relative density of each band was analyzed by ImageJ. 

N=3. *p<0.05, **p<0.01 vs. control group. #p<0.05 vs. NMDA-treated group. Data were 

expressed as mean ± SEM and analyzed by one way ANOVA followed by Tukey test (A) or 

by Student's t-test (B and C).
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