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Abstract: This work presents a novel constraint handling strategy for Predictive Functional
Control (PFC). First, to improve prediction consistency, the constant input assumption of
nominal PFC approaches is replaced with Laguerre based prediction. This substitution improves
the effectiveness of using a constrained solution to prevent long-term constraint violations.
Secondly, for state constraints, a simpler single regulator approach is proposed instead of
switching between regulators, an approach common in the PFC literature. Simulation results
verify that the proposed method manages the constraints better than the traditional approach.
Moreover, despite all the modifications, the controller formulation and framework remain simple
and straightforward which thus are in line with the key ethos of PFC.

Keywords: Predictive Control, Constrained PFC, Effective Constraint Technique.

1. INTRODUCTION

Most control systems have constraints which can be identi-
fied as input constraints, rate constraints, state constraints
and output constraints. If these constraints are not consid-
ered systematically in a control design, it may result in un-
wanted behaviour such as overshoots, long settling times,
and even instability. Satisfying constraints effectively offers
many attractive benefits including a higher production
profit, better control performance, lower maintenance cost
and safer control environment (Rossiter, 2003; Richalet
and O’Donovan, 2009; Wang, 2009; Abdullah and Idres,
2014a). Clearly, these scenarios justify the need for a
systematic constrained controller design.

In practice, the commonly used Proportional-Integral-
Derivative (PID) controller faces difficulties in handling
constraints. For example, the usage of an integrator during
constraint violations can produce wind-up and/or satura-
tion (Rossiter, 2003). Although, anti wind-up techniques
can prevent this situation (Visioli, 2006), these require
tuning procedures which are difficult to design and manage
for different combinations of dynamics and constraints.

Conversely, Model Predictive Control (MPC) utilises a
representative mathematical model to form an accurate
future prediction of the system behaviour and thus sat-
isfies constraints systematically via an optimal control
approach (Rossiter, 2003; Wang, 2009). However, typical
MPC strategies require a high computational demand and
expensive computer hardware, thus are only suitable for
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certain applications (Rossiter et al., 2010; Jones and Kerri-
gan, 2015). Indeed, as the number of constraints increases,
the optimal constraint handling problem requires increas-
ingly complex and demanding solvers.

Many industrial end-users are willing to trade off some
loss in optimality with ease/cost of implementation. This
preference has triggered the widespread acceptance of Pre-
dictive Functional Control (PFC) among industrial prac-
titioners. PFC belongs to the family of predictive control
which compute the manipulated input based on a sim-
plified cost function. It provides some valuable properties
namely intuitive tuning, simplicity in coding, low com-
putational demand, effective handling of dead-time pro-
cesses and a basic constraint handling ability (Richalet and
O’Donovan, 2009). With these features, PFC has become
a popular and widely used alternative to PID controllers,
especially for SISO loops.

The nominal PFC utilises a constant future input as-
sumption to reduce the computation burden and formu-
lation complexity (Richalet and O’Donovan, 2009). This
assumption can be effective in some scenarios, especially
where short predictions work well enough to capture the
core dynamics. However, with long predictions, the con-
sistency with the actual closed-loop behaviour can deteri-
orate significantly thus invalidating any assumptions used
for constraint handling (Rossiter and Haber, 2015; Abdul-
lah and Rossiter, 2016). This break down in consistency
can imply that the PFC constraint handling approach is
invalid at worst and leads to poor decision making (that
is, input choices) at best. Moreover, PFC practitioners
commonly use an ad-hoc approach for managing state



constraints, where multiple regulators that work in parallel
are switched either to track the set point or satisfy the
constraint depending on a supervisor decision (Richalet
and O’Donovan, 2009). This structure works in most appli-
cations, but has a disadvantage in that it requires a careful
tuning procedure to avoid conflicts with the internal con-
straints which thus counters some of the inherent benefits
of a simple and transparent approach. The operation cost
also may increase due to the use of multiple regulators.

This paper proposes a better constraint strategy to allevi-
ate some of the drawbacks of the conventional approach.
A Laguerre function will be utilised to improve the pre-
diction consistency (Abdullah and Rossiter, 2016), hence
instead of assuming a constant future value, the future
predicted input converges to the steady state exponentially
based on the desired pole. With a well-posed decision,
the constrained solution will become more precise and
less conservative. In addition, rather than handling state
constraints with a multiple regulators scheme, a vector
approach is considered to simplify the computation and
tuning processes.

Section 2 provides a brief description of a traditional con-
strained PFC formulation. Section 3 presents the proposed
Laguerre PFC scheme for constraint management. Section
4 gives a comparison between the nominal and Laguerre
approaches based on two numerical examples. Finally,
section 5 presents some conclusions and future work.

2. NOMINAL CONSTRAINED PFC FORMULATION

This section provides a brief review of nominal PFC in-
cluding constraint handling. For simplicity of presentation
of the core concepts, the main objective is to track a con-
stant step target and moreover, the offset correction and
integral action algebras are omitted, although included
in the numerical examples. These simplifications do not
affect the core analysis, insights and results presented.
Finally, without loss of generality, the PFC formulation
is constructed using a general transfer function structure.

2.1 Unconstrained PFC

The basic principle of PFC is to drive the n, step ahead
prediction of output yjyn, |r nearer to the set point R
than the current output yi. The ratio is linked to a tuning
parameter is the desired closed loop pole A = ¢ 3T/CLTR
where T is the sampling time and CLTR is the desired
closed loop settling time (to 95%). The basic PFC law is
defined by enforcing the following equality:

Yty |k = 12— (R —yp)\™ (1)
where n, is denoted as the coincidence horizon. There are
some subtleties to ensure offset free tracking but the basic
law is still (1). For a more detailed description of PFC
theory and concepts, interested readers can refer to these
references, e.g. (Rossiter and Haber, 2015; Richalet and
O’Donovan, 2009; Haber et al., 2011).

Since the prediction algebra for general transfer functions
is well known in the literature (e.g. (Rossiter, 2003)), only
simplified formulations are presented here. The n, step
ahead unbiased linear prediction for inputs u; and outputs
yr can be represented as:

Yitny ke = Hn, Uk + Pn, Uk + Qn, Yk (2)

where H,, , P, , Qn, depend on the model parameters and
for systems of order m:

Uk Uk—1 Yk
Uk+1 Uk —2 Yk—1
Up = : Yk = : Yk = : (3)
Uk+n—1 Uk—m Yk—m

The control input is solved by substituting the predic-
tion of (2) into (1) alongside the assumption of a con-
stant future input, namely upi;x = ur,i = 0,...,ny.
In consequence the parameter H, can be simplified to
hn, = Hy,[1,1,---]7 and (1) becomes:

o+ P+ QY = R = (R=yo) A" (4)
After minor rearrangement, the, PFC law reduces to:
R— (R —yp)A"™ — (Pn, Uk + Qn, Y)

hn,

U =

2.2 Input and Input Rate Constraints

The system input is often constrained because of physical
limits or indeed desired limits on temperature, pressure,
voltage and others. These constraints are presented as:

Umin S Uk S Umax (6)
Aumin Fup—1 Sup < Aumax + Up—1 (7)

where Auy,n and Auy,., are the minimum and the
maximum rate, while ,,,;, and ., denote the minimum
and maximum input. Without explicitly including these
constraints in the control computation, a clipping method
can be utilised (Fiani et al., 1991). When the limit in
(6) or (7) is violated, the controller will treat it as an
equality constraint (Wang, 2009). However, it is crucial for
the model to detect possible constraint violations a priori
(Richalet and O’Donovan, 2009). Failure to do this could
introduce an overshoot in the input (and/or output) due
to a mismatch between the predicted model behaviour and
the actual system behaviour.

Remark 1. The input and rate constraint need only be
implemented on the current input within conventional
PFC because of the constant future input assumption.

2.8 State Constraints

In some applications (i.e heat treatment) an internal
variable, state or output may be constrained either for
an economic or safety reason. To solve this problem, the
conventional PFC approach uses multiple regulators which
run in parallel (see Fig. 1) (Richalet and O’Donovan, 2009;
Fiani et al., 1991).

e The first regulator PF'C] is the preferred control law
and produces input uy x (using (5)) to track the set
point while satisfying its internal constraints. Within
some validation horizon to be defined, the supervisor
uses input u; j to predict the future state behaviour
using a prediction model such as (2). If the state
predictions are within their limit, then use ux = uq .

e The second regulator PF(Cy is more conservatively
tuned and tracks the state limit by manipulating
input us ;. When the state limit is expected to be
violated using PF'C, then use uy = ug k.
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Fig. 1. Schematic of PFC considering state constraints.

e An advanced decision-making method such as fuzzy
logic, look up table, or artificial neural network may
be utilised for a smoother transition.

Remark 2. The second controller PF'Cy regulates the sec-
ond input ug ; based on a state prediction equation:

where hy,,P,,,Qn, denote the state model parameters.
The maximum state limit x,,4, is a set as a target. With
a suitable coincidence horizon n, and the desired closed
loop pole Az, input us j is computed as:

(Tmaz — Ti)AF® — (Pn, Uk + Qn, Tk)

Tmaz —

U2,k =

The associated PFC is tuned, if possible, to avoid oscilla-
tions in the predictions to ensure the constraint is satisfied.

Remark 3. A suitable validation horizon for checking the
predictions associated to PFC; should be used since the
projection of 1,k must include the open loop time response
of PF(C5. In addition, the target pole A\, of PF'Cy must be
compatible with the need to satisfy the internal constraints
of PF(C;. Choosing a fast pole to improve the overall
system response may decrease the controller robustness
and introduce conflicts with the actuator limit (Richalet
and O’Donovan, 2009).

3. CONSTRAINED LAGUERRE PFC FORMULATION

This section presents the formulation of PFC based on
Laguerre based input predictions. By embedding expo-
nentially decaying dynamics within the input prediction,
it enables PFC to achieve a closer match to the desired
closed-loop behaviour. This can improve the reliability of
the constrained PFC solution. A detailed analysis and
benefits of Laguerre PFC are presented in Abdullah and
Rossiter (2016). Since a similar strategy to nominal PFC
is adopted for input and rate constraints (Remark 1), only
the state/output constraint case is presented here.

The Laguerre PFC approach requires explicit knowledge
of the expected constant steady-state input wuss which
will lead to no steady-state offset; in fact this value is
implicitly used in conventional MPC as well. For a given
model and disturbance estimate, the computation of this
is straightforward (Rossiter, 2003).

3.1 Unconstrained Laguerre PFC formulation

A Laguerre polynomial is often used for system identifica-
tion and estimation as it can provide the ability to capture
system behaviour with fewer parameters (Nurges, 1987).
The z-transform of discrete Laguerre polynomials are:

S —ay?

Li(z)=V1-a m;

0<a<l1 (10)

where j is the order of Laguerre function and a is the
Laguerre pole which depends on a user selection. Although
a high order polynomial can be used in MPC (Abdullah
and Idres, 2014b; Wang, 2009), this work employs a first-
order Laguerre polynomial to retain the simplicity of
formulation especially when dealing with low order system.
The first-order Laguerre function, with altered scaling is:

1
Ll(Z): m = 1+a2_1+a22_2—|—--- (11)
Define L; = [1,a,a?, - ,a"‘l]T. Now we are in a position
to define the input prediction to be deployed in PFC.
Theorem 1. A future input parametrised as

Ugs n
= 12
u(z) 1—21 1—az"1 (12)

will give output predictions which settle at the desired
steady-state. n represents one degree of freedom.

Proof: The signal defined in (12) has the property that
(13)

lim up = ugs =
k—o0

lim y, =R O
k—o0

The implied input prediction in (12) converges to the
steady state exponentially with a rate a. The associated
output prediction is derived by substituting (12) into (2):

yk+ny|k = hnyuss + HnyLln + Pny% + Qnyyj? (14)

The following algorithm defines the PFC law using the
Laguerre polynomial to shape the input predictions.

Algorithm 1. (LPFC). Define the n, step ahead predicted
output using equation (14). The PFC law is defined
by substituting this prediction into (1), solving for the
parameter n and then computing uy from (12).
R—(R—- Yk Ay — Pnyuk + Qnyyk - hnyuss
n= ( ) ( — <—) ( 1 5)
HnyLl
Due to the receding horizon principle (Wang, 2009) and
the definition of L;(z), the current input is defined as:
Up = Uss + 1) (16)
Remark 4. The value of Laguerre pole a determines the
convergence speed of a system (Abdullah and Rossiter,

2016). For low order system, a reasonable choice is a = A
where it gives a direct link to the desired target trajectory.

Remark 5. The maximum (if bigger than uss) and mini-
mum (if smaller than uss) of the predicted future input
given in (12) is the first (current) value wy. Similarly,
the maximum/minimum rate is given from Auyg = uss +
n — ug—1. Hence, with LPFC, the maximum/minimum
input rate/value (relative to expected steady-state) occur
at the first sample and thus the proposed Laguerre PFC
can adopt an equivalent constraint handling procedure for
input constraints as standard PFC.

3.2 Efficient state and output constraint handling

To increase the efficiency of constraint strategy, an off-
line prediction is utilised. The limiter computes the max-
imum or minimum input that is associated with all con-
straints being satisfied within the validation horizon. The
technique has similarities to the so called ONEDOF and
reference governer approaches in the literature Rossiter
et al. (2001) and has the advantage of being implementable
using a single simple loop at each iteration.



Lemma 2. The input constraints can be represented by a
set of linear inequalities with a single variable 7.

Proof: This follows directly from the observations in
remark 5. The constraints can be summarised as follows:

1 Uss Umaz
—1 —Usgs Umin
O 17
1 n Uss —Up—1 | = | AUmaz ( )
-1 Uk—1 — Uss Aurnzn

Lemma 3. State constraints can be represented by a set of
linear inequalites with a single variable 7.

Proof: This follows directly from computation of the state
predictions as in (14) and comparison with the state limits.
For example, a single state limit gives the following:

Uss 1
Ugs a
an Ugg + a2 ne+ an% + Qn,% < Tmaz
—_—
Frg (k)

One can stack these inequalities over a specified horizon
such that, for example:

Hy Uss 1
Hy Uss

f1(k)

w1 aS e | 2B <o O (8)

Theorem 4. All the input, state and output constraints
can be represented by a single vector inequality as:
Mn < v(k) (19)
Proof: This is a consequence of the previous two lemmata
by combining all the inequalities for all the constraints.
The vector M is fixed but the vector v(k) varies each
sample as it depends upon past system data and the
estimation of the expected steady-state input uss. O

Corollary 1. In the absence of uncertainty, the inequalities
implied in (19) are always feasible, assuming feasibility at
the previous sample, no changes in the target and a long
enough horizon.

Proof: The structure of the input prediction (12) is such
that, as long as wuss does not change from one sample
to the next, then one can always choose n so that the
predicted input trajectory is unchanged; this is obvious
from the simple exponential structure. Consequently, if
there exists an 7 to satisfy constraints at the previous
sample, there must exist a valid value at the current
sample. [We shall not discuss issues linked to required
horizon lengths (Gilbert and Tan, 1991) as this would
take the complexity beyond reasonable expectations for
PFC approaches where a lack of rigorous mathematical
guarantees is accepted to allow more simplicity.] O

Remark 6. Infeasibility can arise due to too fast or too
large changes in the target (or disturbances) as this causes
large changes in the value of uss. However, Laguerre PFC
helps enormously in this case because the exponential
structure embedded into the input prediction automati-
cally slows down any over aggressive input responses and
thus significantly increases the likelihood of feasibility be-
ing retained. In the worst case, set point changes need to
be moderated (as in reference governer approaches) but
such a discussion is beyond the remit of this paper.

We can now define the constraint handling algorithm.

Algorithm 2. (LPFC constrained). First ensure that the
change in the steady-state value of wuss is such that no
absolute or rate constraints in the inputs are violated as
this suggests a poorly chosen target. Hence enforce that
|uss,k - uss,k:—1| < Aumaw and that Umin < Uss < Umaz-

Second, use the unconstrained law (15) to determine the
ideal value of n and check each constraint implied in (19)
using the following simple loop (subscripts denote position
in a vector).

Set Nmaz = OO, Tmin = —OCO.
For i=1:end,
if M;n £ v; & M; > 0 then define 1,4, = v;/M;,
if M;n € v; & M; < 0 then define 1, = v;/M;,
end loop.
if 7 < Nmin, set 1 = Nmin- if Dmaz <1, s€t 1 = Ynaz-

Note that the upper and lower limits on 7 to ensure
feasibility update at each cycle in the loop but as all the
inequalities are only ever tightened, changes lower down
cannot contradict changes higher up.

3.8 Summary of benefits

This approach eliminates the careful tuning process of
multiple regulators (Remark 3) since the constraint is now
explicitly included in the control computation. Moreover,
the algebra for computing the vectors v, M is the same
as that required for computing the predictions and thus
is unavoidable where constraint handling is desired and
specifically, needs no input or tuning choices from the
designer. This work has not investigated the implications
of infeasibility due to large disturbances or set point
changes any further than insisting on sensible limits to
changes in wuss as that is a more challenging scenario
and requires a priori trade off decisions such as which
constraints or requirements to sacrifice during transients.

4. NUMERICAL EXAMPLES

This section presents two numerical examples to highlight
the benefit of the proposed constraint method. The first
example implements output constraints while the second
example operates with state constraints. For each case,
two figures are plotted to represent the system input
and output. The focus is to analyse and compare the
constrained control performance of nominal PFC (PFC)
and Laguerre PFC (LPFC). It should be noted that
throughout the examples, a choice of a = A is used for
LPFC as discussed in Remark 4.

4.1 Output Constraint Example

A first order system (20) with 0.2 input disturbance from
20s to 25s should track a constant set point (R = 1). For
a fair comparison of PFC and LPFC, both controllers use
similar tuning parameters for the desired pole (A = 0.7)
and a coincidence horizon (n, = 1).

_ 0.25271
S 1-0.8z71
In the unconstrained case (see Fig. 2), PFC and LPFC

produce similar closed loop behaviour. The system out-
put (y(PFC) and y(LPFC(C)) exactly tracks the target

G (20)
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Fig. 2. Unconstrained PFC and LPFC responses.

trajectory R with settling time 8 samples and overshoots
slightly in response to the disturbance. However, the initial
prediction of nominal PFC y,(PFC) (displayed as com-
puted at the first sample) is inconsistent with the actual
closed-loop behaviour y(PFC') because of the assumption
of constant input in the prediction (i.e. u,(PFC)). Never-
theless, the actual input u(PFC') converges to the correct
steady state value. Since LPFC embeds the exponential
decay dynamics (e.g. through (12)), the input prediction
up,(LPFC) matches the actual system input u(LPFC)
and so has better consistency between predictions and ac-
tual behaviour. This consistency is important for accurate
constraint handling, to avoid conservativeness.

For the constrained case, a maximum output is set at
Ymaz = 1.05. A validation horizon ¢ = 10 is used to
cover the transient period and avoid a long-term violation.
However, PFC detects the output violation of y,(PFC) at
the 6th sample ahead because of the ill-posed prediction
(refer Fig. 2). The constraint is satisfied (Fig. 3) by the
input w(PFC) reducing from 1.2 to 0.9. As a result,
the output y(PFC) converges slower to the set point
compared to y(LPFC). Since LPFC produces a well-
posed prediction, the output y(LPFC) exactly matches
the target trajectory R with a precise solution u(LPFC).

4.2 State Constraint Example

Consider two processes that run in parallel. The main
process P; and state process Ps receive a similar manipu-
lated input u from the regulator. For safety and economic
reasons, the state is constrained at x,,,, = 127 with a
limited input ., = 160, and speed Aty,q. = 4.

0.0164z~1 0.08914z~1 — 0.0867422

= ; Py, = 21
1-098352-1 ° (21)
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Fig. 3. Constrained PFC and LPFC responses.

For a fair comparison, Laguerre PFC (LPFC) and the first
regulator of state constrained PFC (CPFC) will both use
n, = 1, validation horizon (i = 68) and pole (A = 0.975)
to track the set point (R = 100). Since CPFC treats the
maximum state as a second target (9), the coincidence
horizon (n, = 30) and desired pole (A; = 0.984) of
the second constraining regulator are selected carefully to
satisfy the internal constraints (Remark 3).

Fig. 4 shows that LPFC outperforms CPFC while satisfy-
ing the state constraints. Although the state behaviours of
both (CPFC) and z(LPFC) are within the limits, the
output settling time of y(LPFC) 200 samples is almost
twice as fast as y(CPFC) (300+ samples) and closer
to the target trajectory R. In addition, CPFC requires
a careful tuning process and a higher operation cost as
two regulators are used simultaneously. To respect the
actuator limits, a large pole is needed to slow down the
control response. Fig. 5 demonstrates the effect of poor
tuning decision with a smaller pole A\, = 0.963, where
it computes a higher initial input than the maximum
input T,nee = 160. On the other hand, LPFC satisfies
all the system constraints systematically without conflict.
With Laguerre based prediction, the constrained solution
becomes more precise and less conservative compared to
the nominal CPFC approach.

5. CONCLUSION

This work proposes an improved constrained PFC tech-
nique to satisfy the state, output and input limits which
are less conservative than the conventional PFC approach
and no more onerous to code and implement. With a
minimum modification, the design and formulation remain
simple and straight forward. The embedding of Laguerre
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input dynamics instead of constant input dynamics gives a
better prediction consistency which ensures the constraint
handling is more precise and less conservative. Given that
the more conservative and complicated multi-regulator ap-
proach is widely adopted in many industrial applications,

we expect the proposed single constrained LPFC will offer
better performance and be more cost effective. It alleviates
the strict tuning requirements of the second CPFC regu-
lator while satisfying all the constraints in a systematic
fashion. As shown in the examples, the proposed method
often enables faster convergence when handling the output
and state constraints compared to the nominal strategy.

For future work, the robustness and sensitivity analysis of
conventional PFC and LPFC will be investigated as well
as the potential for more rigorous stability and feasibility
guarantees, while retaining simplicity. Moreover, tests on
hardware are planned. Finally, consideration will focus on
whether higher order input parameterisations would be
even more advantageous for higher order systems; this may
involve a more complex constraint handling procedures.
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