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Abstract

Dynamic portfolio choice has been a central and essential objective for investors in active

asset management. In this paper, we study the dynamic portfolio choice with multiple condition-

ing variables, where the dimension of the conditioning variables can be either fixed or diverging

to infinity at certain polynomial rate of the sample size. We propose a novel data-driven method

to estimate the optimal portfolio choice, motivated by the model averaging marginal regression

approach suggested by Li, Linton and Lu (2015). More specifically, in order to avoid the curse

of dimensionality associated with the multivariate nonparametric regression problem and to

make it practically implementable, we first estimate the marginal optimal portfolio choice by

maximising the conditional utility function for each univariate conditioning variable, and then

construct the joint dynamic optimal portfolio through the weighted average of the marginal

optimal portfolio across all the conditioning variables. Under some regularity conditions, we

establish the large sample properties for the developed portfolio choice procedure. Both the

simulation study and empirical application well demonstrate the finite-sample performance of

the proposed methodology.
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1 Introduction

Portfolio choice is a central issue for investors and asset managers. Financial research has clarified

how this might be carried out to meet various objectives. Fundamental contributions to this literature

have been made, inter alia, by: Markowitz (1952), Sharpe (1963), Merton (1969), Samuelson (1969),

and Fama (1970). See Back (2010) and Brandt (2010) for some recent surveys. In practice, it is not

uncommon that dynamic portfolio choice depends on many conditioning (or forecasting) variables,

which reflect the varying investment opportunities over time. Generally speaking, there are two ways

to characterize the dependence of portfolio choice on the conditioning variables. One is to assume

a parametric statistical model that relates the returns of risky assets to the conditioning variables

and then solve for an investor’s portfolio choice by using some traditional econometric approaches

to estimate the conditional distribution of the returns. However, the pre-assumed parametric model

might be misspecified, which would lead to inconsistent or biased estimation of the optimal portfolio.

The other way, which avoids the possible issue of model misspecification, is to use some nonpara-

metric methods such as the kernel estimation method to characterize the dependence of the portfolio

choice on conditioning variables. This latter method is first introduced by Brandt (1999), who also

establishes the asymptotic properties for the estimated portfolio choice and provides an empirical

application.

Although the nonparametric method allows the financial data to “speak for themselves” and is

robust to model misspecification, its performance is often poor when the dimension of the conditioning

variables is large (say, larger than three), owing to the so-called “curse of dimensionality” (c.f., Fan

and Yao, 2003). This indicates that a direct use of Brandt (1999)’s nonparametric method may be

inappropriate when there are multiple conditioning variables. Our main objective in this paper is

to address this issue in dynamic portfolio choice problem with multiple conditioning variables and

propose a novel data-driven method to estimate the optimal portfolio choice, where the dimension

of the conditioning variables and the number of the risky assets can be either fixed or diverging to

infinity at certain polynomial rate of the sample size.

In order to avoid the curse of dimensionality issue, we first consider the optimal portfolio choice

for a given univariate conditioning variable, and then construct the joint dynamic optimal portfolio
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choice through a weighted average of the marginal optimal portfolio across all the conditioning vari-

ables. This method is partly motivated by the Model Averaging MArginal Regression (MAMAR)

approach suggested in a recent paper by Li, Linton and Lu (2015), which shows that such a method

performs well in estimating the conditional multivariate mean regression function and out-of-sample

prediction. Furthermore, we introduce a semiparametric data-driven method to choose the optimal

weights in model averaging. Under some mild conditions, we establish the large sample properties

for the developed portfolio choice procedure to show its advantages over the conventional nonpara-

metric kernel smoothing method in terms of convergence. Both simulation studies and an empirical

application are carried out to examine the finite sample performance of the proposed methodology.

The structure of the paper is as follows. The methodology for estimating the dynamic portfolio

choice is introduced in Section 2, and the relevant large sample theory is presented in Section 3. The

data-driven choice of the optimal weights in model averaging of the marginal optimal portfolios across

all conditioning variables is developed in Section 4. Numerical studies including both simulation and

an empirical application are reported in Section 5. Section 6 concludes the paper. The assumptions

and the technical proofs of the main results are relegated to Appendices A and B, respectively.

2 Methodology for estimating dynamic portfolio choice

Suppose that there are n risky assets with Rt = (R1t, . . . , Rnt)
⊺

as a vector of gross returns at

time t, t = 1, . . ., T , where n can be either fixed or diverging to infinity with the sample size T .

Let Xt = (X1t, . . . , XJt)
⊺

, where J is the number of conditioning or forecasting variables Xjt. The

dynamic portfolio choice aims to choose the portfolio weights at each time period t by maximising

the conditional utility function defined by

E
[
u(w

⊺

Rt)|Xt−1

]
= E

[
u(w

⊺

Rt)|(X1,t−1, . . . , XJ,t−1)
]
, (2.1)

subject to 1
⊺

nw =
∑n

i=1wi = 1, where w = (w1, . . . , wn)
⊺

, 1n is the n-dimensional column vector

of ones, u(·) is a concave utility function which measures the investor’s utility with wealth w
⊺

Rt at

time t. For simplicity, we only focus on the problem of single-period portfolio choice. Furthermore,

we assume that the investors can borrow assets and sell them (short selling), which indicates that

some of the portfolio weights may take negative values.

The classic mean-variance paradigm considers the quadratic utility function u(v) = v − (γ/2)v2

or the CARA (Constant Absolute Risk Aversion) utility function u(v) = − exp(−γv) plus normal-

ity, in which case the solution (with covariates) is explicitly defined in terms of the conditional
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mean vector µ(x) = E[Rt|Xt−1 = x], x = (x1, . . . , xJ)
⊺

, and the conditional covariance matrix

Σ(x) = E[(Rt−µ(x))(Rt−µ(x))
⊺ |Xt−1 = x] of returns, i.e.,

w(x) =
1

γ
Σ−1(x) [µ(x)− θ(x)1n] , θ(x) =

µ(x)
⊺

Σ−1(x)1n − γ

1
⊺

nΣ
−1(x)1n

.

In this case, it suffices to know µ(·) and Σ(·). One may also work with the more general CRRA

(Constant Relative Risk Aversion) utility function with risk aversion parameter γ

u(v) =

{
v1−γ

1−γ
, γ 6= 1

log v, γ = 1,

in which case the solution for the optimal weights is not typically explicit, and generally depends on

more features of the conditional distribution. More discussion on different classes of utility functions

u(·) can be found in Chapter 1 of the book by Back (2010).

In order to solve the general maximisation problem in (2.1), Brandt (1999) proposes a nonpara-

metric conditional method of moments approach, which can be seen as an extension of the method

of moments approach in Hansen and Singleton (1982). Taking the first-order derivative of u(·) in

(2.1) with respect to wi and considering the constraint of 1
⊺

nw =
∑n

i=1wi = 1, we may obtain the

dynamic portfolio choice by solving the following equations for w1, . . . , wn−1:

E
[
(Rit −Rnt)u̇(w

⊺

Rt)|X1,t−1, . . . , XJ,t−1

]
= 0 a.s., i = 1, . . . , n− 1, (2.2)

where u̇(·) is the derivative of the utility function u(·). The last element wn in w can be determined

by using the constraint
∑n

i=1wi = 1. Brandt (1999) suggests a kernel-based smoothing method to

estimate the solution to (2.2). However, when J is large, the kernel-based nonparametric conditional

method of moments approach would perform quite poorly due to the curse of dimensionality discussed

in Section 1. Therefore, we propose a novel dimension-reduction technique to address this problem.

We start with the portfolio choice for each univariate conditioning variable in Xt−1. For j =

1, . . . , J , we define the marginal conditional utility function as

E
[
u(w

⊺

Rt)|Xj,t−1 = xj
]

(2.3)

with the constraint 1
⊺

nw =
∑n

i=1wi = 1. The associated first-order conditions for the marginal

optimal portfolio weights w∗
j (xj) evaluated at xj for the conditioning variables are:

E
[
(Rit −Rnt)u̇(w

∗⊺
j (xj)Rt)|Xj,t−1 = xj

]
= 0, i = 1, · · · , n− 1, (2.4)
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where

w∗
j (xj) =

[
w∗

1j(xj), . . . , w
∗
nj(xj)

]⊺
with w∗

nj(xj) = 1−
n−1∑

i=1

wij(xj).

For a given j, this is essentially the problem posed and solved by Brandt (1999). For given x =

(x1, . . . , xJ)
⊺

, (2.3) and (2.4) may be understood as the utility function and the corresponding first

order conditions for portfolio choice in a “fictitious economy”, where the realization of each univariate

conditioning variable determines the state of the economy.

We next consider how to combine the marginal portfolios selected above to form a joint portfolio.

We shall consider a weighted average of the marginal portfolio choices wj(xj) over j = 1, . . . , J , and

obtain the joint portfolio choice as

wa(x) =
J∑

j=1

ajwj(xj) with
J∑

j=1

aj = 1, (2.5)

where negative values for aj can be allowed. In Section 4 below, we will discuss how to choose the

weights a = (a1, . . . , aJ)
⊺

in the combination (2.5) by using a data-driven method.

The joint portfolio choice wa(x) defined in (2.5) can, in some sense, be seen as an approximation

of the true optimal portfolio choice, as we next discuss. Consider the following class of weights (that

are measurable functions of the covariates):

W =

{
w(·) :

n∑

i=1

wi(x) = 1

}

W∗ =

{
wa(·) : wa(x) =

J∑

j=1

ajw
∗
j (xj),

J∑

i=1

aj = 1

}

Wadd =

{
wadd(·) : wadd(x) =

J∑

j=1

wj(xj),
n∑

i=1

wji(xj) = 1

}
,

where w∗
j (·) with

∑n
i=1w

∗
ji(xj) = 1 are the optimal weights to (2.3). Note that W∗ ⊂ Wadd ⊂ W .

The solution to (2.2) is a member of W , and our proposed method is a member of W∗. One

could solve the intermediate additive portfolio problem, i.e., maxE
[
u(w

⊺

Rt)|Xt−1

]
with respect to

w ∈ Wadd, which also only requires finding one dimensional functions, but this will require us to solve

a nonlinear integral equation system in the n×J scalar functions wji(·) : R −→ R. This is likely to be

computationally difficult and theoretically challenging to analyze. We consider our approach to be

a practically feasible alternative to this, in the same way as the MAMAR approximation introduced
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in Li, Linton and Lu (2015) can be considered a practically feasible alternative to high dimensional

additive regression.1

We next introduce a kernel-based nonparametric estimation methodology to estimate the approx-

imate joint portfolio choice defined in (2.5). Let K(·) be a kernel function and h be a bandwidth

that converges to zero as T tends to infinity. Using the sample information, we may express the

first-order conditions (2.4) for the marginal optimal portfolio as

1

Th

T∑

t=1

(Rit −Rnt)u̇(w
⊺

Rt)K

(
Xj,t−1 − xj

h

)
= 0, i = 1, . . . , n− 1, (2.6)

for each j = 1, · · · , J . Denote ŵ∗
j (xj) = [ŵ∗

1j(xj), . . . , ŵ
∗
nj(xj)]

⊺

the solution to (2.6), where

ŵ∗
nj(xj) = 1−

n−1∑

i=1

ŵ∗
ij(xj). (2.7)

Then we estimate the joint optimal portfolio choice by the weighted average

ŵa(x) =
J∑

j=1

ajŵ
∗
j (xj),

J∑

j=1

aj = 1. (2.8)

The asymptotic properties for ŵa(x) will be given in Section 3 below for various scenarios.

3 Large sample theory

In this section, we give the asymptotic theorems for the estimation developed in the previous section

for the following four cases: (i) both J = J0 and n = n0 are fixed positive integers, (ii) J = JT is a

diverging positive integer whereas n = n0 is fixed, (iii) n = nT is a diverging positive integer whereas

J = J0 is fixed, and (iv) both J = JT and n = nT are diverging with the sample size T .

We start with case (i): J = J0 and n = n0. Given (2.7), we only need study the asymptotic theory

for ŵ∗
j (xj) = [ŵ∗

1j(xj), . . . , ŵ
∗
n0−1,j(xj)]

⊺

, the estimate of w∗
j (xj) =

[
w∗

1j(xj), . . . , w
∗
n0−1,j(xj)

]⊺
. Before

1We could also instead seek to approximate the objective function Q(w;x) = E
[
u(w

⊺

Rt)|Xt−1 = x
]
by using the

MAMAR method directly, i.e., to approximate this conditional expectation by a weighted sum of one dimensional non-

parametric regressions Q̃(w;x) =
∑J

j=1
αjE

[
u(w

⊺

Rt)|Xjt−1 = xj

]
for some weights αj , and then optimizing Q̃(w;x)

with respect to w. We conjecture that such a method may give similar results except that it provides less diagnostic

information. However, it is perhaps harder to define a data-driven method for selecting αj as more constraints might

be involved.
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stating the asymptotic theorems, we introduce some notation. For j = 1, . . . , J0 and t = 1, . . . , T ,

we define

Λj(xj) = fj(xj)E
[
R∗

t (R
∗
t )

⊺

ü
(
w∗⊺

j (xj)Rt

)
|Xj,t−1 = xj

]
,

Zjt(xj) = R∗
t u̇
(
w∗⊺

j (Xj,t−1)Rt

)
K

(
Xj,t−1 − xj

h

)
,

where R∗
t = (R1t −Rn0t, . . . , Rn0−1,t −Rn0t)

⊺

, ü(·) is the second-order derivative of u(·) and fj(·) is
the marginal density function of Xjt. Define

Wjt(xj) = Λ−1
j (xj)Zjt(xj) and Wt(x|a) =

J0∑

j=1

ajWjt(xj)

for t = 1, . . . , T . Following the argument in the proof of Theorem 3.1 in Appendix B and letting

ŵ∗
a
(x) =

J∑

j=1

ajŵ
∗
j (xj) and w∗

a
(x) =

J∑

j=1

ajw
∗
j (xj),

we may show that
√
Th [ŵ∗

a
(x)− w∗

a
(x)] =

1√
Th

T∑

t=1

Wt(x|a) + oP (1) (3.1)

for given a = (a1, . . . , aJ0)
⊺

. The asymptotic distribution theory for ŵ∗
j (xj) and ŵ∗

a
(x) is given in

Theorem 3.1 below.

Theorem 3.1. Suppose that Assumptions 1–5 in Appendix A are satisfied, both J = J0 and n = n0

are fixed positive integers.

(i) For j = 1, . . . , J0, we have

√
Th
[
ŵ∗

j (xj)− w∗
j (xj)

] d−→ N (0, Ωj(xj)) , (3.2)

where Ωj(xj) = E
[
Wjt(xj)W

⊺

jt(xj)
]
= Λ−1

j (xj)E
[
Zjt(xj)Z

⊺

jt(xj)
]
Λ−1

j (xj).

(ii) For a set of given weights (a1, · · · , aJ0) with
∑J0

j=1 aj = 1, we have

√
Th [ŵ∗

a
(x)− w∗

a
(x)]

d−→ N (0, Ω(x|a)) , (3.3)

where Ω(x|a) = E
[
Wt(x|a)W⊺

t (x|a)
]
.

Although there are multiple conditioning variables in the nonparametric dynamic portfolio choice,

we can still achieve the root-(Th) convergence rates as shown in the above theorem. This means

7



that we can successfully overcome the curse of dimensionality problem. The main reason is that, in

the estimation of the joint optimal portfolio, we apply the univariate kernel smoothing to estimate

the marginal optimal portfolio choice for each univariate conditioning variable and then obtain the

joint portfolio choice through a weighted average defined in (2.8). In contrast, if we directly use the

multivariate kernel smoothing as is done in Brandt (1999), the convergence rate for the resulting

estimation of the joint portfolio choice would be root-(ThJ0), slower than the rates in (3.2) and (3.3)

when J0 > 1.

We next consider case (ii) that n = n0 is fixed but J = JT is diverging, and give the relevant

asymptotic distribution theory in the following theorem.

Theorem 3.2. Suppose that Assumptions 1–4 and 5′ in Appendix A are satisfied, the number of

the risky assets is fixed, and the number of conditioning variables is a positive integer JT which is

diverging with the sample size T . Then, the asymptotic distributions in (3.2) and (3.3) of Theorem

3.1 still hold.

Theorem 3.2 above indicates that the root-(Th) convergence rate remains even when the number

of the potential conditioning variables is diverging at a rate that satisfies the restriction in Assumption

5′, i.e.,
T 1−1/(2+δ)h

J
1/(2+δ)
T log T

→ ∞, δ > 0,

see also the second condition in (3.6) below. Such a restriction means that JT can be larger than T ,

if we are only interested in ŵ∗
j (·) or ŵ∗

a
(·) for a given a. However, some additional restrictions on JT

would be needed when we also consider the optimal choice of a = (a1, . . . , aJT )
⊺

, see Section 4 below

for details.

For cases (i) and (ii), we can further establish the uniform consistency results for ŵj(xj) over

xj ∈ Xj with Xj being the support of Xjt.

Theorem 3.3. Suppose that Assumptions 1–4 in Appendix A are satisfied.

(i) If both J = J0 and n = n0 are fixed positive integers, and

h→ 0,
T 1−2/(2+δ)h

log T
→ ∞, (3.4)

where δ > 0 is specified in Assumption 3 in Appendix A, then

max
1≤j≤J0

sup
xj∈Xj

‖ŵj(xj)− wj(xj)‖ = OP

(
h2 +

√
log T/(Th)

)
, (3.5)

where ‖ · ‖ denotes the Euclidean norm of a vector or the Frobenius norm of a matrix.
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(ii) If n = n0 is fixed and J = JT is diverging with the sample size T , and

h→ 0,
T 1−2/(2+δ)h

J
2/(2+δ)
T log T

→ ∞, (3.6)

then (3.5) still holds with J0 replaced by JT .

In fact, Theorem 3.3 (i) can be considered as a special case of Theorem 3.3 (ii), and the above

uniform consistency results can be seen as an extension of the uniform consistency results for the

nonparametric kernel-based estimation for stationary time series (Hansen, 2008; Kristensen, 2009; Li,

Lu and Linton, 2012) to the case of nonparametric portfolio choice. Note that the order h2 contributed

by the bias term would be asymptotically dominated by the order
√

log T/(Th) if Th4 = o(1) in

Assumption 5 (or 5′) is satisfied. In the latter case, the uniform convergence rate would become

OP

(√
log T/(Th)

)
. By modifying the proof in Appendix B, we may further generalise (3.5) to the

case where Xj is an expanding set.

We finally give a brief discussion on how to generalize Theorems 3.1–3.3 to cases (iii) and (iv) in

which the number of the risky assets is diverging with the sample size T . Note that the dimension

of ŵj(xj) is nT , which may slow down the convergence rate when nT → ∞. However, to derive some

sensible asymptotic results, nT cannot diverge to infinity too fast. Following the arguments in the

proof of Theorem 3.3 in Appendix B and those in the high-dimensional variable selection literature

(c.f., Fan and Peng, 2004), we may show that when

n4
T = o (Th) , h→ 0,

T 1−2/(2+δ)h

(nTJ)2/(2+δ) log T
→ ∞, (3.7)

the uniform consistency result in (3.5) can be generalized to

max
1≤j≤J

sup
xj∈Xj

‖ŵj(xj)− wj(xj)‖ = OP

(√
nT

(
h2 +

√
log T/(Th)

))
, (3.8)

where the uniform convergence rate is slower than that in (3.5). The above result holds no matter

when J is fixed or diverging to infinity. We may also generalize the asymptotic distribution theory

in Theorems 3.1 and 3.2 to the case of diverging nT . In the latter case, as the dimension of the

estimated portfolio weights is diverging, we need to apply a transformation matrix with full row

rank to reduce the dimension from nT to n∗ (a fixed positive integer) when deriving the asymptotic

normal distribution. As the relevant argument is similar to that in proving Theorem 4.2 below, we

omit the details here to save space.
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4 Data-driven weight choice in model averaging

The performance of the dynamic portfolio choice defined in (2.8) relies on the choice of the model

averaging weights a1, . . . , aJ . Let wat ≡ wa(Xt) =
∑J

j=1 ajwj(Xjt) and define the objective function:

U(a) = E
[
u(w

⊺

a,t−1Rt)
]
= E

{
u
[ J∑

j=1

ajw
⊺

j (Xj,t−1)Rt

]}
, (4.1)

which is the expected utility associated with a particular choice of a. We choose the optimal weights

a0 by maximising U(a), i.e.,

a0 = argmax
a

U(a) = argmax
a

E

{
u
[ J∑

j=1

ajw
⊺

j (Xj,t−1)Rt

]}
. (4.2)

subject to the constraint
∑J

j=1 aj = 1. This leads to the following first-order conditions

E

[
(Rw

jt −Rw
Jt)u̇

( J∑

j=1

aj0R
w
jt

)
]
= 0 for j = 1, . . . , J − 1, (4.3)

and aJ0 = 1−∑J−1
j=1 aj0, where R

w
jt = w

⊺

j (Xj,t−1)Rt, R
w
Jt = w

⊺

J(XJ,t−1)Rt and aj0 is the j-th element

of the J-dimensional vector a0.

We next propose a data-driven procedure for the choice of the model averaging weights a. By

replacing the unobservable quantity wj(Xj,t−1) by its estimated value ŵj(Xj,t−1) which is constructed

in (2.6), we may estimate a0 = (a10, . . . , aJ0)
⊺

by â = (â1, . . . , âJ)
⊺

, which is the solution to the

following equations

1

T

T∑

t=1

(R̂w
jt − R̂w

Jt)u̇
( J∑

j=1

âjR̂
w
jt

)
= 0 for j = 1, . . . , J − 1, (4.4)

and âJ = 1−∑J−1
j=1 âj, where R̂

w
jt = ŵ

⊺

j (Xj,t−1)Rt.

We next study the asymptotic property for the estimator â. As âJ = 1−∑J−1
j=1 âj, it suffices to con-

sider â∗ ≡ (â1, . . . , âJ−1)
⊺

, the estimate of a∗
0 ≡ (a10, . . . , aJ−1,0)

⊺

. Define ηt = u̇
[∑J

j=1 aj0w
⊺

j (Xj,t−1)Rt

]
,

η∗t = ü
[∑J

j=1 aj0w
⊺

j (Xj,t−1)Rt

]
, R∗

t (w) =
(
Rw

1t, . . . , R
w
J−1,t

)⊺
, V∗

t = R∗
t (w) − Rw

Jt1J−1 and ∆1 =

E
[
η∗tV

∗
t (V

∗
t )

⊺
]
. For j = 1, . . . , J , define εjt = u̇

(
w

⊺

j (Xj,t−1)Rt

)
= u̇

(
Rw

jt

)
, εt = (ε1ta10, . . . , εJtaJ0)

⊺

10



and Qt = (Q1t, . . . , QJt)
⊺

with Qjt =
{
E
[
η∗sV

∗
sR

⊺

sWΛ−1
j (Xj,s−1)|Xj,s−1 = Xj,t−1

] }
fj(Xj,t−1)R

∗
t and

W =




1 · · · 0
...

...
...

0 · · · 1

−1 · · · −1




being an n× (n− 1) matrix. Define

∆2 =
∞∑

t=−∞
Cov(V∗

0η0 +Q
⊺

0ε0,V
∗
t ηt +Q

⊺

tεt).

Throughout the paper, we assume that the mean of V∗
t ηt +Q

⊺

tεt is zero. In the following theorem,

we give the asymptotic distribution theory for â∗ when both J = J0 and n = n0 are fixed positive

integers, which is the case (i) discussed in Section 3.

Theorem 4.1. Suppose that the assumptions in Theorem 3.3(i) are satisfied and the matrix ∆1 is

non-singular. Then we have

√
T (â∗ − a∗

0)
d−→ N

(
0,∆−1

1 ∆2∆
−1
1

)
. (4.5)

We next deal with the case (ii) where J = JT is diverging with the sample size T whereas n = n0

is fixed. Let ∆T = ∆−1
1 ∆2∆

−1
1 , where we have used the subscript T to denote the dependence

of the size of the matrix on T . As the number of the potential conditioning variables JT tends to

infinity, we cannot state the asymptotic normal distribution theory in the same way as in Theorem

4.1 above. As in Fan and Peng (2004), we let ΨT be a J∗ × (JT − 1) matrix with full row rank such

that as T → ∞, ΨTΨ
⊺

T → Ψ, where Ψ is a J∗ × J∗ non-negative definite matrix with J∗ being a

fixed positive integer. The role of the matrix ΨT is to reduce the dimension from (JT − 1) to J∗

in the derivation of the asymptotic normality, so it is only involved in the asymptotic analysis. If

we are only interested in the asymptotic behavior for the first J∗ components of â, we may choose

ΨT =
[
IJ∗ , OJ∗×(JT−J∗)

]
, where Ip is a p × p identity matrix and Ok×j is a k × j null matrix. We

next state the asymptotic distribution theory for â∗ when J = JT is diverging.

Theorem 4.2. Suppose that the assumptions in Theorem 3.3(ii) are satisfied, the matrix ∆1 is

non-singular and

J2
T

(
h2 +

√
log T

Th

)
→ 0. (4.6)

11



Then we have √
TΨT∆

−1/2
T (â∗ − a∗

0)
d−→ N (0,Ψ) . (4.7)

The above theorem is similar to some results in the existing literature such as Theorem 2(ii) in

Fan and Peng (2004) and Theorem 4.3 in Li, Linton and Lu (2015). The condition (4.6) implies that

the dimension JT should not diverge too fast to infinity, and (4.7) indicates that the convergence

rate is
√
T/JT due to the diverging number of the conditioning variables.

Although n = n0 is assumed to be fixed in Theorems 4.1 and 4.2 above, the developed asymptotic

results can be generalized to the more general case of n = nT which is diverging with the sample size

T (see the cases (iii) and (iv) in Section 3). By imposing some additional restrictions on nT such as

(3.7), the corresponding proofs in Appendix B need to be slightly modified with the role of Theorem

3.3 replaced by the uniform consistency result in (3.8). As the technical arguments are quite similar,

we omit details here to save space.

5 Numerical studies

In the simulated examples, we set the number of assets under consideration for investment to be

n = 5. This value of n is chosen primarily for convenience of computation. Computation procedures

for larger values of n are exactly the same.

Example 5.1. The time series of gross returns vectors Rt on the n assets are generated via the

conditioning variables by the following regression:

log(Rt) = 0.06 ∗ 1n +A ∗ log(Xt−1) + et, (5.1)

where 1n is the n×1 vector of ones, A is an n×J full-rank matrix so generated such that the elements

of 1000 ∗A are random integers ranging between 1 and 30; et are i.i.d. random vectors distributed

as et ∼ N(0, 0.001 ∗ In) in which In is the n× n identity matrix; {log(Xt)} is a J-dimensional AR(1)

process generated as

log(Xt) = −0.01 ∗ 1J + ψ log(Xt−1) + ut, (5.2)

in which ψ = 0.9 or ψ = 0.4, and ut are i.i.d. random vectors generated from N(0, 0.002 ∗Σu), where

Σu is a J × J matrix with diagonal elements being 1 and off-diagonal elements being 0.4. Since

the thus generated components in ut are correlated, so are the components in Xt, which will be

12



used as the conditioning variables. Such a design is aimed to mimic the real world situation where

economic, finance and social indicators, which are often correlated with each other, are chosen as the

conditioning variables. The dimension of Xt is set to satisfy J = [0.5 ∗
√
T ], where [·] denotes the

operator that rounds a number to the nearest integer less than or equal to that number.

We use a CRRA utility function with γ = 1, 5, and 10 (Campbell (1996) found γ in range 2.7 to

21). For each j = 1, . . ., J , t = 1, . . ., T , and the observed value, Xj,t−1, of the conditioning variable

in the previous time period t− 1, we calculate the j-th set of conditional optimal portfolio weights,

ŵj(Xj,t−1), by solving the nonparametric version of the conditioning equations, i.e., (2.6). Then by

solving the equations in (4.4) with respect to aj, we can obtain the joint optimal portfolio weights,

ŵa(Xt−1) =
∑J

j=1 âjŵj(Xj,t−1), conditional on the values of all the conditioning variables in time

period t− 1, where Xt−1 = (X1,t−1, . . . , XJ,t−1)
⊺

. Note that in calculating the ŵj(Xj,t−1) and âj, we

have imposed
∑J

j=1 ŵj(Xj,t−1) = 1 and
∑J

j=1 âj = 1 so that the budget constraint is satisfied.

We compare the single-period returns of portfolios constructed with weights calculated from

the proposed semiparametric model averaging method (SMAM) and the unconditional parametric

method (UPM) which solves for the weights that maximise the unconditional utility, i.e., 1
T

∑T
t=1 u(w

⊺

Rt),

subject to w
⊺

1n = 1. Table 5.1 reports the averages of the mean difference in returns (MDR) and

averages of the mean difference in utilities (MDU) between the SMAM- and UPM-constructed port-

folios:

MDR =
1

T

T∑

t=1

(Rs
t −Ru

t ) , MDU =
1

T

T∑

t=1

[u(Rs
t )− u(Ru

t )] ,

where Rs
t = ŵ

⊺

a
(Xt−1)Rt and R

u
t = ŵ

⊺

uRt with ŵa(·) and ŵu chosen by SMAM and UPM, respectively,

and u(·) is a given utility function. Also reported in Table 5.1 are the averages of positive frequency

(PF) of the SMAM, i.e., the frequency at which the return on the SMAM-constructed portfolio

exceeds that of the UPM-constructed portfolio. These results are based on 100 independent samples

of T = 100, 300, or 500 observations. The numbers in parentheses are the respective standard errors.

It can be seen from Table 5.1 that in most time periods, the return on the portfolio chosen

by the SMAM is larger than the return on the portfolio chosen by the UPM. This is especially

so when the sample size is relatively small. For example, when ψ = 0.9 and γ = 5, the average

gain in choosing portfolios by the SMAM than by the UPM is an additional 2.86% return when

T = 100, and this reduces to 1.25% when T = 500. As γ measures the level of risk aversion of

an investor with a higher value representing less willingness for risk taking, the portfolio returns

generally decrease as γ increases. Hence, we see a decreasing trend in the MDR values as γ increases

in Table 5.1. Furthermore, when the persistence of the data generating process for the conditioning
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variables increases (as represented by the increase in the autoregressive coefficient ψ), the average

MDR values generally increase. This occurs because when the conditioning process is more persistent,

its current values have more predicative ability for the its next-period value and thus the next-period

asset returns.

Table 5.1. Averages of MDR, MDU, and PF for Example 5.1

ψ
γ

T
T = 100 T = 300 T = 500

ψ = 0.4

γ = 1

MDR 0.0505(0.1682) 0.0474(0.1092) 0.0585(0.1120)

MDU 0.0500(0.3751) 0.0031(0.1627) 0.0441(0.1450)

PF 0.5239(0.0606) 0.5232(0.0340) 0.5255(0.0347)

γ = 5

MDR 0.0143(0.0101) 0.0078(0.0040) 0.0066(0.0034)

MDU 0.0028(0.0206) 0.0066(0.0310) 0.0011(0.0129)

PF 0.5934(0.0451) 0.5734(0.0276) 0.5704(0.0192)

γ = 10

MDR 0.0060(0.0038) 0.0038(0.0020) 0.0032(0.0013)

MDU 0.0021(0.0010) 0.0014(0.0005) 0.0011(0.0004)

PF 0.5821(0.0486) 0.5747(0.0284) 0.5676(0.0213)

ψ = 0.9

γ = 1

MDR 0.1045(0.3192) 0.0763(0.3311) 0.0937(0.3418)

MDU 0.0958(0.2397) 0.0954(0.2086) 0.1842(0.3147)

PF 0.5229(0.0557) 0.5199(0.0354) 0.5169(0.0382)

γ = 5

MDR 0.0286(0.0153) 0.0160(0.0064) 0.0125(0.0047)

MDU 0.0113(0.0111) 0.0059(0.0220) 0.0058(0.0086)

PF 0.6388(0.0443) 0.6211(0.0267) 0.6059(0.0225)

γ = 10

MDR 0.0160(0.0098) 0.0087(0.0034) 0.0065(0.0023)

MDU 0.0052(0.0024) 0.0033(0.0010) 0.0028(0.0008)

PF 0.6469(0.0445) 0.6247(0.0305) 0.6162(0.0229)

Example 5.2. In this example, the gross returns vectors Rt are generated from a stationary VAR:

log(Rt) = 0.01 ∗ 1n +B ∗ log(Rt−1) + et, (5.3)

where et are generated in the same way as in Example 5.1, the AR coefficient matrix B is set as the

transpose of 0.01 ∗ magic(n), in which magic(n) denotes the n × n magic matrix constructed from

the integers 1 through n2 with equal row and column sums.
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The conditioning variables are taken as the lag-one and lag-two returns, i.e. Xt−1 = (R
⊺

t−1,R
⊺

t−2)
⊺

.

Hence, the number of conditioning variables is J = 2n. The results based on 100 independent samples

of this example are given in Table 5.2. Similar findings can be obtained as those in Example 5.1.

Table 5.2. Averages of MDR, MDU, and PF for Example 5.2

γ

T
T = 100 T = 300 T = 500

γ = 1

MDR 0.2187(0.3298) 0.2599(0.1431) 0.2448(0.1282)

MDU 0.1518(0.2794) 0.0314(0.1257) 0.0232(0.0561)

PF 0.5500(0.0590) 0.5373(0.0489) 0.5903(0.0403)

γ = 5

MDR 0.0444(0.0270) 0.0189(0.0079) 0.0165(0.0077)

MDU 0.0140(0.0458) 0.0099(0.0033) 0.0075(0.0132)

PF 0.6633(0.0430) 0.6274(0.0305) 0.6196(0.0215)

γ = 10

MDR 0.0233(0.0131) 0.0112(0.0049) 0.0097(0.0042)

MDU 0.0088(0.0041) 0.0049(0.0017) 0.0044(0.0016)

PF 0.6659(0.0475) 0.6287(0.0306) 0.6220(0.0253)

Example 5.3. We have a sample of daily returns data on Dow Jones stocks over the period 2010-

2014. We use a total of 1000 observations on the stock returns of the 30 companies comprising the

Dow Jones index. The lag-1 returns on the 30 stocks are used as the conditioning variables. We apply

a CRRA utility with γ = 5. The proposed data-driven semiparametric model averaging method is

used to construct an optimal portfolio from the 30 stocks that gives the investor the maximum next-

period utility. The portfolio is rebalanced in each time period to reflect latest market conditions. The

returns on the selected portfolio are calculated and compared to those on the portfolio constructed

from the unconditional parametric method. Figure 5.1 plots the returns on the portfolios constructed

from the above two methods. It shows that in most of the time periods under consideration, the

semiparametric model averaging gives a portfolio that provides higher returns. In some periods,

the additional return is as high as 40%–60%. The mean difference between these returns over the

sampling period is calculated as 3.2%.

15



0.96 0.98 1 1.02 1.04 1.06
0.9

1

1.1

1.2

1.3

1.4

1.5

UPM returns

S
M

A
M

 r
e
tu

rn
s

Figure 5.1. SMAM returns vs UPM returns: the returns on the portfolio constructed from the

semiparametric model average method are on the vertical axis and those on the portfolio constructed

from the unconditional parametric method are on the horizontal axis; the straight line is y = x.

6 Conclusions and extensions

In this paper, we have introduced a new data-driven method to estimate the dynamic portfolio choice

with multiple conditioning variables, where the number of the conditioning variables can be either

fixed or divergent with the sample size. Motivated by the MAMAR method proposed in Li, Linton

and Lu (2015), we first solve a portfolio choice problem for each univariate conditioning variable,

and then combine the portfolio weights from each of those “experts” through the model averaging

approach. The optimal weights in the model averaging are determined by the semiparametric data-

driven method introduced in Section 4. The asymptotic theorems demonstrate that the proposed

dynamic portfolio choice approach can circumvent the curse of dimensionality issue, and the numerical

16



studies show that the proposed approach performs reasonably well in the finite sample case. In fact,

this approach is quite common in the machine learning literature, see, for example, Györfi, Ottucsák

and Urbán (2011). It is also possible to introduce constraints such as absence of short selling or

position limits at each stage of our method at the cost of computational complexity.

A Assumptions

We next list the regularity conditions which are used to prove the asymptotic results. Some of these

conditions might not be the weakest possible and can be relaxed at the cost of more lengthy proofs.

Assumption 1. (i) The utility function u(·) is concave and has continuous derivatives up to the

second order.

(ii) The optimal weight functions (for the scalar conditioning variable) w∗
j (·), j = 1, . . . , J , have

continuous derivatives up to the second order.

Assumption 2. The joint process of the conditioning variables
{
Xt = (X1t, . . . , XJt)

⊺
}
and asset

returns
{
Rt = (R1t, . . . , Rnt)

⊺
}
is strictly stationary and α-mixing with the mixing coefficient

decaying at a geometric rate, αk ∼ γk0, 0 < γ0 < 1.

Assumption 3. For 1 ≤ j ≤ J , each component variable Xjt has a continuous marginal density

function fj(·) on a compact support denoted by Xj. For all t > 1, the joint density function of

(X1,Xt) exists and is uniformly bounded. There exists a δ > 0 such that

max
1≤j≤J

max
1≤i,k≤n

E

[∣∣RitRktü
(
w

⊺

j (Xj,t−1)Rt

)∣∣2+δ
+
∣∣Ritu̇

(
w

⊺

j (Xj,t−1)Rt

)∣∣2+δ
]
<∞.

The matrix

E
[
R∗

t (R
∗
t )

⊺

ü
(
w

⊺

j (xj)Rt

)
|Xj,t−1 = xj

]

is non-singular uniformly for xj ∈ Xj, j = 1, . . . , J , where R∗
t is defined in Section 3.

Assumption 4. The kernel function K(·) is positive, Lipschitz continuous and symmetric about

zero with a compact support, and
∫
K(z)dz = 1.

Assumption 5. The bandwidth h satisfies h→ 0,

Th4 = o(1) and
T 1−1/(2+δ)h

log T
→ ∞.
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Assumption 5′. The bandwidth h satisfies h→ 0,

Th4 = o(1) and
T 1−1/(2+δ)h

J
1/(2+δ)
T log T

→ ∞.

The above assumptions are mild and justifiable. Some of the assumptions are similar to those in

Brandt (1999). Under some conditions, Assumption 1(ii) follows from Assumption 1(i). For example

when u(x) = x− (γ/2)x2, it suffices that the conditional mean and conditional covariance matrix of

returns are twice continuously differentiable. We impose in Assumption 2 the stationarity and mixing

dependence condition on the joint processes of the returns of the risky assets and the conditioning

variables. The methodology and theory developed in the present paper are also applicable to the

more general dependence structure, say the near epoch dependent process (Li, Lu and Linton, 2012).

To facilitate our proofs, we assume that the mixing coefficients decay at a geometric rate, which

can be relaxed to a polynomial rate at the cost of more lengthy proofs. The bandwidth conditions

in Assumptions 5 and 5′ indicate that there is a trade-off between the moment conditions and the

bandwidth restriction. And the condition Th4 = o(1) shows that certain under-smoothing is needed

in the asymptotic analysis, which is not uncommon in semiparametric estimation.

B Proofs of the theoretical results

We next give the proofs of the theoretical results stated in Sections 3 and 4. In this appendix, we

let C be a positive constant whose value may change from line to line.

Proof of Theorem 3.1. By the definition of ŵ∗
j (xj) = [ŵ1j(xj), . . . , ŵn0−1,j(xj)]

⊺

or ŵj(xj) =

[ŵ1j(xj), . . . , ŵn0j(xj)]
⊺

, we have

1

Th

T∑

t=1

(Rit −Rnt)u̇
(
ŵ

⊺

j (xj)Rt

)
K

(
Xj,t−1 − xj

h

)
= 0 (B.1)

for i = 1, . . . , n0 − 1 and j = 1, . . . , J0. By Assumption 1 and using the Taylor’s expansion for u̇(·),

u̇
(
ŵ

⊺

j (xj)Rt

)
= u̇

(
w

⊺

j (xj)Rt

)
+ ü

(
w

⊺

⋄(xj)Rt

) {
(R∗

t )
⊺
[
ŵ∗

j (xj)− w∗
j (xj)

]}
,

where w⋄(xj) lies between ŵj(xj) and wj(xj), and w
∗
j (xj) = [w1j(xj), . . . , wn0−1,j(xj)]

⊺

. Then we may

prove that

ŵ∗
j (xj)− w∗

j (xj) = A−1
nj (xj)Bnj(xj), (B.2)
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for j = 1, · · · , J0, where

Anj(xj) =
1

Th

T∑

t=1

R∗
t (R

∗
t )

⊺

ü
(
w

⊺

⋄(xj)Rt

)
K

(
Xj,t−1 − xj

h

)
,

Bnj(xj) =
1

Th

T∑

t=1

R∗
t u̇
(
w

⊺

j (xj)Rt

)
K

(
Xj,t−1 − xj

h

)
.

By Assumptions 2–5 in Appendix A and following the standard argument in nonparametric

kernel-based smoothing in time series (c.f., Robinson, 1983), we can show that

Anj(xj) = Λj(xj) + oP (1) (B.3)

when n = n0 is fixed and ŵj(xj) is sufficiently close to wj(xj), where Λj(xj) is defined in Section 3.

The convergence in (B.3) holds uniformly for xj ∈ Xj and j = 1, . . . , J0 (c.f., the proof of Theorem

3.3 below). On the other hand, we recall that Zjt(xj) = R∗
t u̇
(
w

⊺

j (Xj,t−1)Rt

)
K
(

Xj,t−1−xj

h

)
. By

Assumptions 1(i)(ii) and the Taylor’s expansion for u̇
(
w

⊺

j (·)Rt

)
, we may show that

Bnj(xj) =
1

Th

T∑

t=1

Zjt(xj) +OP (h
2). (B.4)

Noting that Th4 = o(1) in Assumption 5 and by (B.2)–(B.4),

√
Th
[
ŵ∗

j (xj)− w∗
j (xj)

]
= Λ−1

j (xj) ·
1√
Th

T∑

t=1

Zjt(xj) + oP (1). (B.5)

Then, using the central limit theorem for the stationary α-mixing sequence (e.g., Section 2.6.4 in

Fan and Yao, 2003), we can complete the proof of (3.2) in Theorem 3.1(i).

As in Section 3, let

Wjt(xj) = Λ−1
j (xj)Zjt(xj), Wt(x|a) =

J0∑

j=1

ajWjt(xj).

By (B.5) and the definitions of ŵ∗
a
(x) and w∗

a
(x), we have

√
Th [ŵ∗

a
(x)− w∗

a
(x)] =

1√
Th

T∑

t=1

Wt(x|a) + oP (1). (B.6)

Using (B.6), we can readily prove (3.3) in Theorem 3.1(ii). �
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Proof of Theorem 3.2. The proof of this theorem is similar to the proof of Theorem 3.1 above.

The only difference that the stronger bandwidth condition in Assumption 5′ is needed when we prove

(B.3) uniformly for xj ∈ Xj and j = 1, . . . , JT . �

Proof of Theorem 3.3. We only consider the proof of (3.5) for the case when J = JT is diverging,

as the proof for the case of J = J0 is similar and simpler. Noting that ŵn0j(xj) = 1−∑n0−1
i=1 ŵij(xj)

and using (B.2) and (B.3) in the proof of Theorem 3.1, we only need to show that

max
1≤j≤JT

sup
xj∈Xj

∥∥∥∥∥
1

Th

T∑

t=1

R∗
t u̇
(
w

⊺

j (xj)Rt

)
K

(
Xj,t−1 − xj

h

)∥∥∥∥∥ = OP

(
h2 +

√
log T/(Th)

)
, (B.7)

as Λj(xj) is nonsingular uniformly for xj ∈ Xj, 1 ≤ j ≤ JT (see Assumption 3). Note that the

convergence result in (B.4) can be strengthened from the point-wise convergence to the uniform

convergence over xj ∈ Xj, 1 ≤ j ≤ JT . Hence, in order to prove (B.7), we only need to show that

max
1≤j≤JT

sup
xj∈Xj

∥∥∥∥∥
1

Th

T∑

t=1

Zjt(xj)

∥∥∥∥∥ = OP

(√
log T/(Th)

)
, (B.8)

where Zjt(xj) is defined in the proof of Theorem 3.1.

For notational simplicity, denote ξT =
(
log T
Th

)1/2
. The main idea of proving (B.8) is to consider

covering the compact support Xj by a finite number of disjoint subsets Xj(k) which are centered at

xjk with radius rT = ξTh
2, k = 1, . . . ,Nj. It is easy to show that

max
1≤j≤JT

Nj = O(r−1
T ) = O(ξ−1

T h−2)

and

max
1≤j≤JT

sup
xj∈Xj

∥∥∥∥∥
1

Th

T∑

t=1

Zjt(xj)

∥∥∥∥∥ ≤ max
1≤j≤JT

max
1≤k≤Nj

∥∥∥∥∥
1

Th

T∑

t=1

Zjt (xjk)

∥∥∥∥∥+

max
1≤j≤JT

max
1≤k≤Nj

sup
xj∈Xj(k)

∥∥∥∥∥
1

Th

T∑

t=1

Zjt(xj)−
1

Th

T∑

t=1

Zjt (xjk)

∥∥∥∥∥
≡ ΠT1 +ΠT2. (B.9)

By the continuity condition on K(·) in Assumption 4 and using the definition of rT , we readily have

ΠT2 = OP

(rT
h2

)
= OP (ξT ). (B.10)
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For ΠT1, we apply the truncation technique and the Bernstein-type inequality for the α-mixing

dependent random variables which can be found in Bosq (1998) and Fan and Yao (2003) to obtain

the convergence rate. Let MT =M1(TJT )
1/(2+δ),

Zjt (xjk) = Zjt (xjk) · I
{∥∥R∗

t u̇
(
Rw

jt

) ∥∥ ≤MT

}

and

Z̃jt (xjk) = Zjt (xjk) · I
{∥∥R∗

t u̇
(
Rw

jt

) ∥∥ > MT

}
,

where I{·} is an indicator function and Rw
jt = w

⊺

j (Xj,t−1)Rt. Then we have

ΠT1 ≤ max
1≤j≤JT

max
1≤k≤Nj

∥∥∥∥∥
1

Th

T∑

t=1

{
Zjt(xjk)− E

[
Zij(xjk)

]}
∥∥∥∥∥+

max
1≤j≤JT

max
1≤k≤Nj

∥∥∥∥∥
1

Th

n∑

i=1

{
Z̃jt(xjk)− E

[
Z̃jt(xjk)

]}
∥∥∥∥∥

≡ ΠT3 +ΠT4. (B.11)

For M2 > 0 and any ǫ > 0, by the moment condition in Assumption 3 and the Markov inequality,

P

(
ΠT4 > M2ξT

)
≤ P

(
max

1≤j≤JT
max

1≤k≤Nj

max
1≤t≤T

∥∥∥Z̃jt(xjk)
∥∥∥ > M2ξT

)

≤
JT∑
j=1

T∑
t=1

P
(∥∥R∗

t u̇
(
Rw

jt

)∥∥ > MT

)

≤ M
−(2+δ)
1 · max

1≤j≤JT
E

[∥∥R∗
t u̇
(
Rw

jt

)∥∥2+δ
]
< ǫ,

if we choose

M1 >

{
max

1≤j≤JT
E

[∥∥R∗
t u̇(R

w
jt)
∥∥2+δ

]}1/(2+δ)

ǫ−1/(2+δ).

Then, by letting ǫ be arbitrarily small, we can show that

ΠT4 = OP (ξT ). (B.12)

On the other hand, note that

∥∥Zjt(xjk)− E
[
Zjt(xjk)

]∥∥ ≤ C0MT (B.13)

and

Var
[
Zjt(xjk)

]
≤ C0h, (B.14)
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where C0 is a positive constant. By (B.13), (B.14) and Theorem 1.3(2) in Bosq (1998) with p =

[(M2MT ξT/4)
−1] which tends to infinity by (3.6), we have

P(ΠT3 > M2ξT ) = P

(
max

1≤j≤JT
max

1≤k≤Nj

∥∥∥∥∥
1

Th

T∑

t=1

{
Zjt(xjk)− E

[
Zij(xjk)

]}
∥∥∥∥∥ > M2ξT

)

=

JT∑

j=1

Nj

(
4 exp

{ −qM2
2 ξ

2
T

4C0M2MT ξT/h+ 16C0/(ph))

}
+ 22 [1 + 4C0MT/(M2hξT )] qγ

p
0

)

≤ C

JT∑

j=1

Nj

[
exp

{
−M1/2

2 log T
}
+ TM2

Tγ
p
0

]
= o(1),

where M2 is chosen sufficiently large and q = T/(2p). Hence we have

ΠT3 = OP (ξT ). (B.15)

In view of (B.10)–(B.12) and (B.15), we have shown (B.8), completing the proof of Theorem 3.3. �

Proof of Theorem 4.1. Recall that

â∗ = (â1, . . . , âJ−1)
⊺

, a∗
0 = (a10, . . . , aJ−1,0)

⊺

,

Rt(w) = (Rw
1t, . . . , R

w
Jt)

⊺

, R∗
t (w) =

(
Rw

1t, . . . , R
w
J−1,t

)⊺
,

R̂t(w) =
(
R̂w

1t, . . . , R̂
w
Jt

)⊺

, R̂∗
t (w) =

(
R̂w

1t, . . . , R̂
w
J−1,t

)⊺

.

As âJ0 = 1 −∑J0−1
j=1 âj and aJ00 = 1 −∑J0−1

j=1 aj0, by Theorem 3.3(i), Assumption 1(i) and the

Taylor’s expansion for u̇(·), we may show that

u̇
[ J0∑

j=1

âjŵ
⊺

j (Xj,t−1)Rt

]
− u̇
[ J0∑

j=1

aj0ŵ
⊺

j (Xj,t−1)Rt

]

= ü
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

] J0∑

j=1

(âj − aj0) ŵ
⊺

j (Xj,t−1)Rt +OP (‖â− a0‖2)

= ü
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]
(â− a0)

⊺

R̂t(w) +OP (‖â− a0‖2)

= ü
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]
(â∗ − a∗

0)
⊺

[
R̂∗

t (w)− R̂w
J0t

1J0−1

]
+OP (‖â∗ − a∗

0‖2)
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and

u̇
[ J0∑

j=1

aj0ŵ
⊺

j (Xj,t−1)Rt

]
− u̇
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]

= ü
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

] J0∑

j=1

aj0 [ŵj(Xj,t−1)− wj(Xj,t−1)]
⊺

Rt +OP

(
h4 +

log T

Th

)

= ü
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]
a

⊺

0

[
R̂t(w)−Rt(w)

]
+OP

(
h4 +

log T

Th

)
.

Hence, we have

u̇
[ J0∑

j=1

âjŵ
⊺

j (Xj,t−1)Rt

]
= u̇

[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]
+ u̇
[ J0∑

j=1

âjŵ
⊺

j (Xj,t−1)Rt

]
− u̇
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]

= u̇
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]
+ u̇
[ J0∑

j=1

âjŵ
⊺

j (Xj,t−1)Rt

]
− u̇
[ J0∑

j=1

aj0ŵ
⊺

j (Xj,t−1)Rt

]

+u̇
[ J0∑

j=1

aj0ŵ
⊺

j (Xj,t−1)Rt

]
− u̇
[ J0∑

j=1

aj0w
⊺

j (Xj,t−1)Rt

]

= ηt + η∗t
[
R̂

∗
t (w)− R̂w

J0t1J0−1

]⊺
(â∗ − a

∗
0) + η∗t

[
R̂t(w)−Rt(w)

]⊺
a0

+OP

(
h4 +

log T

Th

)
+OP (‖â∗ − a

∗
0‖2), (B.16)

where ηt = u̇
[∑J0

j=1 aj0w
⊺

j (Xj,t−1)Rt

]
and η∗t = ü

[∑J0
j=1 aj0w

⊺

j (Xj,t−1)Rt

]
.

By (4.4) and (B.16), we have

0 =
1

T

T∑

t=1

[
R̂∗

t (w)− R̂w
J0t

1J0−1

]
u̇
[ J∑

j=1

âjŵ
⊺

j (Xj,t−1)Rt

]

=
1

T

T∑

t=1

[
R̂∗

t (w)− R̂w
J0t

1J0−1

]{
ηt + η∗t

[
R̂∗

t (w)− R̂w
J0t

1J0−1

]⊺
(â∗ − a∗

0)

+η∗t

[
R̂t(w)−Rt(w)

]⊺
a0

}
+OP

(
h4 +

log T

Th

)
+OP (‖â∗ − a∗

0‖2). (B.17)

By (B.17), we readily have

√
T (â∗ − a∗

0)
P∼
[
1

T

T∑

t=1

η∗t V̂
∗
t (V̂

∗
t )

⊺

]−1{
1√
T

T∑

t=1

V̂∗
t ηt +

1√
T

T∑

t=1

V̂∗
t η

∗
t

[
R̂t(w)−Rt(w)

]⊺
a0

}
,

(B.18)
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where V̂∗
t = R̂∗

t (w)− R̂w
J0t

1J0−1 and αn
P∼ βn denotes that αn/βn = 1 + oP (1).

By Theorem 3.3 and the law of larger numbers, we readily have

1

T

T∑

t=1

η∗t V̂
∗
t (V̂

∗
t )

⊺

=
1

T

T∑

t=1

η∗tV
∗
t (V

∗
t )

⊺

+ oP (1) = ∆1 + oP (1), (B.19)

where ∆1 is defined in Section 4. Note that

1√
T

T∑

t=1

V̂∗
t ηt =

1√
T

T∑

t=1

V∗
t ηt +

1√
T

T∑

t=1

(
V̂∗

t −V∗
t

)
ηt.

By Assumptions 2 and 3 and following the argument in the proof of Lemma B.3 in Li, Linton and

Lu (2015), we may show that the second term on the right hand side of (B.19) is asymptotically

negligible. Hence, we have

1√
T

T∑

t=1

V̂∗
t ηt

P∼ 1√
T

T∑

t=1

V∗
t ηt. (B.20)

We next consider 1√
T

∑T
t=1 V̂

∗
t η

∗
t

[
R̂t(w)−Rt(w)

]⊺
a0. It is easy to see that

1√
T

T∑

t=1

V̂∗
t η

∗
t

[
R̂t(w)−Rt(w)

]⊺
a0

P∼ 1√
T

T∑

t=1

V∗
t η

∗
t

[
R̂t(w)−Rt(w)

]⊺
a0 (B.21)

by using Theorem 3.3. Let W be an n0 × (n0 − 1) matrix which is defined by

W =




1 · · · 0
...

...
...

0 · · · 1

−1 · · · −1



.

It is easy to show that for any j = 1, . . . , J0 and xi ∈ Xj,

ŵj(xj)− wj(xj) = W
[
ŵ∗

j (xj)− w∗
j (xj)

]
. (B.22)
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Hence, by (B.22) and using the argument in the proofs of Theorems 3.1 and 3.3, we may show that

R̂w
jt −Rw

jt = [ŵj(Xj,t−1)− wj(Xj,t−1)]
⊺

Rt

=
[
ŵ∗

j (Xj,t−1)− w∗
j (Xj,t−1)

]⊺
W

⊺

Rt

P∼ R
⊺

tWΛ−1
j (Xj,t−1) ·

[
1

Th

T∑

s=1

Zjs(Xj,t−1)

]

= R
⊺

tWΛ−1
j (Xj,t−1) ·

[
1

Th

T∑

s=1

R∗
su̇
(
w

⊺

j (Xj,s−1)Rs

)
K

(
Xj,s−1 −Xj,t−1

h

)]

= R
⊺

tWΛ−1
j (Xj,t−1) ·

[
1

Th

T∑

s=1

R∗
sεjsK

(
Xj,s−1 −Xj,t−1

h

)]
, (B.23)

where εjs = u̇
(
w

⊺

j (Xj,s−1)Rs

)
= u̇

(
Rw

js

)
and Zjs(·) is defined in the proof of Theorem 3.1. By (B.23),

we readily have

[
R̂t(w)−Rt(w)

]⊺
a0 = R

⊺

tW ·
[

1

Th

T∑

s=1

J0∑

j=1

Λ−1
j (Xj,t−1)R

∗
sεjsaj0K

(
Xj,s−1 −Xj,t−1

h

)]
,

which indicates that

1√
T

T∑

t=1

V∗
t η

∗
t

[
R̂t(w)−Rt(w)

]⊺
a0

P∼ 1√
T

T∑

t=1

V∗
t η

∗
tR

⊺

tW ·
[

1

Th

T∑

s=1

J0∑

j=1

Λ−1
j (Xj,t−1)R

∗
sεjsaj0K

(
Xj,s−1 −Xj,t−1

h

)]

=
1√
T

T∑

s=1

J0∑

j=1

εjsaj0

[
1

Th

T∑

t=1

η∗tV
∗
tR

⊺

tWΛ−1
j (Xj,t−1)K

(
Xj,s−1 −Xj,t−1

h

)]
R∗

s

P∼ 1√
T

T∑

s=1

J0∑

j=1

εjsaj0Qjs, (B.24)

where

Qjs =
{
E
[
η∗tV

∗
tR

⊺

tWΛ−1
j (Xj,t−1)|Xj,t−1 = Xj,s−1

] }
fj(Xj,s−1)R

∗
s.

Recall that εt = [ε1ta10, . . . , εJ0taJ00]
⊺

and Qt = (Q1t, . . . , QJ0t)
⊺

. Then we have

1√
T

T∑

t=1

V∗
t η

∗
t

[
R̂t(w)−Rt(w)

]⊺
a0

P∼ 1√
T

T∑

t=1

Q
⊺

tεt. (B.25)
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By (B.20), (B.21) and (B.25), we have

1√
T

T∑

t=1

V̂∗
t ηt +

1√
T

T∑

t=1

V∗
t η

∗
t

[
R̂t(w)−Rt(w)

]⊺
a0

P∼ 1√
T

T∑

t=1

(
V∗

t ηt +Q
⊺

tεt

)
. (B.26)

By the central limit theorem for the α-mixing sequence, we can prove that

1√
T

T∑

t=1

(
V∗

t ηt +Q
⊺

tεt

) d→ N (0,∆2) (B.27)

Then, we can complete the proof of Theorem 4.1 by (B.18)–(B.21), (B.26) and (B.27). �

Proof of Theorem 4.2. The main idea in this proof is similar to the proof of Theorem 4.1 above

with some modifications. Hence, we next only sketch the proof.

Following the proof of (B.18) and using the condition (4.6), we may show that

√
TΨT∆

−1/2
T (â∗ − a∗

0) = ΨT∆
− 1

2

T

[
1

T

T∑

t=1

η∗t V̂
∗
t (V̂

∗
t )

⊺

]−1 [
1√
T

T∑

t=1

V̂∗
t ηt

+
1√
T

T∑

t=1

V̂∗
t η

∗
t

(
R̂t(w)−Rt(w)

)⊺

a0

]
. (B.28)

Note that (B.19) still holds by using Theorem 3.3(ii) and (4.6). Hence, by (B.28), we have

√
TΨT∆

−1/2
T (â∗ − a∗

0)
P∼ ΨT∆

−1/2
T ∆−1

1

[
1√
T

T∑

t=1

V̂∗
t ηt +

1√
T

T∑

t=1

V̂∗
t η

∗
t

(
R̂t(w)−Rt(w)

)⊺

a0

]
.

(B.29)

Furthermore, using the argument in proving (B.26), we obtain

√
TΨT∆

−1/2
T (â− a0)

P∼ ΨT∆
−1/2
T ∆−1

1

[
1√
T

T∑

t=1

(
V∗

t ηt +Q
⊺

tεt

)
]
. (B.30)

By the central limit theorem and using the condition that ΨTΨ
⊺

T → Ψ, we can complete the proof

of Theorem 4.2. �
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