

This is a repository copy of *Bladder Cancer*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/113339/

Version: Accepted Version

Article:

Sanli, O, Dobruch, J, Knowles, MA orcid.org/0000-0002-9363-8657 et al. (4 more authors) (2017) Bladder Cancer. Nature Reviews Disease Primers, 3. 17022. ISSN 2056-676X

https://doi.org/10.1038/nrdp.2017.22

© 2017 Macmillan Publishers Limited, part of Springer Nature. This is an author produced version of a paper published in Nature Reviews Disease Primers. Uploaded in accordance with the publisher's self-archiving policy. The final publication is available at https://doi.org/10.1038/nrdp.2017.22.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Bladder cancer
2	
3	Oner Sanli ¹ , Jakub Dobruch ² , Margaret A. Knowles ³ , Maximilian Burger ⁴ , Mehrdad Alemozaffar ⁵ , Matt
4	Nielsen ⁶ and Yair Lotan ¹
5	
6	1 Department of Urology, UT Southwestern Medical Center at Dallas, Moss Building, 5323 Harry Hines
7	Blvd, Dallas, Texas 75390-9110, USA.
8	2 Centre of Postgraduate Medical Education, Warsaw, Poland.
9	3 Section of Molecular Oncology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds,
10	United Kingdom.
11	4 Klinik für Urologie, Universität Regensburg, Regensburg, Germany.
12	5 Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA.
13 14	6 Department of Urology, University of North Carolina, Chapel Hill, North Carolina, USA.
15	Correspondence to: Y. L.
16	yair.lotan@utsouthwestern.edu
17	
18	
19	Abstract
20	Bladder cancer is a highly prevalent disease associated with substantial morbidity, mortality and cost.
21	Environmental or occupational exposures to carcinogens, and especially tobacco, are the main risk
22	factors for bladder cancer. Most bladder cancers are diagnosed after patients complain of macroscopic
23	haematuria, and cases are confirmed after transurethral resection of bladder tumour (TURBT), which
24	also serves as the first stage of treatment. Bladder cancer develops via two distinct pathways, giving rise
25	to non-muscle-invasive papillary tumours and non-papillary (solid) muscle-invasive tumours. Both
26	subtypes have unique pathological features and different molecular characteristics. Indeed, The Cancer

27 Genome Atlas project identified genetic drivers of muscle-invasive bladder cancer (MIBC) as well as 28 subtypes of MIBC with unique characteristics and therapeutic responses. For non-muscle-invasive 29 bladder cancer (NMIBC), intravesical therapies (primarily Bacillus Calmette-Guérin (BCG)) with

30 maintenance are the main treatments to prevent recurrence and progression after initial TURBT; 31 additional therapies are needed for those who do not respond to BCG. For localized MIBC, optimizing 32 care is important as is the goal to reduce morbidity of removing the bladder. In metastatic disease, 33 advancements in genetic understanding and immunotherapy are being translated into novel therapies.

34

35 [H1] Introduction

Cancer of the urinary bladder is the 9th most common malignant disease and 13th most common cause of 36 cancer death worldwide¹. Indeed, 76,960 new cases of bladder cancer and 16,390 bladder cancer deaths 37 38 were predicted to occur in 2016 in United States alone². In 2012, 429,793 cases of bladder cancer were 39 diagnosed and 165,084 deaths were recorded globally³. Men are more affected than women (3.2:0.9 40 ratio) and disease incidence increases with age¹. The most common symptom of bladder cancer is either 41 microscopic or macroscopic (visible) blood in the urine (haematuria), which occurs in 13.7% and 78.3% 42 of patients, respectively⁴. Among patients with bladder cancer, macroscopic haematuria is associated 43 with advanced pathological stage. However, many patients with microscopic haematuria are not 44 adequately evaluated and there is no active screening for bladder cancer⁵.

45

46 Bladder cancer generally originates from epithelium (urothelium) that covers the inner surface of the 47 bladder and urothelial carcinomas represent the most common type of bladder cancer. Bladder cancers 48 with variant histology (that is, with distinct histomorphological phenotypes) have also been described (10-25% of cases)⁶ and include squamous cell carcinoma, small-cell carcinoma and adenocarcinoma. 49 50 High-grade urothelial carcinomas can be of micropapillary, sarcomatoid, plasmacytoid, nested and 51 microcystic variants and have the propensity for divergent differentiation into, for example, squamous 52 and glandular histologies. Variant histology bladder cancers are associated with locally aggressive 53 disease, metastasis and poor response to existing therapies; however, controversy persists over the true 54 influence histology has on outcomes. In general, individualized management should be applied to these 55 patients in the light of the existing limited literature.

56

Tumours that invade the detrusor muscle are considered muscle invasive bladder cancer (MIBC) and are more likely to metastasize to lymph nodes or other organs. Approximately 75% of newly diagnosed patients have non-muscle-invasive bladder cancer (NMIBC) and 25% have MIBC⁷ or metastatic disease⁸ (Figure 1). The stage at diagnosis of bladder cancer has not changed over the past 10 years based on data from the Surveillance, Epidemiology, and End Results (SEER) registry in the United States because active screening is not available. Accordingly, mortality rates have not changed as there is no cure for
 metastatic disease.⁹

64

The Cancer Genome Atlas project (TCGA) has advanced our understanding of bladder cancer¹⁰. This genetic characterization study of MIBCs has provided information not only on genetic drivers that might serve as therapeutic targets, as well as providing information of subtypes or clusters of invasive disease. These clusters might be associated with prognostic factors and unique therapeutic approaches and eventually provide a step forward towards individualized patient management. In this Primer, we discuss urothelial (the main type) bladder cancer epidemiology, pathophysiology, diagnosis, screening and prevention as well as management and quality of life issues.

72

[H2]Epidemiology

[H2] Incidence and mortality

The incidence of bladder cancer differs considerably between geographical regions such that age-75 standardized incidence (ASI) is almost three times greater in more-developed areas (ASI of 9.5 per 76 100,000 population) than in less-developed countries (ASI of 3.3 per 100,000 population) (Table 1). The 77 highest ASI is observed in European countries (namely, Spain, Italy, Denmark and Switzerland), North 78 America, some northern African countries (for example, Egypt) and western Asia (Turkey and Israel), 79 particularly in men¹¹. By contrast, the lowest rates were noted in Central and South America, Sub-80 Saharan Africa and South-East Asia¹¹. Urothelial cancers remain the most common type of bladder 81 cancer in North America and Europe; however, in Egypt, 10-40% of bladder cancers are squamous cell 82 cancers that are associated with the blood flukes Schistosoma infections¹². Introduction of efficient anti-83 bilharzial drugs together with increased cigarette smoking resulted in significant decline of squamous 84 cell cancer incidence and a shift towards more urothelial cancers in Egypt in recent years¹¹. 85

86

Although rates of bladder cancer are higher in white populations than in other ethnicities, survival is
worse for black individuals^{8,13}, a finding shown in the United States and São Paulo, Brasil¹⁴.

89 Unfortunately, information about incidence in black populations around the world are generally lacking. 90 The low rates in Africa can be attributed to access to health care and competing risks of mortality¹¹. Additionally, global variations of bladder cancer mortality are less conspicuous than of incidence. This 91 reduced variability might result from less difference in the way patients with advanced-stage cancers are 92 diagnosed and registered in health systems¹⁵. However, regional mortality differences reflect, at least in 93 part, the disparate access to modern healthcare systems, sensitive diagnostic facilities and up-to-date 94 treatment protocols. Fortunately, at the global level, age-standardized bladder cancer mortality has 95 declined recently, especially in the most developed countries. Exceptions include Central and South 96 America (for example, Brazil and Cuba), some central, southern and eastern European countries (for 97 example, Bulgaria, Croatia, Hungary and Romania) as well as the Baltic countries (for example, Latvia) 98 that have experienced rapid economic transition over the past 15 years. However, according to the 99 WHO, the number of bladder cancer cases and deaths are expected to almost double in the near 100 future¹⁶. This phenomenon is explained by the increase in life expectancy over time as the majority of 101 bladder cancer is diagnosed >65 years of age. The average life expectancy has increased by 3% since 102 1950 and the life expectancy gap between more and less developed countries has diminished by 4.9 103 years since 2000 (Ref.¹⁷). 104

105 [H2] Risk factors

106

107 Cigarette smoking is the most common risk factor for bladder cancer, with estimates that tobacco is 108 responsible for half of all cases¹⁸, with 20-30 years lag time between the exposure and diagnosis¹⁹. 109 Current bladder cancer incidence is highest, albeit not uniformly, in regions that had high smoking rates 110 in the 1980s^{11,20}. In particular, in Spain and in Italy, age-standardized smoking rates in 1980 amounted to 111 44.4% and 44.3%, respectively; the greatest bladder cancer incidence in men in these countries was 36.7 112 per 100,000 in 2003 and 33.2 per 100,000 in 2007. Since then, smoking prevalence has declined 113 substantially in high-income countries, and incidence and mortality have tended to mirror this trend¹¹. 114 Thus, smoking patterns may at least partially explain geographical diversities in bladder cancer 115

epidemiology. Unfortunately, the WHO has reported increases in tobacco consumption in large areas of
 the less-developed world, including Africa, the Middle East, Eastern Europe, countries of the former
 Soviet Union and Asia, where governmental control over the cigarette market (including marketing) is
 less stringent and public debate on the detrimental effects of tobacco is lacking²¹.

120 In addition to cigarette smoking, associations between a number of environmental factors and bladder 121 cancer have been extensively investigated. Diets low in fruits and vegetables, and urban living are all 122 linked — although not invariably — to increased bladder cancer risk^{22,23}. Furthermore, some evidence 123 suggests alcohol intake slightly increases the risk, but epidemiological data are confounded by other risk 124 factors²⁴. Metabolic syndrome in men was also reported to influence bladder cancer risk, but no direct 125 or indirect association has been conclusively shown with either risk or prognosis²⁵. Consumption of 126 water or food polluted with arsenic might explain some regional bladder cancer data. For example, 127 arsenic pollution was correlated with bladder cancer risk in Argentina, Chile and Bangladesh^{8,26}. Ambient 128 air pollution (AAP) is also suggested to influence bladder cancer risk in less-developed countries. Direct 129 combustion chemicals (mainly diesel and gasoline engine exhausts, stationary power plants and indoor 130 air pollution) are major sources of AAP²⁶. 131

132 Occupational exposures have long been associated with bladder cancer risk. According to the recent 133 analysis, the greatest risk occurs in industrial areas processing paint, rubber, petroleum products and 134 dye workers, whereas the greatest risk of bladder cancer-specific mortality occurs in electrical and 135 chemical process workers^{23,27}. Along with widespread urbanization, many manufacturing processes are 136 being transferred from more developed to less developed countries, potentially posing increased 137 occupational hazards to the local workers. Nevertheless, no more than 8% of bladder cancer cases are 138 thought to be attributable to such exposures²⁸ and the global impact of occupational risks on bladder 139 cancer incidence to explain geographic diversities remains to be fully elucidated. Additionally, 140 unemployment, number of physically unhealthy days, number of days exposed to air pollution ozone, 141 percent of houses with well-derived water, employment in the mining industry, urban living and 142 ethnicity are all linked to bladder cancer mortality^{23,24,26–28}. 143

144

Some evidence supports a genetic predisposition to bladder cancer; genes involved in the metabolism of carcinogens such as N-acetyl transferase and *GSTM1*-null genotypes are associated with increased risk²⁹. Specifically, cigarette-smoking women with the *GSTM1*-null genotype are more prone to bladder cancer diagnosis than their non-smoking counterparts¹³. Large genome-wide association studies (GWAS) found sequence variants that can increase the risk for bladder cancer; for example, alterations in the urea transporter encoded by *SLC14A* are associated with renal urine concentration and can influence the contact of carcinogens with urothelial surfaces³⁰⁻³⁴. Furthermore, according to a novel, bioinformatic approach towards measurements of gene–gene interactions in two GWAS, decarboxylase protein complexes were proposed as associated with bladder cancer susceptibility³⁵, which is a potential druggable target.

154 155

156 [H1]Mechanisms/pathophysiology

Pathological and clinical information from mouse models and human samples indicate that urothelial 157 158 carcinoma develops via two distinct pathways, giving rise to papillary NMIBCs and non-papillary (solid) 159 MIBCs (Figure 2). In mouse models, low-level expression of mutant *Hras* gives rise to flat or papillary urothelial hyperplastic lesions and high-level expression to NMIBCs³⁶. Similarly, in humans, the predicted 160 161 precursors of NMIBC are flat or papillary urothelial hyperplastic lesions. Two common alterations in 162 NMIBC, deletion of chromosome 9 and point mutation of FGFR3, are also evident in these hyperplastic precursors^{37–39}, and where papillary NMIBC from the same patient has been studied, these alterations 163 164 are shared^{37–39}, suggesting a clonal relationship. Urothelial papilloma, which is considered a benign tumour, also shows frequent FGFR3 mutation⁴⁰. 165

166

167 By contrast, generation of (solid) MIBCs in mouse models requires inactivation of one or more of the 168 tumour suppressor genes *Tp53*, *Rb1* and *Pten*^{41–43} and tumours in these models are preceded by 169 development of flat urothelial dysplasia and carcinoma in situ (CIS) lesions. Similarly in humans, high risk of development of MIBC in patients with dysplasia or CIS is well-documented⁴⁴ and these lesions share 170 features with high-grade and invasive bladder cancers, including mutations in TP53 (Ref.⁴⁵), stabilised 171 p53 expression⁴⁶, upregulated expression of cytokeratin 20 (CK20) and HER2/neu⁴⁷, and reduced 172 expression of PTEN with concomitant upregulation of the phosphatidylinositol 3-kinase (PI3K) pathway⁴⁸ 173 174 features that facilitate cell proliferation and survival.

175

176 [H2] Clonality and cell of origin

177 Given that bladder cancer is typically a multifocal disease, questions have been raised concerning its

178 clonality. Indeed, chronic exposure of the urothelium to carcinogens might lead to the development of

179 multiple cancers from different cells of origin. Alternatively, multiple monoclonal lesions could arise

180 from seeding of cells liberated during surgery, intraepithelial expansion or spread from a single tumour

181 clone.

182

In women with bladder cancer, the random inactivation of one X chromosome during embryogenesis
 provides an ideal cell of origin marker; X-inactivation analysis has indicated that although some
 multifocal or metachronous tumours are oligoclonal⁴⁹, the majority are monoclonal⁵⁰. However, other
 studies using multiple molecular markers or genome-wide features provide clear evidence for sub-clonal
 evolution of tumours that are predicted to have arisen from a single cell of origin^{51,52}.

188

189 Evidence from whole bladder mapping studies in MIBC shows that broad regions of the urothelium are 190 replaced by the monoclonal expansion of cells that represent tumour precursors; sub-clonal molecular 191 evolution within these populations enables construction of the temporal series of genomic events 192 leading to tumour formation⁵³. Indeed, large areas of the urothelium with normal or dysplastic 193 morphology represent clonal 'fields' of altered cells within which loss of heterozygosity (LOH) on 3q22, 5q22-23, 9q21, 10p26, 13q14 and 17q13 have been identified^{53,54}, all of which are common alterations 194 195 in bladder cancer. The most detailed analysis has been carried out on a region spanning the *RB1* locus 196 on chromosome 13, which showed LOH in the absence of *RB1* mutation in urothelial fields that had 197 minimal or no morphological change. Regional genes on chromosome 13 proposed to drive early clonal 198 expansion included ITM2B, which was shown to be silenced by hypermethylation, with RB1 mutation 199 occurring as a secondary event during tumour progression^{55,56}.

200

The tumour-initiating cells in NMIBC are thought to be those in the intermediate (that is, non-basal)
layers of the bladder wall⁵⁷, findings supported by lineage tracing studies in animals⁵⁸. Lineage-tracing
studies in mice have also identified sonic hedgehog (Shh)-expressing basal cells that can repopulate the
normal urothelium following injury⁵⁹ and can give rise to MIBC in a carcinogen-induced mouse model⁶⁰.
Stem cells isolated from undifferentiated human bladder tumours also show a phenotype (CD44⁺,
KRT14⁺/KRT5⁺, KRT20⁻) that is similar to cells that reside in the basal layer of the normal urothelium;

these cells have tumour-initiating ability as xenografts^{57,61}. These different cells of origin for NMIBC and

208 MIBC might determine or constrain the molecular events that subsequently occur during tumour

209 development. The differentiation markers of these cells of origin are apparent in the expression

210 signatures of NMIBC and MIBC (below).

211

212 [H2]Molecular landscape

213 Although bladder cancer is a smoking-related cancer, recent genome sequencing studies have not found 214 a predominant mutational signature of tobacco smoke exposure. Instead, a major contribution of 215 APOBEC cytidine deaminases to the mutation signature has been detected in both NMIBC and MIBC^{10,62}. 216 Despite similar mutational features, the mutational load and overall changes in genomic architecture in 217 the two groups are distinct. Averages of 169–195 mutations per sample have been reported from exome sequencing of NMIBC^{62,63} compared with 302 in MIBC¹⁰. NMIBC frequently have diploid or near 218 diploid karyotypes and few copy number alterations⁶⁴, whereas MIBC are commonly aneuploid, with 219 many numerical chromosomal alterations, re-arrangements and copy number changes^{10,64}. These 220 221 differences in mutational landscape are accompanied by major differences in the overall patterns of 222 mutated genes in these two major groups of tumours (see below)⁶⁵.

223

[H3] NMIBC. Most low grade tumours are genomically stable and the most common copy number
alteration is deletion of chromosome 9 (~50% of tumours)⁶⁶. The *CDKN2A* locus (9p21) encodes p16 and
p14^{ARF}, which are negative regulators of the retinoblastoma (RB) pathway and p53 pathway respectively.
Chromosome 9 loss also implicates *TSC1*, a tumour suppressor that regulates mTOR signalling (see
below). Genome-wide copy number analyses have also identified deletions of chromosome arms 10q,
11p, 11q, 17p, 18q, 19p and 19q in up to 20% of cases, most involving entire chromosome arms^{64,67}.
Gain of 20q has been reported, but high level DNA amplification is infrequent in this tumour group.

231

NMIBCs are characterized by activating point mutations in *FGFR3* in the majority of cases ⁶⁸. In cultured
 normal human urothelial cells, expression of mutant *FGFR3* leads to activation of the RAS-MAPK
 pathway and a phenotype of cell overgrowth at confluence *in vitro*, suggesting that *FGFR3* activation
 might contribute to early urothelial hyperplasia ⁶⁹. *FGFR3* is also activated in some cases by
 chromosomal translocation. The fusion proteins resulting from these translocations show loss of the

final exon of *FGFR3* and fusion in-frame to *TACC3* (encoding transforming acid coiled-coil containing
protein 3), or less commonly to *BAIAP2L1* (BAI1-associated protein 2-like 1). These fusions proteins are
potent transforming oncogenes ^{70,71}. As activating mutations of one of the *RAS* genes are also found in
some NMIBCs, and these are mutually exclusive with *FGFR3* mutation⁷², it is estimated that activation of
the RAS-MAPK pathway may contribute to development of >80% of NMIBCs (Table 2). Activating
mutations in phosphatidylinositol-3-kinase alpha (*PIK3CA*) are also common in NMIBC, and frequently
found with *FGFR3* mutation⁷³⁻⁷⁵.

244

245 Inactivated tumour suppressor genes include TSC1 (9q34), which is mutated in ~15% of cases⁷³. A few mutations in TSC2 are also reported⁷⁶. The TSC1:TSC2 complex regulates the mTOR branch of the PI3K 246 247 pathway; loss of one copy and/or mutation of TSC1 in many of these tumours suggests that upregulated 248 mTOR signalling is a major feature of NMIBC. Frequent inactivating mutations in the cohesin complex tumour suppressor gene STAG2 are also characteristic of NMIBC77,78. However the role of its loss in 249 250 generating aneuploidy, as reported in other tumour types, is unlikely to be important in these 251 genomically stable tumours^{63,77}. Whole-exome sequencing has also revealed inactivating mutations in 252 several chromatin-modifying proteins including KDM6A, CREBBP, EP300 and ARID1A. These are present 253 at significantly higher frequencies than in any other cancer type, including MIBC ^{10,62,63,79}, indicating that 254 epigenetic alterations are likely to play a major part in shaping the phenotype of these tumours (Table 255 <mark>3</mark>).

256

[H3]MIBC. The genome of MIBC typically shows complex copy number changes and re-arrangements
and synchronous and metachronous MIBC are often genomically divergent, suggesting rapid sub-clonal
evolution. Many regions of genomic amplification are reported, some containing genes with known
oncogenic function, for example, *E2F3*, *MDM2* and *ERBB2* (Table 2). Regions of homozygous deletion
include 9p21 (p16 and p14^{ARF}), 10q23(*PTEN*), 2q36, 4q35 and 13q14 (*RB1*)^{10,64,67,80}.

262

MIBCs share many molecular features with other solid cancers, particularly loss of function of key tumour suppressors (Table 3), leading to escape from cell cycle checkpoints and dysregulation of major signalling pathways. *TP53* and *RB1* are frequently mutated and regulators of their pathways are also altered¹⁰ (for example, amplification of *MDM2* and *E2F3* and homozygous deletion of *CDKN2A*). 267 Hemizygous deletion, homozygous deletion and/or reduced expression of *PTEN* is found in many

cases^{73,81}. Other mutations in the PI3K pathway include *TSC1* mutation, mutations of *PIK3CA* (at lower

269 frequency than in NMIBC) and a few *AKT1* mutations⁸². The upstream pathway activator *ERBB2* shows

amplification, mutation or over-expression in a subset of cases¹⁰. In the micropapillary variant in

271 particular, high frequency of *ERBB2* amplification and mutation has been shown⁸³.

272

273 Although FGFR3 mutations are less frequent in MIBC than in NMIBC, up to 40% of MIBCs show upregulated expression⁸⁴. Isoform switching (generated by alternative splicing of specific exons) of 274 FGFR3 and FGFR1 are prevalent in MIBC^{85,86}, with predicted effects on ligand binding and potential for 275 276 increased autocrine or paracrine signalling. Activation of FGFR1 has been shown to induce epithelial-277 mesenchymal transition (EMT, whereby cells acquire migratory and invasive properties) in preclinical 278 models⁸⁷, suggesting a potential role in MIBC metastasis. In addition to FGFR signalling in these tumours, 279 RAS mutations and mutational inactivation of NOTCH pathway genes⁸⁸ also contribute to MAPK pathway 280 activation. Mutations in APC, nuclear accumulation of β -catenin (CTNNB1) and loss of expression of the 281 WNT antagonists secreted frizzled receptor proteins (SFRPs) and WNT inhibitory factor 1 (WIF1) ^{89,90} also implicate the WNT signalling pathway in some MIBCs^{91,92}. 282

283

As in NMIBC, a major contribution of epigenetic changes in MIBC is clear¹⁰; genome-wide analysis

indicates the importance of both DNA methylation and histone methylation in gene silencing⁹³.

286 Extensive analysis of chromatin marks and relationships to expression and mutational status has not yet

287 been carried out. However, a role for histone modification in regions of copy number-independent gene

silencing identified in aggressive MIBC with a CIS-associated expression signature has been

demonstrated⁹⁴. Distinct differences in DNA methylation exist between NMIBC and MIBC, with common

290 hypomethylation in non-CpG islands in NMIBC and widespread promoter hypermethylation in MIBC^{95,96}.

291 Many specific DNA methylation changes have clinical and pathological associations⁹⁷.

292

293 Finally, some molecular features in MIBC have been related to response to chemotherapy. For example,

tumours with *ERBB2* mutations are reported to show good response to neoadjuvant chemotherapy⁹⁸. In

addition, response to cisplatin-based chemotherapy has been related to the presence of mutations in

296 ERCC2 (Ref.⁹⁹). ERCC2 encodes a DNA helicase with a key role in nucleotide excision repair. ERCC2-

mutant tumours have a higher mutational load than other MIBC¹⁰, which has been associated with the
 presence of a distinct genomic signature prevalent in MIBC from smokers¹⁰⁰.

299

300 [H2]Molecular subtypes

Heterogeneity in clinical outcomes of patients suggest that biologically relevant subtypes might existwithin and between NMBIC and MIBC.

303

304 Transcriptional profiles currently provide the most well-defined subtypes. The subtypes described, their 305 relationships and biological implications have been compared analytically^{101,102} and discussed in detail in recent reviews^{103,104}. The initial Lund study of tumours of all grades and stages defined five subtypes: 306 307 termed urobasal A, genomically unstable, (immune-cell) infiltrated, squamous cell carcinoma-like and 308 urobasal B¹⁰⁵. These subtype assignments did not absolutely correlate with tumour grade and stage, which might have highly relevant prognostic implications¹⁰⁵. Subsequently, three major transcriptional 309 profiling studies focussed on MIBC^{10,106,107} and one on NMIBC¹⁰⁸. To date, these classifications have used 310 311 different nomenclatures (Figure 3). Whilst it has been possible using bioinformatics approaches to align 312 these to reveal overlaps, it will be essential to assess which signatures provide the most clinically useful 313 information and to develop a unified nomenclature system to describe these.

314

Subtypes based on DNA copy number alteration and on DNA methylation profiles have also been
described, some with prognostic associations^{64,109}. Three subtypes based on mutations and regions of
DNA amplification and deletion were reported in The Cancer Genome Atlas (TCGA) study of MIBC¹⁰. It is
not yet clear how well these align with the transcriptional subtypes but it can be anticipated that
integration and unified description of epigenetic, copy number and transcriptional data will ultimately
deliver data with improved clinical relevance.

321

[H3] NMIBC. In the Lund study¹⁰⁵, low-grade Ta tumours were predominantly classified as urobasal A,
 characterized by high levels of markers of urothelial differentiation, cell adhesion genes, an *FGFR3* related signature and early cell cycle genes such as cyclin D1. Genomically unstable tumours have higher
 expression of late cell cycle genes such as cyclins B and E, but retain markers of urothelial differentiation

including uroplakins. Infiltrated tumours show high levels of expression of immune cell and stromal

327 markers compatible with a high proportion of non-tumour cells in the sample. Stage T1 and high-grade

328 tumours contained fewer rrobasal A tumours, more genomically unstable and infiltrated tumours

329 (subtypes that show overlap with the broad luminal subtype of MIBC, see below), but some were

330 classified as urobasal B and squamous cell carcinoma-like (both basal-like groups).

331

332 The UROMOL study (using samples from 460 patients with low-grade and high-grade Ta and T1 tumours and CIS) described three expression classes¹⁰⁸ (Figure 3). Class 1 contained many Ta tumours and 333 334 showed best prognosis; these lesions were similar to Lund urobasal A group. Class 2 contained more T1 335 and high-grade tumours and those from patients with high European Organisation for Research and Treatment of Cancer (EORTC) risk score for recurrence and progression¹¹⁰, and this class included the 336 337 majority of patients who progressed to MIBC. Indeed, the majority of MIBC samples analysed in parallel were assigned to this class¹⁰⁸. Class 2 tumours were also characterized by expression of late cell cycle, 338 EMT-related, stem cell-related and CIS signature genes¹¹¹ but retained expression of uroplakins, implying 339 340 that these may represent tumours of origin for luminal MIBC that retain markers of urothelial differentiation. Indeed, FGFR3-activated MIBCs frequently have deletions of CDKN2A^{10,101} and 341 342 homozygous deletion of CDKN2A has been shown previously to identify a subset of FGFR3-mutant NMIBC with high risk of progression¹¹². Class 3 tumours share features with the urobasal A subtype 343 (including FGFR3 mutation), but also had features of the basal signature defined in MIBC¹⁰⁶ (that is, a 344 345 phenotype of KRT5⁺, KRT14⁺, CD44⁺, KRT20⁻, PPARG⁻). The upregulation of many long non-coding RNAs, 346 some of which have been implicated in oncogene-induced senescence, in class 3 tumours supports that these may represent a 'dormant' luminal tumour state¹⁰⁸. 347

348

[H3] MIBC. MIBC analyses have identified two major groups of tumours that have been termed 'luminal'
 and 'basal' (the 'UNC' subtyping), which show strong similarities to subtypes defined in breast cancer¹¹³.
 Further subdivision into three¹⁰⁷ ('MDA' subtyping) or four¹⁰ ('TCGA' subtyping) categories provides
 further biological insight and relationships with disease outcome (Figure 3).

353

354 MIBC luminal tumours commonly show papillary histology and express markers of urothelial

differentiation (such as the uroplakins and *KRT20*), E-cadherin (*CDH1*), *FGFR3* and early cell cycles genes

(for example, *CCND1*). Also expressed are the transcription factors peroxisome proliferator-activated
receptor γ (PPARG), oestrogen receptor (ER) and tumour protein p63 and their targets. Basal tumours
express markers of the basal layer of the urothelium (such as CD44, KRT5, KRT6B and KRT14). Many
show squamous differentiation, and some show low claudin gene expression and markers characteristic
of EMT.

361

Outcome data indicates significantly worse prognosis for patients with tumours defined as basal (TCGA II, TCGA IV, urobasal B or squamous cell carcinoma-like) rather than luminal (TCGA I or urobasal A)^{105,107}. Women with MIBC show poorer outcomes than men¹¹⁴ and interestingly seem to have increased prevalence of basal-type tumours¹⁰⁶. Data also indicates that the MDA *TP53*-like subtype, which contains tumours with overlap with both luminal and basal types, is associated with a higher frequency of resistance to neoadjuvant chemotherapy¹⁰⁷.

368

369 Several actionable therapeutic targets segregate with specific expression subtypes. These targets 370 include FGFR3 and ERBB2 in luminal tumours, EGFR in tumours with squamous differentiation and 371 immune checkpoint inhibitors in basal tumours with evidence of a high immune infiltration. The 372 potential role for EGFR inhibition in basal subtype tumours has been examined in depth, and preclinical evaluation (human cell line and mouse model) provides support for this approach¹¹⁵. A specific signature 373 for claudin-low basal tumours has recently been defined that is related to low PPARG and high nuclear 374 375 factor (NF)-kB activity; these tumours are enriched for a tumour-initiating cell expression signature⁶¹, 376 have an EMT phenotype and high immune infiltration. Accordingly, these tumours might respond to immune checkpoint inhibition¹¹⁶. Given this potential prognostic and therapeutic relevance, it will be 377 378 important to develop methods that can rapidly assign subtype membership using routine clinical 379 samples. Recent efforts to identify these subtypes using conventional histopathology and immunohistochemistry^{117,118} could facilitate this. 380

381

382 [H1]Diagnosis, screening and prevention

383 [H2] Signs and symptoms

384 Most patients are diagnosed because of (painless) haematuria; the incidence of bladder cancer is 10-

20% in patients with macroscopic haematuria and 2-5% in referred populations with microscopic haematuria^{119,120}. Usually, microscopic painless haematuria is incidental in urine tests performed for general health assessment.

Bladder cancer can also be suspected if the patient presents with non-specific symptoms of the lower urinary tract associated with impaired storage of urine, namely increased urinary urge, frequency and dysuria. These symptoms are more frequent in patients with CIS than with papillary (pathological Ta) tumours and should prompt urological assessment^{4,121,122}. Urine analysis, either by dip-stick, microscopy or both, should demonstrate presence of haematuria and rule out urinary tract infection, which can mimic and/or co-occur with bladder cancer. Accordingly, following treatment of urinary tract infection, absence of these symptoms and haematuria must be confirmed¹²³.

395

396 [H2] Evaluation and diagnosis

397 Evaluation of patients suspected of having bladder cancer is performed using cystoscopy (Figure 4), which is an outpatient endoscopic procedure performed with a flexible scope and with local 398 399 anesthesia¹²⁴. Any abnormal finding such as reddish flat, papillary or solid lesions requires histological 400 evaluation because benign conditions, such as inflammatory diseases, can mimic the bladder cancer. 401 Histology can be obtained by transurethral biopsy or resection of the entire area (see Management). 402 Often, inspection of cells in the urine (cytology) is performed as an adjunct measure to detect missed 403 cancer; cells with malignant appearance are highly suspicious of presence of cancerous lesions in the 404 bladder and again warrant cystoscopic and histological investigation. Importantly, no current urinary-405 based tumours markers have demonstrated sufficient sensitivity and specificity to replace cystoscopy in detection of bladder cancer^{121,125,126}. 406

407

However, CIS is an entity that is challenging to diagnose cystoscopically because these lesions can be hardly discernible from normal bladder tissue. Instead, microscopic urinary analysis is required to identify atypical cells¹²⁷ and diagnosis is confirmed with histological assessment of bladder tissue samples (Figure 4). Cystoscopic detection of CIS may be enhanced by fluorescence cystoscopy¹²⁸ or narrow band imaging¹²⁹. These technologies improve the differentiation of tumorous lesions from 413 normal tissue by taking advantage of increased metabolic activity (blue-light) and vessel architecture
414 (narrow band) in cancer and have higher specificity for bladder cancers than traditional cystoscopy.

415

Imaging of the upper urinary tract, that is, the renal collecting system and the ureter, is an important component of evaluation of patients with haematuria but plays a minor part in diagnosis of bladder cancer. Although CT and MRI urography have been suggested to improve accuracy of diagnosis, ultrasound imaging has been suggested to suffice^{121,130}. In patients with confirmed MIBC, CT imaging is mandated to stage and assess potential distant spread¹²¹.

421

422 [H2] Staging and prognosis

423 Bladder cancer prognosis (and management) depends on bladder cancer histopathology (NMIBC or 424 MIBC)^{121,131}. Indeed, histology is the only reliable determining factor of tumour biology to inform 425 management. However, although prognostication cannot be exact, the depth of tumour infiltration into 426 the bladder wall can provide a simple stratification of risk. For example, tumours confined to the inner 427 lining of the bladder (the mucosa) that do not invade the lamina propria are classified as stage Ta according to the Tumour, Node, Metastasis classification system (Figure 1)¹³¹. Tumours invading the 428 429 lamina propria are classified as stage T1; these tumours are characterized by an adverse tumour biology similar to muscle-invasive tumours¹³². Tumours penetrating the bladder detrusor muscle and beyond are 430 highly aggressive^{131,133}. 431

Additionally, grading (the extent to which the cells are differentiated) is important for the assessment of Ta tumours because well-differentiated (lower grade tumours) are less aggressive than high-grade lesions^{134,135}. In 2016, a third edition of the WHO classification was issued, accentuating the changes proposed by the 2004 over the 1973 classification (Figure 1). While benefit over the 1973 classification has not been evaluated systematically yet, the current (2016) version provides uniform terminologies and clearer definitions, especially in increasingly recognized divergent differentiation in MIBC.

Overall, the importance of histopathology in bladder cancer diagnosis, prognostication and treatment is
 clear. However, interobserver and intraobserver variability in staging and grading is a limitation of the
 technique. For example, significant interobserver variability in the classification of stage T1 versus Ta

tumours and tumour grading using both the 1997 and 2004 WHO classifications have been
 reported^{121,132,136}.

443

444 [H2] Screening and prevention

Screening for early detection of bladder cancer is not available owing to the low incidence rates 445 446 compared with common cancers like prostate and breast cancer. However, several non-randomized 447 trials have demonstrated the ability to detect bladder cancer early using blood detection in the urine or 448 urine-based tumour markers, such as cytology or nuclear matrix protein number 22 (NMP22), which 449 reflects mitotic activity¹³⁷. Although the value of, for example, urinary cytology, is clear in the follow-up 450 care of patients with NMIBC (see below, Management), the low detection rates limit current application in a screening setting¹³⁸. Additionally, screening has been proposed for individuals at high risk of 451 developing bladder cancer — those with substantial exposure to risk factors such as smokers. In contrast 452 453 to other common malignancies, genetic predisposition has little utility in predicting who will develop 454 bladder cancer, but genetics do exert an influence via regulating susceptibility to environmental risk factors¹³⁹. 455

456

457 Prevention of bladder cancer focuses on avoiding tobacco exposure as well as environmental and 458 occupational carcinogens. Tobacco cessation is challenging and many patients have difficulty in stopping 459 smoking¹⁴⁰. Physicians have an obligation to inform patients about their risks and encouraging tobacco 460 cessation.

461

462 [H1]Management

Initially, all newly diagnosed bladder tumours require an endoscopic resection under general or spinal
anaesthesia, which is a transurethral resection of bladder tumour (TURBT), to enable thorough
visualization of the bladder and appropriate resection with an attempt to include muscle for accurate
staging. Various guidelines are available on managing bladder cancer, including from the European
Association of Urology, American Urological Association, Society of Urologic Oncology, and the US
National Comprehensive Cancer Network^{121,141–144}. Although generally concordant, these

469 recommendations do have important differences owing to varying levels of evidentiary support¹⁴³. In

470 general, NMIBCs are frequently managed with endoscopic resection and risk-based intravesical therapy

- 471 (that is, bladder instillation) whereas MIBCs are managed with more-aggressive treatments such as
- 472 cystectomy (bladder removal) with or without chemotherapy.
- 473

474 [H2]TURBT

475 TURBT not only has a diagnostic role, but also a therapeutic one and can be a sufficient and potentially 476 curative therapy depending on the pathological features of the tumour. TURBT is performed by passing 477 an endoscopic instrument (a resectoscope) through the urethra. Small tumours can be resected *en bloc* 478 with the electrified wire loop of the resectoscope whereas larger tumours are resected in multiple fractions. Patients with NMIBC can be stratified into three risk groups according to the number of 479 480 tumours, tumour size, recurrence rate, tumour stage, presence of CIS and tumour grade to further guide therapy after initial TURBT¹⁴⁴ (Table 4). Patients with low-risk disease are often treated with the initial 481 482 TURBT if all disease was visibly resected, but remain under close surveillance owing to risk of 483 recurrences. Although many surveillance protocols have been recommended, at a minimum, cystoscopy 484 should be performed 3 months postoperatively and at decreasing frequencies for up to 5 years. Future 485 low-grade recurrences can be treated with TURBT or in-office fulguration (heat ablation).

486

487 Under-staging the true pathology at the initial TURBT in patients with high-risk disease is an important 488 risk; there is an up to a 20% chance of upstaging a patient with T1 disease to T2 even if muscle was 489 present in the resected tissue initially, and up to a 40% chance of upstaging if muscle was not present¹²¹. 490 Furthermore, even if the tumour is accurately staged at initial TURBT, there is a 50% chance of an 491 incomplete resection resulting from factors such as multiplicity, size and location of the tumour¹⁴⁵. True 492 staging is of utmost important in bladder cancer to determine the appropriate treatment after initial 493 TURBT. Thus, a repeat TURBT is recommended within 2-6 weeks in patients with known incompletely 494 resected tumour, or tumours invading the lamina propria (T1; Figure 1), and should be considered in 495 high-grade non-invasive disease (except CIS alone) to improve staging accuracy and increase recurrence-496 free survival^{145,146}. A randomized controlled study has shown that repeat TURBT after newly diagnosed 497 T1 bladder cancer improves recurrence-free survival and progression-free survival by 25% and 14% at 5 years, respectively¹⁴⁷. 498

500 Advances in the TURBT technique are being slowly adopted and evaluated. For example, blue-light 501 fluorescent cystoscopy uses hexaminolevulinate hydrochloride (a photo-sensitizing haeme precursor 502 instilled 1 hour prior to cystoscopy) to detect the pathological accumulation of fluorescent porphyrin 503 products in bladder cancers. The technique has demonstrated the ability to improve diagnosis and actually decrease short and long-term recurrence¹⁴⁸. However, some issues with a high false-positive 504 505 rate that decreases with operator experience have been reported, and the proprietary equipment is 506 costly. Nonetheless, this technology is very promising with respect to improved diagnosis and treatment 507 of NMIBC¹⁴⁹.

508

509 Bipolar electrocautery is another new technology that uses less energy and voltage than the standard 510 monopolar cautery of the TURBT loop as the circuit does not pass through the patient. Additionally, 511 isotonic fluids can be used which have minimal effects on the serum of the patient compared with 512 monopolar resection (although this is less a concern during bladder resections than, for example, when the technique is used to ablate prostate tissue)¹⁵⁰. Other potential advantages are being explored to 513 improve TURBT, including minimizing the obturator muscle reflex in the pelvis, decreasing bladder 514 515 perforation and reducing the effects of cautery artefacts on pathology; however, more trials are needed 516 prior to conclusions being drawn¹⁵¹.

517

518

519 [H2]Adjuvant intravesical therapy

520 In patients with intermediate and especially high-risk disease (Table 4) the use of adjuvant intravesical 521 therapy is advised. Bacillus Calmette–Guérin (BCG), a vaccine primarily used against tuberculosis, has 522 demonstrated both a decrease in recurrence and in progression of bladder cancer and has been shown to be superior to chemotherapy in multiple randomized controlled trials (RCTs) and meta-analyses^{152,153}. 523 524 Adjuvant therapy must include maintenance therapy for 1 year in intermediate-risk disease and for up 525 to 3 years (if tolerable) for high-risk disease to achieve maximal efficacy; variety of protocols are 526 available. BCG maintenance has been shown to lower the risk of progression by 37% compared with no 527 BCG maintenance^{154,155}. Patients who have persistent or worsening disease after an appropriate 528 treatment course with BCG, those who experience disease relapse while on maintenance therapy or 529 those who experience recurrence with an inadequate treatment course due to inability to tolerate BCG owing to adverse effects are deemed BCG failures¹⁵⁶. For these patients, the most oncologically effective 530

- treatment is radical cystectomy, although consideration can be given to bladder preservation strategies
 including intravesical chemotherapy, device-assisted intravesical therapy, and clinical trials¹⁵⁷.
- 533

534 Following TURBT, a single dose of intravesical therapy with chemotherapeutic agents (mitomycin or 535 doxorubicin in the United States, as well as epirubicin or pirarubican in Europe) within 24 hours has been shown to decrease recurrence by 40% at 1 year and 15% at 5 years^{158,159}. Intravesical 536 537 chemotherapy should be given to patients immediately following TURBT with papillary lesions if there is no clinical concern for MIBC or bladder perforation during TURBT¹²¹. If there is suspicion of bladder 538 539 perforation, immediate intravesical therapy should not be given due to the increased risk of 540 complications¹²¹. The oncological benefit of adjuvant intravesical therapy is particularly useful in the 541 patients with low-risk tumours as those with intermediate and high-risk disease are at greater risk of 542 recurrence and likely require further adjuvant therapy.

543

544 [H2]Radical cystectomy

Radical cystectomy is the gold standard therapy for patients with MIBC as well as in those with NMIBC
who fail intravesical treatment as defined above¹⁴¹. Furthermore, certain patients with T1 NMIBC
(invasion of lamina propria) and high-risk features on TURBT — lymphovascular invasion, concomitant
CIS, variant histology (especially micropapillary disease), large (>3cm) and multifocal tumours, and deep
lamina propria invasion — can be considered for 'early' cystectomy^{131–133}. Radical cystectomy typically
includes prostatectomy in men and hysterectomy and partial resection of the vagina and urethra in
women.

552

553 Although radical cystectomy is traditionally performed with an open technique, interest is increasing in 554 minimally invasive approaches using the da Vinci® (Intuitive Surgical, Sunnyvale, California, United 555 States) robotic system. The potential benefits of this approach include reduced blood loss and other 556 benefits inherent to minimally invasive surgery, with multiple studies demonstrating equivalent oncologic and functional outcomes^{160,161}. One RCT compared robotic to open cystectomy with equivocal 557 findings; however, only the cystectomy portion of the operation was performed robotically and the 558 urinary diversion portion (see below) was performed through a standard open incision — potentially 559 mitigating the initial benefits of the robotic approach¹⁶². Another RCT comparing open and radical 560 561 cystectomy, the RAZOR trial, is currently accruing; however, again the diversion can be performed

open¹⁶³. Further studies are needed to compare total robotic radical cystectomy with intra-corporeal
 diversion to open radical cystectomy before further conclusions can be drawn¹⁶⁴.

564

565 [H3] Lymphadenectomy. The role of lymphadenectomy (lymph node dissection) in managing bladder 566 cancer is crucial, and although thorough lymphadenectomy has a demonstrated survival advantage, 567 debate remains regarding the specific template that should be used or number of lymph nodes that should be removed¹⁶⁵. The standard dissection includes removal of lymph nodes along the external iliac 568 569 vessels from the circumflex iliac vein caudally up to common iliac bifurcation cephalad and the 570 genitofemoral nerve laterally to the ureter medially (Figure 5). In the extended template, the dissection 571 is carried up along the common iliac vessel to the aortic bifurcation and presacral region; in the super-572 extended template, the dissection reaches the aorta to inferior mesenteric artery. Given that most 573 agree that at a minimum a standard lymph node dissection should be performed, a randomized trial 574 (SWOG S1011) is evaluating the standard versus extended lymph node dissection templates and we 575 await the results (NCT01224665).

576

577 [H3] Urinary diversion. Following radical cystectomy and lymph node dissection, urinary diversion is 578 required for rerouting urine flow from its normal pathway¹⁶⁶. All urinary diversions use a segment of 579 intestine to which the ureters are anastomosed and the other end is used to expel urine. Urinary 580 diversions can be either continent such as continent cutaneous diversions and orthotopic neobladders 581 or non-continent such as the ileal conduit. Ileal conduit diversions use a segment of ileum that is 582 brought to the skin as a stoma; urine is collected in a urostomy bag. Continent cutaneous diversions vary 583 in technique but essentially a 'pouch' is created from various segments of intestine and a channel is 584 brought out flush with the skin with some form of continent mechanism requiring catheterizing to 585 empty. In an orthotopic neobladder, a pouch is created and anastomosed to the native urethra with 586 patients voiding through their native orifice. This type of diversion requires adequate renal function and 587 an absence of cancer at the urethral margin.

588

[H3] Recovery. Great strides have been made in regards to recovery after radical cystectomy resulting
 from the implementation of specific Enhanced Recovery after Surgery (ERAS) protocols¹⁶⁷.

591 Preoperatively, these pathways encourage fluid hydration and use of medications such as alvimopan,

592 which is a μ-opioid antagonist that aids recovery after bowel surgery. These medications mitigate the

593 negative bowel adverse effects associated with opioid drugs and discourage routine bowel preparation

that can lead to dehydration and the subsequent need for intravenous fluids that can lead to bowel
oedema and ileus (obstruction). Intraoperatively, ERAS protocols minimize fluid resuscitation and
encourage removal of any nasogastric tubes prior to extubation. Postoperatively, the protocols
encourage early ambulation, early feeding (typically with a regular diet by the second postoperative day)
and the substitution and minimization of opioids pain medication for alternatives such as ketorolac,
acetaminophen and tramadol. Such ERAS protocols have resulted in decreasing hospital stay and faster
convalescence¹⁶⁸.

601

[H3] Survival. Following radical cystectomy, survival outcomes largely depend on final pathological
 staging. 10-year recurrence-free survival for patients with negative lymph nodes is 86% for
 pathologically confirmed T0 tumours, 76% for T1-pT3a, 61% for T3b, and 45% for T4, but drops to 34%
 regardless of stage when lymph nodes are positive¹⁶⁹. Bladder cancer remains a lethal disease and
 despite radical cystectomy with seemingly good oncological outcomes, even in patients with apparent
 organ-confined disease and negative margins and lymph nodes many patients still experience
 recurrence thereby prompting consideration of adjuvant therapies.

609

610 [H2]Neoadjuvant chemotherapy

611 The role of neoadjuvant chemotherapy prior to radical cystectomy to help improve survival has been 612 investigated in several RCTs and meta-analyses. One meta-analysis of 11 trials demonstrated a 5% 613 survival advantage at 5 years¹⁷⁰. These studies used platinum-based chemotherapy; there is insufficient 614 data to support non-cisplatin based therapy in the neoadjuvant setting. Some adjuvant studies have 615 shown similar efficacy with the less-toxic gemcitabine-cisplatin combination, which has been extrapolated to the neoadjuvant setting¹⁷¹. Thus, in patients with MIBC (and particularly in those with 616 617 clinical >T3 disease), neoadjuvant chemotherapy should be given if they are able to tolerate a platinum-618 based regimen. If platinum-based chemotherapy cannot be tolerated, patients should proceed directly 619 to radical cystectomy.

620

621 [H2]Adjuvant therapy

The role of adjuvant therapy following radical cystectomy remains unclear because individual studies

623 hitherto have been underpowered. A recent RCT demonstrated no clear benefit in deferred versus

- 624 immediate chemotherapy in patients with pathological **>**T3 disease or disease with lymph node
- 625 involvement¹⁷². However, a meta-analysis including a total of 945 patients from nine RCTs showed a 23%

- relative decrease in the risk of death with adjuvant gemcitabine-cisplatin compared with surgery alone.
- 627 Similarly, a 34% reduction in the risk of disease recurrence was apparent from seven trials reporting this
- 628 end point; the reduction was highest for those with positive nodal involvement¹⁷³. Early evidence
- 629 suggests that adjuvant radiotherapy might have a role in patients with adverse pathologic features
- 630 (pathological >T3 disease, lymph node involvement or positive margins) on radical cystectomy and is
- being further explored in the NRG-GU001 trial (NCT02316548)¹⁷⁴.
- 632

633 [H2]Bladder preservation protocols for MIBC

634 Although radical cystectomy remains the gold standard for oncological efficacy in patients with MIBC, the surgery carries substantial quality of life implications; furthermore, some patients are not fit for 635 636 surgery. Thus, various bladder-sparing options have been explored that could benefit very carefully 637 selected patients. Radical TURBT, whereby an aggressive endoscopic resection is performed to resect all 638 visible disease (while taking care not to cause a perforation) and cautery (either monopolar or bipolar) is 639 used to ablate tissue as deep and wide as possible in an attempt to destroy as much tumour as safely 640 possible, as a standalone treatment approach can have a durable effect on survival but should only be 641 considered for patients who are not eligible for radical cystectomy or chemoradiation¹⁷⁵. Survival data of 642 133 patients have revealed a satisfactory cancer-specific survival and progression-free survival with bladder preservation as 76.7% and 57.8% at 15 years, respectively. However, complete tumour 643 644 resection (confirmed by negative biopsy of the tumour bed) is crucial for this type of management¹⁷⁵.

645

Partial cystectomy can be cautiously considered for patients with a small (<3 cm), solitary tumour at the bladder dome with no associated CIS or tumours in a diverticulum¹⁷⁶. One study compared 86 patients who underwent partial cystectomy with patients having radical cystectomy in a matched-pair fashion (1:2 ratio), but found no statistically significant difference in 10-year cancer-specific survival (58% compared with 63%, *P*=0.63) or overall survival (36% versus 39%, *P*=0.67).

651

Trimodal therapy combines radical TURBT with concomitant radio-sensitizing chemotherapy and external beam radiotherapy¹⁷⁷. This strategy can result in 5-year cancer-specific survival rates of 50-82%; however, 25-30% of patients require salvage cystectomy for failure to respond¹⁷⁸. Importantly, trimodal therapy severely limits the likelihood of future orthotopic neobladder diversion should salvage radical cystectomy be required, a limitation that must be discussed when counselling patients.

658 [H2]Metastatic disease

Patients diagnosed with metastatic bladder cancer during their initial workup or after radical cystectomy are treated with systemic chemotherapy. The standard first-line regimens are cisplatin-based such as methotrexate, vinblastine, doxorubicin and cisplatin (M-VAC); cisplatin, methotrexate and vinblastine (CMV); gemcitabine-cisplatin; or gemcitabine-cisplatin plus paclitaxel. Patients not eligible for cisplatinbased therapy can be treated with carboplatin or with taxanes, which might be inferior¹⁷⁹. In patients who progress on platinum-based chemotherapy, some second-line options are available, albeit with mixed results¹⁸⁰.

666

The role of systemic immunotherapy in patients with metastatic bladder cancer has yielded some promising initial results with checkpoint inhibitors (see below, Outlook) and one such drug, atezolizumab (a programmed cell death (PD1) inhibitor) has been approved for second-line treatment and is now being investigated for first line treatment¹⁸¹. Meanwhile, studies are ongoing of pembrolizumab (NCT02560636, NCT02662062 and NCT02500121), nivolumab (NCT01928394 and NCT02387396) and ipilimumab (NCT02553642 and NCT01524991) in patients with metastatic bladder cancer.

674

675

676 [H1]Quality of life

Patients with bladder cancer face numerous potential challenges to quality of life owing to their disease and available treatments. Overall function and well-being as well as the specific domains of sexual, urinary and bowel function can be affected. Furthermore, high rate of recurrence and progression imposes one of the highest costs per person of all cancer types¹⁸². Patients with NMIBC contend with a high recurrence rate, low but variable rates of progression and frequent — often lifelong — invasive monitoring and intravesical treatments. Patients with MIBC face the potentially life-altering options of radical cystectomy with urinary diversion.

684

A growing literature describes the quality of life of these patients. The preponderance of data exist in the MIBC patient population, specifically around questions of the impact of urinary diversion type. For example, one systematic review suggested more favourable results for continent orthotopic diversion than for ileal conduit in studies published since 2012 (Ref.¹⁸³). The existing literature is limited by heterogeneity in study design, with different questionnaires, frequently retrospective or cross-sectional data collection and little baseline data. Currently, five bladder cancer-specific patient-reported outcome
 (PRO) instruments have been described (three of which have been validated) to further the goal of
 capturing patients' experience with these disease and treatment processes, with questionnaires focused

693 on the experience of those with NMIBC ^{184,185}, MIBC¹⁸⁶ and either NMIBC or MIBC¹⁸⁷. A recent review

694 details the methodological and contextual strengths and limitations of these instruments¹⁸⁸.

- uetails the methodological and contextual strengths and initiations of these instruments.
- 695

696 Recently, ERAS protocols focusing on the perioperative care with the components of reduced bowel preparation and standardized feeding schedule and analgesic regimen came into practice^{189,190}. In the 697 698 only RCT to date, the ERAS protocol reduced postoperative morbidity in terms of wound healing 699 disorders, fever and thrombosis compared with a conservative regimen¹⁹¹. Time spent in the 700 intermediate care unit was significantly lower and quality of life determined using the EORTC QLQ-30 701 questionnaire was significantly better postoperatively for those on the ERAS protocol. Larger trials are 702 needed to validate these findings; improved perioperative management will probably mitigate of some 703 of the morbidity associated with diversion procedures.

704

705 A growing body of experience supports the value of collecting PROs in routine care, ideally integrated 706 into the electronic medical record (ePROs)¹⁹². Multiple prospective studies have demonstrated improved 707 patient satisfaction, symptom management, quality of life and patient-clinician communication with the integration of ePROs into routine cancer care^{193–196}. As these efforts gain traction and PRO data become 708 709 routinely collected, bladder cancer care might improve in multiple dimensions¹⁹⁷. Routine ePRO data 710 collection could also be aggregated over time across diverse patient populations to inform our 711 understanding of the comparative effectiveness of different bladder cancer treatment options. 712 Ultimately, further development in this area could lead to the establishment of PRO-based quality 713 performance measures for bladder cancer, based on standards established by the US National Quality 714 Forum.

715

716

717 [H1]Outlook

While tobacco use is decreasing in some parts of the world, the impact of tobacco exposure can last for
decades such that bladder cancer incidence is fairly stable and might increase as the population ages.
Improving survival for bladder cancer will require earlier detection, more effective local control or novel
therapies for metastatic disease.

722

723 [H2] Diagnosis and biomarkers

Two techniques are emerging to detect bladder cancer earlier. The first option is to screen high-risk patients, which has proven challenging owing to low incidence and lack of genetic markers for susceptibility. Indeed, the cost of designing an RCT to demonstrate survival benefit of screening is extremely high. The second option is to improve detection by improving compliance with current guidelines for evaluating haematuria. Current guidelines are frequently ignored¹⁹⁸ but it is possible that incorporation of risk stratification tools using clinical information or urine-based tumour markers could enhance early detection^{199,200}.

731 Emerging classes of urinary markers using DNA methylation and microRNAs (miRNAs) are currently 732 being studied. For example, a recent review reported that urine markers of methylation revealed 733 sensitivity in the range 65-100% and specificity in the range 77-100% in the detection setting²⁰¹. 734 Similarly, sensitivity of assessing miRNAs exfoliated from bladder cancer cells was 71-94%, specificity 51-100%²⁰¹. Another model assessing expression of IGFBP5, HOXA13, MDK, CDK1 and CXCR2 in a voided 735 736 urine sample (genotypic data) and age, sex, frequency of macroscopic haematuria and smoking history 737 (phenotypic data) was able to correctly stratify 80% of patients with microscopic haematuria who did not have bladder cancer so they could avoid full urological work-up²⁰². Incorporating markers into 738 739 detection of bladder cancer will require validation to reduce the risk of false-negative results. On the 740 other hand, identifying patients at high risk of cancer will improve detection if that patient was not 741 going to be evaluated in the first place.

742

743 The role of sex steroids and their specific receptors is an emerging research area in the progression of bladder cancer²⁰³. This idea originates from the epidemiological studies showing that women are 744 745 diagnosed with higher stage disease and have poorer outcomes after treatment than men²⁰⁴. 746 Furthermore, early age at menopause (\leq 45 years versus \geq 50 years) is associated with an increased risk of bladder cancer²⁰⁵ whereas parous women, women who reported late menarche (\geq 15 years of age), 747 748 and women who have used oestrogen and progestin therapy have lower risk of bladder cancer than women who have not been treated for menopause²⁰⁶. Data from basic science studies have shown that 749 750 one of the most possible mechanisms for tumour progression involves UDP glucuronosyltransferase 1 751 (UGT1A)²⁰⁷, an enzyme vital for the detoxification of major carcinogens such as aromatic amines. UGT1A 752 is differentially regulated by oestrogens and has protective role in normal urothelium but decreased 753 levels are associated with recurrence and cancer progression in the neoplastic urothelium²⁰⁷. UGT1A has 754 been identified as being regulated by the androgen receptor transcription factor (at least in prostate 755 tissue²⁰⁸) and androgen-mediated signals promote bladder carcinogenesis by downregulating the 756 expression of UGTs²⁰⁹. This finding was also supported by a clinical study evaluating the relationship between bladder cancer and androgen deprivation therapy²¹⁰. Of 162 patients having both prostate 757 758 cancer and NMIBC, 22% who received androgen deprivation therapy experienced bladder cancer 759 recurrence compared with 50% in the control arm after a median follow-up of 62 months and 5-year 760 actuarial recurrence-free survival was 76% versus 40%, respectively. Consequently, the potential role of 761 sex steroids or their specific receptors might open new doors for novel targeted therapies for bladder 762 cancer.

763

764 [H2] Surgery

765 Technological advancements in visualization of tumours using fluorescence cystoscopy and narrow-band 766 imaging will likely improve detection and reduce recurrences due to inadequate initial resections. 767 Furthermore, radical surgery and extent of lymphadenectomy for MIBC is still evolving. Recent studies 768 have shown that the extent of lymphadenectomy is more important than lymph node count; for 769 example, two recent meta-analyses revealed that extended lymphadenectomy might contribute to 5 770 year recurrence-free survival despite patients having worse preoperative factors in extended lymphadenectomy group than in the standard lymphadenectomy group^{165,211} without increasing the 771 overall complications rates. There are two randomized controlled studies (SWOG 1011 (NCT01224665) 772 773 and Association of Urogenital Oncology and German Urological Association (NCT01215071) that will 774 help guide optimal surgical anatomical boundaries.

775

Since the introduction of da Vinci surgical robot two decades ago, evidence has accumulated regarding the outcomes of robot-assisted radical cystectomy compared with conventional open surgery. Three RCTs, albeit with limited numbers of patients, showed that only intraoperative blood loss is better in robot-assisted radical cystectomy compared with open radical cystectomy^{162,212,213}. Moreover, the study by Bochner et al.¹⁶² was closed early after intention to treat analysis failed to demonstrate a 20% decrease in perioperative complications according the hypothesis. Despite the lack of superiority of robot-assisted surgery in these early experiences, the outcomes of the multi-institutional, randomized,
 prospective, non-inferiority phase III RAZOR trial are awaited before making the precise judgement
 regarding the future of robot-assisted surgery in terms of perioperative and oncological outcomes in the
 management of MIBC¹⁶³.

786

787 [H2] Intravesical therapies

788 Tumours frequently recur despite BCG induction and maintenance therapy and the absence of effective 789 treatments in this setting result in cystectomy being recommended in many patients prior to 790 development of muscle-invasive disease. Accordingly, new treatments are being evaluated for use in 791 patients with BCG-unresponsive disease, some of which involve use of viruses for therapeutic purposes. Oncolytic viruses that target cancer cells are being explored for bladder cancer²¹⁴. Additionally, modified 792 793 adenovirus that produces interferon $\alpha 2b$ (IFN- $\alpha 2b$) to stimulate the host immune system is also being explored in bladder cancer²¹⁵. In a phase I study, adenovirus mediated IFN- α 2b gene therapy was 794 795 administered by bladder instillation in 17 BCG-unresponsive patients; of the 14 patients treated with 796 adequate dosage, six (43%) experienced complete response with an average duration of 31 months and 797 two were disease free at the last follow-up²¹⁶. In another study, five of seven patients treated with an 798 augmented dose of the gene therapy were disease-free after a minimum follow-up of 23.9 months²¹⁷.

799

800

801 [H2] Systemic therapies

802 Whether the new molecular subtypes (Figure 3) have an effect on response to chemotherapy is being 803 examined. One study demonstrated that a significant number of patients with high-grade disease (67%) 804 with MDA luminal cell type were sensitive to neaoadjuvant MVAC chemotherapy whereas those with the TP53-like subtype were resistant to neoadjuvant chemotherapy ¹⁰⁷. Another group reported that 805 806 somatic mutations in ERCC2 (which encodes a nucleotide excision repair protein) correlate with 807 response to cisplatin-based therapy in MIBC⁹⁹. Accordingly, prediction of response to neoadjuvant 808 chemotherapy using the genetic background of the resected tumour is a new fruitful area for cancer 809 research. Indeed, a clinical trial of neoadjuvant treatment (SWOG 1314) has been initiated to compare 810 gemcitabine-cisplatin versus MVAC and the ability of a gene expression profiling-based algorithm 811 (CoXEN) to predict complete pathological response.

In the TCGA analysis, 69% of bladder tumours were found to harbour potentially 'druggable' mutations,
including 42% with alterations in the PI3K/AKT/mTOR pathway and 45% with alterations in the

RTK/MAPK pathway (including *ERBB2*). Patients with specific targetable mutations can have long-term
responses to targeted therapies, which are ineffective when given to patients without the mutations²¹⁸.
Future trials such as NCI-match (NCT 02465060) will hopefully shed light on effective strategies to treat
patients in a personalized fashion and to identify agents that are effective in selected patients.

818

819 As briefly mentioned, checkpoint inhibitors are being explored as potential therapies in bladder cancer, 820 building on advances in other cancer types. The major targets are cytotoxic T-lymphocyte-associated 821 antigen 4 (CTLA-4), programmed death 1 (PD-1) and programmed death-1 protein ligand (PD-L1), which 822 function to dampen inflammatory immune responses to prevent an unregulated destructive inflammation (Figure 6)²¹⁹. Another promising area of research is the combination of radiotherapy with 823 824 immunotherapy, owing to the fact that tumour cell death by radiotherapy triggers immune response 825 (so-called cytokine storm) that might be augmented by immunotherapeutic agents such as checkpoint 826 inhibitors²¹⁹. Studies with pembrolizumab in high-risk and recurrent NMIBC are ongoing (NCT02324582, 827 NCT02808141, NCT02625962) but no clinical data are available in conjunction with radiotherapy.

828

829 Atezolizumab is a monoclonal antibody against PD1 that was approved by FDA in May 2016 for patients 830 with metastatic bladder cancer who are unresponsive to platinum-based chemotherapy. In a phase II 831 study (n=310 patients), four categories of immune infiltration were defined: IC3 (whereby $\geq 10\%$ of the 832 tumour area is infiltrated), IC2 (≥5% and <10%), IC1 (≥1% and <5%) and IC0 (<1%). Treatment 833 with atezolizumab resulted in a significantly improved RECIST v1.1 objective response rate for each prespecified group (IC2-3: 27% (95% CI 19-37%, P <0.0001) and IC1-3: 18% (95% CI 13-24%, P=0.0004)) 834 835 and in all patients (15% (95% CI 11-20%, P=0.0058)) compared with a historical control overall response 836 rate of 10%²²⁰. Tumour-infiltrating immune cells expressing high level of the ligand to PD1 (programmed 837 death-ligand 1 (PD-L1)), were shown to be associated with higher response rates to atezolizumab. 838 Moreover, 84% of the patients responding to therapy were found to have ongoing responses after a median follow-up of 11.7 months. Despite these findings, some reservations abound for the use of PD-839 840 L1 as a predictive biomarker for the use of PD-1/PDL1 inhibitors owing to the multitude of PD-L1 841 antibodies, assays, scoring systems and thresholds for positivity. Eventually, these classes of drugs along 842 with targeted agents may provide more avenues for treatment of patients with advanced-stage 843 disease²²¹.

844 Overall, this is an exciting time for bladder cancer care, with advances in understanding and 845 management of bladder cancer promising to be translated to improved survival and quality of life.

846

847 Competing interests

M.B. has received speaker honoraria from and consulted for Ipsen, Astellas, Janssen, Bayer and Takeda,
and has received study grants from Ipsen and Janssen. Y.L. has served as a consultant for Photocure,
Pacific Edge and MDxHealth and has conducted research studies with Abbott, Photocure, Cepheid,
Pacific Edge and MDxHealth. All other authors declare no competing interests.

854 Author contributions

Introduction (O.S. and Y.L.); Epidemiology (J.D.); Mechanisms/pathophysiology (M.A.K.); Diagnosis,
screening and prevention (M.B.); Management (M.A.); Quality of life (M.N.); Outlook (Y.L.); overview of
the Primer (O.S. and Y.L.).

858

859 Figure 1. Types and stages of bladder cancer.

860 Staging of bladder cancer according to the Tumour–Node–Metastasis (TNM) system is shown. Bladder cancer generally originates from epithelium (urothelium) of bladder and is referred to as urothelial 861 862 carcinoma. Papillary tumours that are confined to mucosa and invaded to lamina propria (submucosa) 863 are classified as Ta and T1, respectively. Carcinoma in situ (Tis in the TNM system) is a flat, poorly 864 differentiated tumour confined to mucosa. Stage 2 tumours either invade the muscle layer superficially 865 (T2a) or deeply (T2b). T3 tumours invade beyond muscularis propria into perivesical fat (T3a invasion is 866 microscopic, T3b is macroscopic). T4a tumours invade the prostate, uterus, vagina and/or bowel 867 whereas T4b tumours invade the pelvic or abdominal walls. The prefix 'c' can be applied to specify the 868 grade is based on clinical data; 'p' can be applied to the stage if confirmed by pathological assessment.

In 2004, the WHO and International Society of Urological Pathology (ISUP) published a novel histological classification of bladder cancer providing a different patient stratification between individual categories compared to the older 1973 WHO classification¹³⁴. The most important grade differentiation is between low-grade and high-grade tumours (that is, the greater propensity for invasion). Notably, although CIS is confined to the mucosa (that is, non-invasive), it has a pronounced propensity to progress to invasive stages and is characterized by an aggressive tumour biology¹³⁵. PUNLMP, papillary urothelial malignancy of low malignant potential. 876

877 Figure 2. Pathogenesis pathways. Two potential pathways of pathogenesis of papillary non-muscle-878 invasive bladder cancer (NMIBC) and solid muscle-invasive bladder cancer (MIBC) are shown. Low-grade 879 papillary tumours can arise via simple hyperplasia and minimal dysplasia, and are characterized at the 880 molecular level by loss of heterozygosity (LOH) of chromosome 9 and activating mutations of fibroblast 881 growth factor receptor 3 (FGFR3), telomerase reverse transcriptase (TERT), phosphatidylinositol 3-kinase 882 (namely, PIK3CA) and inactivating mutations of cohesin subunit SA-2 (STAG2), which have roles in cell 883 proliferation, division and growth. MIBC is thought to arise via flat dysplasia and carcinoma in situ (CIS), 884 which commonly show TP53 mutation in addition to LOH at chromosome 9, but fewer FGFR3 mutations. 885 Low-grade papillary NMIBCs might progress to MIBC as a result of CDKN2A loss. Numerous potential 886 differences in the molecular pathways to the major tumour types and their subtypes are known. Solid 887 arrows indicate pathways for which there is histopathological and/or molecular evidence; uncertainty is indicated by dashed arrows. Adapted from Ref.⁶⁵ 888

889

890 Figure 3. Molecular subtypes of bladder cancer.

891 Several subtypes of non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer

892 (MIBC) have been defined based on transcriptional features.

a | Data from UROMOL study was used to subgroup NMIBCs into three classes that showed differences

in expression of cell cycle genes and markers of differentiation¹⁰⁸. Class 1 tumours were characterized by

high expression of early cell cycle genese and of uroplakins, which are markers of urothelial

differentiation. Class 2 tumours expressed late cell cycle genes and retained expression of

897 uroplakins. Class 3 tumours showed high KRT5 and KRT15 expression, characteristic of undifferentiated

898 (basal) cells and high levels on long non-coding RNAs (IncRNAs).

b | Nomenclature and overlap of bladder cancer expression subtypes defined by the University of North
 Carolina (UNC)¹⁰⁶, MD Anderson Cancer Center (MDA)¹⁰⁷, The Cancer Genome Atlas Network (TCGA)¹⁰

and Lund University (Lund)¹⁰⁵ projects. UNC, MDA and TCGA studies included MIBC alone; Lund included

902 both MIBC and NMIBC. The approximate alignment of the subgroups is shown according to data from

903 Ref.¹⁰³. The UNC classification defines two major subtypes, one with features of urothelial differentiation

that are found in the intermediate and superficial cells of the normal urothelium and the second with

905 features of basal cells. The other systems further subdivide these two groups. Key markers and

actionable targets related to the Lund subtypes are shown. Note: overlap of UROMOL classifications in
 part a with those shown in part b is not yet clear. UroA, urobasal A subtype; UroB, urobasal B subtype;
 SCC, squamous cell carcinoma.

909

910 Figure 4. Diagnosing bladder cancer.

a | Normal bladder appearance by cystoscopy. b | Papillary bladder cancer by cystoscopy with c |
confirming histology slide (haematoxylin eosin staining) of low-grade (pTa) non-muscle invasive bladder
cancer. Magnification ×100. d | Muscle-invasive bladder cancer by cystoscopy with e | confirming
histology slide (haematoxylin eosin staining) of high-grade (pT2) cancer. Magnification ×200. f |
Cystoscopy image of the characteristic appearances of carcinoma *in situ* (CIS) as 'velvety' red patches at
the base of the bladder. g | Blue-light cystoscopy image of CIS visible at the anterosuperior portion of
the bladder with h | confirming histology slide (haematoxylin eosin staining). Scale bar=100 µm.

918

Figure 5. Anatomical extent of standard lymphadenectomy in bladder cancer. a | The standard lymph
node dissection includes removal of lymph nodes along the external iliac blood vessels, from the node of
Cloquet (superior-most node located under the inguinal ligament in the upper inner thigh) caudally up
to the common iliac bifurcation cephalad and the genitofemoral nerve laterally to the ureter medially.
The obturator nodes are also removed. b | The pelvic anatomy after the lymph nodes are removed.

925 Figure 6. Emerging immunotherapies for bladder cancer.

926 Various ligand-receptor interactions between T cells and antigen-presenting or cancer cells regulate the 927 T cell response to antigen, providing numerous targets to enhance T cell responses and promote 928 immune killing of cancer cells. For example, blockade of the T cell-inhibitory signals from the PDL1/PD1, 929 PDL2/PD1, CD80/CTLA4, CD86/CTLA4 and CD276 (also known as B7-H3, the receptor for which is 930 unknown) axes has shown promise in other cancer types and are actively being explored in bladder 931 cancer. By contrast, promoting T cell-stimulatory pathways (for example, the CD137L/CD137 and 932 CD40/CD40L axes) is also an option. Finally, engineering T cells to display chimeric antigen T cell 933 receptors (such as CART-19) that have enhanced persistence is also being explored. 934

936 Table 1. Bladder cancer epidemiological data

937

Region		n (×100,000)		Age-standardized rate (per 100,000 population)		Cumulative risk (%)	
		Incidence	Mortality	Incidence	Mortality	Incidence	Mortality
World	Men	3,303	1,230	9	3.2	1	0.3
	Women	994	420	2.2	0.9	0.2	0.1
More developed	Men	1,960	589	16.9	3.7	2.0	0.4
regions	Women	577	210	3.7	1.1	0.4	0.1
Less developed	Men	1,343	641	5.3	2.6	0.6	0.2
regions	Women	416	210	1.5	0.7	0.2	0.1

938 More developed regions are all regions of Europe plus Northern America, Australia, New Zealand and

939 Japan. Less developed regions are all regions of Africa, Asia (excluding Japan), Latin America and the

940 Caribbean, Melanesia, Micronesia and Polynesia. Data from <u>www.globocan.iarc.fr</u>.

941

Gene	Chromosome	Frequency (%)	Alteration	Refs	
Low-grade stage Ta tumours					
TERT	5p15	73-83	Point mutation	222,223	
FGFR3	4p16	60-70	Point mutation	68,84	
ΡΙΚЗСΔ	3026	80° 16-25	Upregulated expression Point mutation	73,75	
110001	5425	10 20	Point matation	62.72	
HRAS	11015	10	Point mutation		
KRAS	12p12	5	Point mutation	72	
MDM2	12q14-q15	3	Amplification	224	
AKT1	14q32	1-3	Point mutation	82	
Muscle-inva	sive tumours	•	•		
E2F3	6p22	20	Gain/Amplification	10	
РІКЗСА	3q26	9-20	Point mutation	73,75	
FGFR3	4p16	5-20	Point mutation	68,84	
		40 [‡]	Upregulated expression		
MDM2	12q14-q15	5-15	Amplification	64,224	
HRAS	11p15	5-12	Point mutation	10,225	
ERBB3	12q13	11	Point mutation	10	
CCND1	11q13	10	Amplification	10	
RXRA	9q34	9	Mutation	10	
ERBB2	17q12	7	Gain/Amplification	10,226	
		4.5	Mutation		
		42§	Amplification		
EGFR	7p12	6	Gain/Amplification	10	
FGFR1	8p12	6	Amplification	227	
KRAS	12p12	6	Point mutation	225	
AKT1	14q32	1-3	Point mutation	82	

943 Table 2. Oncogenes activated by mutation in bladder cancer*

944

*Altered expression is listed for selected genes. [‡]Change measured in the corresponding protein. [§]In the micropapillary variant.

Table 3. Tumour suppressor genes inactivated by mutation in bladder cancer

Gene	Chromosome	Frequency (%)	Alteration	Refs
Low-grade st	age Ta tumours*	•	-	
CDKN2A	9p21	50-60	Loss of heterozygosity	112,228
		18	Hemizygous deletion	
		15	Homozygous deletion	62.63
КДМ6А	Xp11	12-60	Inactivating mutation	02,05
STAG2	Xq25	32-36	Inactivating mutation	77,229
ELF3	1q32	20-25	Inactivating mutation	62,63
ARID1A	1p35	12-35	Inactivating mutation	62,63
EP300	22q13	12-25	Inactivating mutation	62,63
KMT2D	12q13	15-24	Inactivating mutation	62,63
TP53	17p13	6-20	Inactivating mutation	76,230
RBM10	Xp11	20	Inactivating mutation	62
CRERRD	16n13	16-20	Inactivating mutation	62,225
CREDDI	10p13	20		62.225
ERCCZ	19013	20		62.63
ATM	11q22-23	5-15	Inactivating mutation	02,03
TSC1	9q34	~12	Inactivating mutation	73,76
RB1	13q14	~5	Inactivating mutation	62,63
Muscle-invas	sive tumours			
ARID1A	1p35	25	Inactivating mutation	10
TXNIP	1q21	7	Inactivating mutation	10
ELF3	1q32	8	Inactivating mutation	10
NFE2L2	2q31	8	Inactivating mutation	10
FBXW7	4q31	10	Inactivating mutation	10
APC	5q21-q22	6-16	Inactivating mutation	76,91
CDKN1A	6p21	14	Inactivating mutation	10
EP300	22q13	15	Inactivating mutation	10
CDKN2A	9p21	50-60	Loss of heterozygosity	112,228
		28	Hemizygous deletion	
		22	Homozygous deletion	
TSC1	9q34	8-12	Inactivating mutation	10,73,76
PTEN	10q23	13-58	Loss of heterozygosity or	10,73,81,231
			hemizygous deletion	
		17	Mutation	
		1-6	Homozygous deletion	10
ATM	11q22-23	14	Inactivating mutation	10
KMT2D	12q13	27	Inactivating mutation	10
MDM2	12q14-q15	4-9	Gain or amplification	10,232
RB1	13q14	13	Inactivating mutation	10
KLF5	13q22	8	Inactivating mutation	10
TSC2	16p13	2	Inactivating mutation	76

*Frequencies of inactivating mutations identified by exome sequencing in Ta tumours are derived from studies of much smaller numbers of

tumours than those of MIBC. For Ta tumours, only mutations reported in more than one study are listed.

Risk group ¹⁴⁴	Pathological characteristics	Treatment after initial	Adjuvant intravesical treatment
		TURBT	
Low Risk	Solitary, low grade (Ta) tumours <3cm in	Surveillance for ≥5 years	None
	size		
Intermediate Risk	• Solitary low grade Ta tumour >3cm in	Life-long surveillance	Adjuvant immunotherapy with 1
	size		year maintenance therapy
	 Multifocal low grade Ta tumours 		
	Recurrence of low grade Ta tumour		
	within 1 year of initial TURBT		
	• High-grade Ta tumours <3cm in size		
High Risk	• High-grade Ta tumours >3cm in size or	Repeat TURBT	Adjuvant immunotherapy with 3
	multifocal		years maintenance therapy
	• T1 tumour		
	• Multifocal, recurrent and large (>3cm in		
	size) low-grade tumours		
	• Any CIS		
	BCG failure		
	Lymphoovascular invasion		
	Variant histology		
	Prostatic urethral involvement		

952 Table 4. Risk stratification, surveillance and treatment of non-muscle-invasive bladder cancer

953 TURBT, transurethral resection of bladder tumour.

954

q	5	6
2	J	υ

957 References

- Ferlay, J. *et al.* Cancer incidence and mortality worldwide: sources, methods and major patterns
 in GLOBOCAN 2012. *Int. J. cancer* **136**, E359–86 (2015).
- 960 2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA. Cancer J. Clin. 66, 7–30
- 961 3. Mahdavifar, N., Ghoncheh, M., Pakzad, R., Momenimovahed, Z. & Salehiniya, H. Epidemiology,
- 962 Incidence and Mortality of Bladder Cancer and their Relationship with the Development Index in
 963 the World. *Asian Pac. J. Cancer Prev.* 17, 381–6 (2016).
- Ramirez, D. *et al.* Microscopic haematuria at time of diagnosis is associated with lower disease
 stage in patients with newly diagnosed bladder cancer. *BJU Int.* **117**, 783–6 (2016).
- Elias, K., Svatek, R. S., Gupta, S., Ho, R. & Lotan, Y. High-risk patients with hematuria are not
 evaluated according to guideline recommendations. *Cancer* 116, 2954–9 (2010).
- Willis, D. & Kamat, A. M. Nonurothelial bladder cancer and rare variant histologies. *Hematol. Oncol. Clin. North Am.* 29, 237–52, viii (2015).
- 970 7. Smith, A. B. *et al.* Muscle-invasive bladder cancer: evaluating treatment and survival in the
 971 National Cancer Data Base. *BJU Int.* **114**, 719–26 (2014).
- 8. Burger, M. *et al.* Epidemiology and risk factors of urothelial bladder cancer. *Eur. Urol.* 63, 234–41
 (2013).
- 974 9. Charlton, M. E., Adamo, M. P., Sun, L. & Deorah, S. Bladder cancer collaborative stage variables
 975 and their data quality, usage, and clinical implications: a review of SEER data, 2004-2010. *Cancer* 976 3815–25 (2014). doi:10.1002/cncr.29047
- 977 10. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial
 978 bladder carcinoma. *Nature* 507, 315–22 (2014).
- 979 11. Antoni, S. *et al.* Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends.
 980 *Eur. Urol.* (2016). doi:10.1016/j.eururo.2016.06.010
- 981 12. Parkin, D. M. The global burden of urinary bladder cancer. *Scand. J. Urol. Nephrol. Suppl.* 12–20
 982 (2008). at http://www.ncbi.nlm.nih.gov/pubmed/19054893
- Yee, D. S., Ishill, N. M., Lowrance, W. T., Herr, H. W. & Elkin, E. B. Ethnic Differences in Bladder
 Cancer Survival. *Urology* 78, 544–549 (2011).
- 985 14. Bouchardy, C. *et al.* Ethnicity and cancer risk in São Paulo, Brazil. *Cancer Epidemiol. Biomarkers*986 *Prev.* 1, 21–7
- 987 15. Ploeg, M., Aben, K. K. H. & Kiemeney, L. A. The present and future burden of urinary bladder

- 988 cancer in the world. *World J. Urol.* **27**, 289–93 (2009).
- 989 16. Ferlay, J. et al. GLOBOCAN 2012 v1.0, Cancer incidence, mortaltiy and prevalence worldwide:
 990 IARC CancerBase [online] http://globocan.iarc.fr/Pages/burden_sel.aspx.
- 991 17. WHO. World Health Statistics 2016: Monitoring health for the SDGs [online],
- 992 http://www.who.int/gho/publications/world_health_statistics/2016/en/ (2016). *WHO* (2016).
- 18. Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A. & Abnet, C. C. Association
- between smoking and risk of bladder cancer among men and women. *JAMA* **306**, 737–45 (2011).
- 19. Moolgavkar, S. H. & Stevens, R. G. Smoking and cancers of bladder and pancreas: risks and
 temporal trends. *J. Natl. Cancer Inst.* 67, 15–23 (1981).
- 997 20. Ng, M. *et al.* Smoking prevalence and cigarette consumption in 187 countries, 1980-2012. *JAMA*998 **311**, 183–92 (2014).
- 999 21. Mackay, J. & Eriksen, M. The Tobacco Atlas [online],
- 1000 http://www.who.int/tobacco/media/en/title.pdf. (2012).
- 1001 22. Global Burden of Disease Cancer Collaboration *et al.* The Global Burden of Cancer 2013. *JAMA* 1002 *Oncol.* 1, 505–27 (2015).
- Smith, N. D. *et al.* Bladder Cancer Mortality in the United States: A Geographic and Temporal
 Analysis of Socioeconomic and Environmental Factors. *J. Urol.* **195**, 290–6 (2016).
- Pelucchi, C. & La Vecchia, C. Alcohol, coffee, and bladder cancer risk: a review of epidemiological
 studies. *Eur. J. Cancer Prev.* 18, 62–68 (2009).
- 1007 25. Cantiello, F. *et al.* Association between metabolic syndrome, obesity, diabetes mellitus and
 1008 oncological outcomes of bladder cancer: A systematic review. *Int. J. Urol.* 22, 22–32 (2015).
- 1009 26. Hashim, D. & Boffetta, P. Occupational and environmental exposures and cancers in developing
 1010 countries. *Ann. Glob. Heal.* 80, 393–411
- 1011 27. Cumberbatch, M. G., Windsor-Shellard, B. & Catto, J. W. F. The contemporary landscape of
- 1012 occupational bladder cancer within the United Kingdom: a meta-analysis of risks over the last 80
 1013 years. *BJU Int.* (2016). doi:10.1111/bju.13561
- Purdue, M. P., Hutchings, S. J., Rushton, L. & Silverman, D. T. The proportion of cancer
 attributable to occupational exposures. *Ann. Epidemiol.* 25, 188–92 (2015).
- An, Y. *et al.* Meta-analysis of the relationship between slow acetylation of N-acetyl transferase 2
 and the risk of bladder cancer. *Genet. Mol. Res.* 14, 16896–904 (2015).
- 1018 30. Guey, L. T. *et al.* Genetic susceptibility to distinct bladder cancer subphenotypes. *Eur. Urol.* 57,
 1019 283–92 (2010).

- 1020 31. Kiemeney, L. A. *et al.* A sequence variant at 4p16.3 confers susceptibility to urinary bladder
 1021 cancer. *Nat. Genet.* 42, 415–9 (2010).
- 1022 32. Kiemeney, L. A. *et al.* Sequence variant on 8q24 confers susceptibility to urinary bladder cancer.
 1023 *Nat. Genet.* 40, 1307–12 (2008).
- Wu, X. *et al.* Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility
 to urinary bladder cancer. *Nat. Genet.* 41, 991–5 (2009).
- 1026 34. Rothman, N. *et al.* A multi-stage genome-wide association study of bladder cancer identifies
 1027 multiple susceptibility loci. *Nat. Genet.* 42, 978–84 (2010).
- 1028 35. Cheng, S., Andrew, A. S., Andrews, P. C. & Moore, J. H. Complex systems analysis of bladder
 1029 cancer susceptibility reveals a role for decarboxylase activity in two genome-wide association
 1030 studies. *BioData Min.* 9, 40 (2016).
- 1031 36. Mo, L. *et al.* Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder
 1032 tumorigenesis. *J. Clin. Invest.* 117, 314–25 (2007).
- 1033 37. van Oers, J. M. M. *et al.* Chromosome 9 deletions are more frequent than FGFR3 mutations in flat
 1034 urothelial hyperplasias of the bladder. *Int. J. cancer* **119**, 1212–5 (2006).
- 1035 38. Chow, N. H. *et al.* Papillary urothelial hyperplasia is a clonal precursor to papillary transitional cell
 1036 bladder cancer. *Int. J. cancer* 89, 514–8 (2000).
- 1037 39. Obermann, E. C. et al. Frequent genetic alterations in flat urothelial hyperplasias and
- 1038 concomitant papillary bladder cancer as detected by CGH, LOH, and FISH analyses. J. Pathol. 199,
 1039 50–7 (2003).
- 40. van Rhijn, B. W. G., Montironi, R., Zwarthoff, E. C., Jöbsis, A. C. & van der Kwast, T. H. Frequent
 FGFR3 mutations in urothelial papilloma. *J. Pathol.* **198**, 245–51 (2002).
- 1042 41. Zhang, Z. T., Pak, J., Shapiro, E., Sun, T. T. & Wu, X. R. Urothelium-specific expression of an
- 1043 oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional
 1044 cell carcinoma. *Cancer Res.* 59, 3512–7 (1999).
- 1045 42. Puzio-Kuter, A. M. *et al.* Inactivation of p53 and Pten promotes invasive bladder cancer. *Genes*1046 *Dev.* 23, 675–80 (2009).
- Gao, J. *et al.* p53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras
 in promoting urothelial tumorigenesis. *Oncogene* 23, 687–96 (2004).
- 1049 44. Casey, R. G. *et al.* Diagnosis and management of urothelial carcinoma in situ of the lower urinary
 1050 tract: a systematic review. *Eur. Urol.* 67, 876–88 (2015).
- 1051 45. Spruck, C. H. et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer

1052 *Res.* **54**, 784–8 (1994).

- McKenney, J. K., Desai, S., Cohen, C. & Amin, M. B. Discriminatory immunohistochemical staining
 of urothelial carcinoma in situ and non-neoplastic urothelium: an analysis of cytokeratin 20, p53,
 and CD44 antigens. *Am. J. Surg. Pathol.* 25, 1074–8 (2001).
- Jung, S. *et al.* The role of immunohistochemistry in the diagnosis of flat urothelial lesions: a study
 using CK20, CK5/6, P53, Cd138, and Her2/Neu. *Ann. Diagn. Pathol.* 18, 27–32 (2014).
- Sfakianos, J. P. *et al.* The role of PTEN tumor suppressor pathway staining in carcinoma in situ of
 the bladder. *Urol. Oncol.* 32, 657–62 (2014).
- 1060 49. Cheng, L. *et al.* Precise microdissection of human bladder carcinomas reveals divergent tumor
 1061 subclones in the same tumor. *Cancer* 94, 104–10 (2002).
- 1062 50. Sidransky, D. *et al.* Clonal origin bladder cancer. *N. Engl. J. Med.* **326**, 737–40 (1992).
- 1063 51. Hafner, C., Knuechel, R., Stoehr, R. & Hartmann, A. Clonality of multifocal urothelial carcinomas:
 1064 10 years of molecular genetic studies. *Int. J. cancer* 101, 1–6 (2002).
- 1065 52. Lamy, P. *et al.* Paired Exome Analysis Reveals Clonal Evolution and Potential Therapeutic Targets
 1066 in Urothelial Carcinoma. *Cancer Res.* (2016). doi:10.1158/0008-5472.CAN-16-0436
- 1067 53. Majewski, T. *et al.* Understanding the development of human bladder cancer by using a whole-1068 organ genomic mapping strategy. *Lab. Invest.* **88**, 694–721 (2008).
- 1069 54. Kram, A. *et al.* Mapping and genome sequence analysis of chromosome 5 regions involved in
 1070 bladder cancer progression. *Lab. Invest.* **81**, 1039–48 (2001).
- 1071 55. Kim, M.-S. *et al.* Evidence for alternative candidate genes near RB1 involved in clonal expansion
 1072 of in situ urothelial neoplasia. *Lab. Invest.* 86, 175–90 (2006).
- 1073 56. Lee, S. *et al.* Forerunner genes contiguous to RB1 contribute to the development of in situ
 1074 neoplasia. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 13732–7 (2007).
- 1075 57. Volkmer, J.-P. *et al.* Three differentiation states risk-stratify bladder cancer into distinct subtypes.
 1076 *Proc. Natl. Acad. Sci. U. S. A.* **109**, 2078–83 (2012).
- 1077 58. Van Batavia, J. *et al.* Bladder cancers arise from distinct urothelial sub-populations. *Nat. Cell Biol.*1078 16, 982–91, 1–5 (2014).
- 1079 59. Shin, K. *et al.* Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells
 1080 in bladder. *Nature* 472, 110–4 (2011).
- Shin, K. *et al.* Cellular origin of bladder neoplasia and tissue dynamics of its progression to
 invasive carcinoma. *Nat. Cell Biol.* 16, 469–78 (2014).
- 1083 61. Chan, K. S. *et al.* Identification, molecular characterization, clinical prognosis, and therapeutic

- targeting of human bladder tumor-initiating cells. *Proc. Natl. Acad. Sci. U. S. A.* 106, 14016–21
 (2009).
- 1086 62. Nordentoft, I. *et al.* Mutational context and diverse clonal development in early and late bladder
 1087 cancer. *Cell Rep.* 7, 1649–63 (2014).
- Balbás-Martínez, C. *et al.* Recurrent inactivation of STAG2 in bladder cancer is not associated with
 aneuploidy. *Nat. Genet.* 45, 1464–9 (2013).
- Hurst, C. D., Platt, F. M., Taylor, C. F. & Knowles, M. A. Novel tumor subgroups of urothelial
 carcinoma of the bladder defined by integrated genomic analysis. *Clin. Cancer Res.* 18, 5865–77
 (2012).
- 1093 65. Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: new insights into

1094 pathogenesis and clinical diversity. *Nat. Rev. Cancer* **15**, 25–41 (2015).

- Lindgren, D. *et al.* Molecular characterization of early-stage bladder carcinomas by expression
 profiles, FGFR3 mutation status, and loss of 9q. *Oncogene* 25, 2685–96 (2006).
- 1097 67. Blaveri, E. *et al.* Bladder cancer stage and outcome by array-based comparative genomic
 1098 hybridization. *Clin. Cancer Res.* 11, 7012–22 (2005).
- 1099 68. Billerey, C. *et al.* Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. *Am. J.*1100 *Pathol.* **158**, 1955–9 (2001).
- 1101 69. di Martino, E., L'Hôte, C. G., Kennedy, W., Tomlinson, D. C. & Knowles, M. A. Mutant fibroblast
- growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell typeand mutation-specific manner. *Oncogene* 28, 4306–16 (2009).
- 1104 70. Nakanishi, Y. *et al.* Mechanism of Oncogenic Signal Activation by the Novel Fusion Kinase FGFR31105 BAIAP2L1. *Mol. Cancer Ther.* 14, 704–12 (2015).
- 1106 71. Williams, S. V, Hurst, C. D. & Knowles, M. A. Oncogenic FGFR3 gene fusions in bladder cancer.
 1107 *Hum. Mol. Genet.* 22, 795–803 (2013).
- 1108 72. Jebar, A. H. *et al.* FGFR3 and Ras gene mutations are mutually exclusive genetic events in
 1109 urothelial cell carcinoma. *Oncogene* 24, 5218–25 (2005).
- 1110 73. Platt, F. M. *et al.* Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder
 1111 cancer. *Clin. Cancer Res.* 15, 6008–17 (2009).
- 1112 74. Lindgren, D. *et al.* Combined gene expression and genomic profiling define two intrinsic
- 1113 molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and

1114 outcome. *Cancer Res.* **70**, 3463–72 (2010).

1115 75. López-Knowles, E. et al. PIK3CA mutations are an early genetic alteration associated with FGFR3

- 1116 mutations in superficial papillary bladder tumors. *Cancer Res.* **66**, 7401–4 (2006).
- 1117 76. Sjödahl, G. *et al.* A systematic study of gene mutations in urothelial carcinoma; inactivating
 1118 mutations in TSC2 and PIK3R1. *PLoS One* 6, e18583 (2011).
- Taylor, C. F., Platt, F. M., Hurst, C. D., Thygesen, H. H. & Knowles, M. A. Frequent inactivating
 mutations of STAG2 in bladder cancer are associated with low tumour grade and stage and
- inversely related to chromosomal copy number changes. *Hum. Mol. Genet.* 23, 1964–74 (2014).
- 1122 78. Solomon, D. A. *et al.* Frequent truncating mutations of STAG2 in bladder cancer. *Nat. Genet.* 45, 1428–30 (2013).
- 1124 79. Gui, Y. *et al.* Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of
 1125 the bladder. *Nat. Genet.* 43, 875–8 (2011).
- Mitra, A. P., Birkhahn, M. & Cote, R. J. p53 and retinoblastoma pathways in bladder cancer. *World J. Urol.* 25, 563–71 (2007).
- 1128 81. Cairns, P. *et al.* Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder
 1129 cancers. *Oncogene* 16, 3215–8 (1998).
- 1130 82. Askham, J. M. *et al.* AKT1 mutations in bladder cancer: identification of a novel oncogenic
 1131 mutation that can co-operate with E17K. *Oncogene* 29, 150–5 (2010).
- 1132 83. Ross, J. S. *et al.* A high frequency of activating extracellular domain ERBB2 (HER2) mutation in
 1133 micropapillary urothelial carcinoma. *Clin. Cancer Res.* 20, 68–75 (2014).
- 1134 84. Tomlinson, D. C., Baldo, O., Harnden, P. & Knowles, M. A. FGFR3 protein expression and its
 1135 relationship to mutation status and prognostic variables in bladder cancer. *J. Pathol.* 213, 91–8
 1136 (2007).
- 1137 85. Tomlinson, D. C. & Knowles, M. A. Altered splicing of FGFR1 is associated with high tumor grade
 and stage and leads to increased sensitivity to FGF1 in bladder cancer. *Am. J. Pathol.* 177, 2379–
 1139 86 (2010).
- Tomlinson, D. C., L'Hôte, C. G., Kennedy, W., Pitt, E. & Knowles, M. A. Alternative splicing of
 fibroblast growth factor receptor 3 produces a secreted isoform that inhibits fibroblast growth
 factor-induced proliferation and is repressed in urothelial carcinoma cell lines. *Cancer Res.* 65,
 10441–9 (2005).
- 1144 87. Tomlinson, D. C., Baxter, E. W., Loadman, P. M., Hull, M. A. & Knowles, M. A. FGFR1-induced
 1145 epithelial to mesenchymal transition through MAPK/PLCγ/COX-2-mediated mechanisms. *PLoS*1146 *One* 7, e38972 (2012).
- 1147 88. Rampias, T. *et al.* A new tumor suppressor role for the Notch pathway in bladder cancer. *Nat.*

1148 *Med.* **20**, 1199–205 (2014).

- 1149 89. Urakami, S. *et al.* Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in
 1150 bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. *Clin. Cancer Res.*1151 **12**, 383–91 (2006).
- 1152 90. Marsit, C. J. *et al.* Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers
 1153 of invasive bladder cancer. *Cancer Res.* 65, 7081–5 (2005).
- 1154 91. Kastritis, E. *et al.* Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin
 accumulation have prognostic significance in invasive urothelial carcinomas: evidence for Wnt
 pathway implication. *Int. J. cancer* **124**, 103–8 (2009).
- 2. Zhu, X., Kanai, Y., Saito, A., Kondo, Y. & Hirohashi, S. Aberrant expression of beta-catenin and
 mutation of exon 3 of the beta-catenin gene in renal and urothelial carcinomas. *Pathol. Int.* 50,
 945–52 (2000).
- Dudziec, E., Gogol-Döring, A., Cookson, V., Chen, W. & Catto, J. Integrated epigenome profiling of
 repressive histone modifications, DNA methylation and gene expression in normal and malignant
 urothelial cells. *PLoS One* 7, e32750 (2012).
- 1163 94. Vallot, C. *et al.* A novel epigenetic phenotype associated with the most aggressive pathway of
 1164 bladder tumor progression. *J. Natl. Cancer Inst.* **103**, 47–60 (2011).
- 1165 95. Reinert, T. *et al.* Comprehensive genome methylation analysis in bladder cancer: identification
 1166 and validation of novel methylated genes and application of these as urinary tumor markers. *Clin.*1167 *Cancer Res.* 17, 5582–92 (2011).
- Wolff, E. M. *et al.* Unique DNA methylation patterns distinguish noninvasive and invasive
 urothelial cancers and establish an epigenetic field defect in premalignant tissue. *Cancer Res.* 70,
 8169–78 (2010).
- 1171 97. Sánchez-Carbayo, M. Hypermethylation in bladder cancer: biological pathways and translational
 1172 applications. *Tumour Biol.* 33, 347–61 (2012).
- 1173 98. Ching, C. B. *et al.* HER2 gene amplification occurs frequently in the micropapillary variant of
 1174 urothelial carcinoma: analysis by dual-color in situ hybridization. *Mod. Pathol.* 24, 1111–9 (2011).
- 1175 99. Van Allen, E. M. *et al.* Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-
- 1176 invasive urothelial carcinoma. *Cancer Discov.* **4**, 1140–53 (2014).
- 1177 100. Kim, J. *et al.* Somatic ERCC2 mutations are associated with a distinct genomic signature in
 1178 urothelial tumors. *Nat. Genet.* 48, 600–606 (2016).
- 1179 101. Aine, M., Eriksson, P., Liedberg, F., Sjödahl, G. & Höglund, M. Biological determinants of bladder

1180

cancer gene expression subtypes. Sci. Rep. 5, 10957 (2015).

- 1181
- 1182 102. Kim, J. *et al.* Invasive Bladder Cancer: Genomic Insights and Therapeutic Promise. *Clin. Cancer* 1183 *Res.* 21, 4514–24 (2015).
- 103. Aine, M., Eriksson, P., Liedberg, F., Höglund, M. & Sjödahl, G. On Molecular Classification of
 Bladder Cancer: Out of One, Many. *Eur. Urol.* 68, 921–3 (2015).
- 104. Lerner, S. P. *et al.* Bladder Cancer Molecular Taxonomy: Summary from a Consensus Meeting. *Bl. cancer (Amsterdam, Netherlands)* 2, 37–47
- 1188 105. Sjödahl, G. *et al.* A molecular taxonomy for urothelial carcinoma. *Clin. Cancer Res.* 18, 3377–86
 (2012).
- 106. Damrauer, J. S. *et al.* Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of
 breast cancer biology. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 3110–5 (2014).
- 107. Choi, W. *et al.* Identification of distinct basal and luminal subtypes of muscle-invasive bladder
 cancer with different sensitivities to frontline chemotherapy. *Cancer Cell* 25, 152–65 (2014).
- 108. Hedegaard, J. *et al.* Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. *Cancer Cell* **30**, 27–42 (2016).
- 1196 109. Aine, M. *et al.* Integrative epigenomic analysis of differential DNA methylation in urothelial
 1197 carcinoma. *Genome Med.* 7, 23 (2015).
- Sylvester, R. J. *et al.* Predicting Recurrence and Progression in Individual Patients with Stage Ta T1
 Bladder Cancer Using EORTC Risk Tables: A Combined Analysis of 2596 Patients from Seven
 EORTC Trials. *Eur. Urol.* 49, 466–477 (2006).
- 1201 111. Dyrskjøt, L. *et al.* Gene expression in the urinary bladder: a common carcinoma in situ gene
 1202 expression signature exists disregarding histopathological classification. *Cancer Res.* 64, 4040–8
 1203 (2004).
- 1204 112. Rebouissou, S. *et al.* CDKN2A homozygous deletion is associated with muscle invasion in FGFR3 mutated urothelial bladder carcinoma. *J. Pathol.* 227, 315–24 (2012).
- 1206 113. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–52 (2000).
- 1207 114. Donsky, H., Coyle, S., Scosyrev, E. & Messing, E. M. Sex differences in incidence and mortality of
 bladder and kidney cancers: national estimates from 49 countries. *Urol. Oncol.* 32, 40.e23–31
 (2014).
- 1210 115. Rebouissou, S. *et al.* EGFR as a potential therapeutic target for a subset of muscle-invasive
 1211 bladder cancers presenting a basal-like phenotype. *Sci. Transl. Med.* 6, 244ra91 (2014).

- 1212 116. Kardos, J. *et al.* Claudin-low bladder tumors are immune infiltrated and actively immune
 1213 suppressed. *JCI Insight* 1, e85902 (2016).
- 1214 117. Sjödahl, G. *et al.* Toward a molecular pathologic classification of urothelial carcinoma. *Am. J.*1215 *Pathol.* 183, 681–91 (2013).
- 1216 118. Dadhania, V. *et al.* Meta-Analysis of the Luminal and Basal Subtypes of Bladder Cancer and the
 1217 Identification of Signature Immunohistochemical Markers for Clinical Use. *EBioMedicine* 12, 105–
 1218 117 (2016).
- 1219 119. Cohen, R. A. & Brown, R. S. Clinical practice. Microscopic hematuria. *N. Engl. J. Med.* 348, 2330–8
 1220 (2003).
- 1221 120. Bruyninckx, R., Buntinx, F., Aertgeerts, B. & Van Casteren, V. The diagnostic value of macroscopic
 haematuria for the diagnosis of urological cancer in general practice. *Br. J. Gen. Pract.* 53, 31–5
 1223 (2003).
- 121. Babjuk, M. *et al.* EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder:
 1225 Update 2016. *Eur. Urol.* (2016). doi:10.1016/j.eururo.2016.05.041
- 122. Liedberg, F. *et al.* Fast-track access to urologic care for patients with macroscopic haematuria is
 efficient and cost-effective: results from a prospective intervention study. *Br. J. Cancer* 115, 770–
 5 (2016).
- 123. Richards, K. A., Ham, S., Cohn, J. A. & Steinberg, G. D. Urinary tract infection-like symptom is
 associated with worse bladder cancer outcomes in the Medicare population: Implications for sex
 disparities. *Int. J. Urol.* 23, 42–7 (2016).
- 1232 124. Aaronson, D. S. *et al.* Meta-analysis: does lidocaine gel before flexible cystoscopy provide pain
 relief? *BJU Int.* **104**, 506–9; discussion 509–10 (2009).
- 1234 125. van der Aa, M. N. M. *et al.* Cystoscopy revisited as the gold standard for detecting bladder cancer
 recurrence: diagnostic review bias in the randomized, prospective CEFUB trial. *J. Urol.* 183, 76–80
 (2010).
- 1237 126. Passoni, N. M. *et al.* Concordance in Biomarker Status Between Bladder Tumors at Time of
 1238 Transurethral Resection and Subsequent Radical Cystectomy: Results of a 5-year Prospective
 1239 Study. *Bl. cancer (Amsterdam, Netherlands)* 2, 91–99
- 1240 127. Yafi, F. A. *et al.* Prospective analysis of sensitivity and specificity of urinary cytology and other 1241 urinary biomarkers for bladder cancer. *Urol. Oncol.* **33**, 66.e25–31 (2015).
- 1242 128. Lotan, Y. Promises and challenges of fluorescence cystoscopy. Urol. Oncol. **33**, 261–4 (2015).
- 1243 129. Naitoa, S. et al. The Clinical Research Office of the Endourological Society (CROES) Multicentre

1244Randomised Trial of Narrow Band Imaging–Assisted Transurethral Resection of Bladder Tumour1245(TURBT) Versus Conventional White Light Imaging–Assisted TURBT in Primary Non–Muscle-. *Eur.*

1246 Urol. **70,** 506–515 (2016).

- 1247 130. Palou, J. *et al.* Multivariate analysis of clinical parameters of synchronous primary superficial
 bladder cancer and upper urinary tract tumor. *J. Urol.* **174**, 859–61; discussion 861 (2005).
- 1249 131. Sobin, L. & Wittekind, C. in *TNM classification of malignant tumors. UICC International Union* 1250 *Against Cancer. 7th Edn* (eds. Sobin, L. & Wittekind, C.) 262–265 (Wiley-Blackwell, 2009).
- 132. van Rhijn, B. W. G. *et al.* Pathological stage review is indicated in primary pT1 bladder cancer. *BJU*1252 *Int.* **106**, 206–11 (2010).
- 1253 133. Fritsche, H.-M. *et al.* Characteristics and outcomes of patients with clinical T1 grade 3 urothelial
 1254 carcinoma treated with radical cystectomy: results from an international cohort. *Eur. Urol.* 57,
 1255 300–9 (2010).
- 1256 134. Eble, J. N., Sauter, G., Epstein, J. I. & Sesterhenn, I. A. Pathology and Genetics of Tumours of the
 1257 Urinary System and Male Genital Organs [online], https://www.iarc.fr/en/publications/pdfs1258 online/pat-gen/bb7/BB7.pdf. (2004).
- 1259 135. Sylvester, R. J. *et al.* High-grade Ta urothelial carcinoma and carcinoma in situ of the bladder.
 1260 Urology 66, 90–107 (2005).
- 1261 136. May, M. *et al.* Prognostic accuracy of individual uropathologists in noninvasive urinary bladder
 1262 carcinoma: a multicentre study comparing the 1973 and 2004 World Health Organisation
 1263 classifications. *Eur. Urol.* 57, 850–8 (2010).
- 1264 137. Lotan, Y. *et al.* Bladder cancer screening in a high risk asymptomatic population using a point of 1265 care urine based protein tumor marker. *J. Urol.* **182**, 52–7; discussion 58 (2009).
- 1266 138. Chou, R. & Dana, T. Screening adults for bladder cancer: a review of the evidence for the U.S.

1267 preventive services task force. *Ann. Intern. Med.* **153**, 461–8 (2010).

- 1268 139. Lotan, Y. Analysis of genetics to identify susceptibility to secondary malignancies in patients with
 bladder cancer. *BJU Int.* **118**, 12–3 (2016).
- 1270 140. Kamat, A. M. *et al.* Bladder cancer. *Lancet (London, England)* (2016). doi:10.1016/S01401271 6736(16)30512-8
- 1272 141. Alfred Witjes, J. *et al.* Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder
 1273 Cancer. *Eur. Urol.* (2016). doi:10.1016/j.eururo.2016.06.020
- 1274 142. Lerner, S. P. Bladder cancer: ASCO endorses EAU muscle-invasive bladder cancer guidelines. *Nat.*1275 *Rev. Urol.* 13, 440–1 (2016).

- 1276 143. Power, N. E. & Izawa, J. Comparison of Guidelines on Non-Muscle Invasive Bladder Cancer (EAU,
 1277 CUA, AUA, NCCN, NICE). *Bl. cancer (Amsterdam, Netherlands)* 2, 27–36
- 1278 144. Chang, S. S. *et al.* Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO
 1279 Guideline. *J. Urol.* 196, 1021–9 (2016).
- 145. Herr, H. W. Role of Repeat Resection in Non-Muscle-Invasive Bladder Cancer. J. Natl. Compr.
 1281 Canc. Netw. 13, 1041–6 (2015).
- 1282 146. Divrik, R. T., Yildirim, U., Zorlu, F. & Ozen, H. The effect of repeat transurethral resection on
 recurrence and progression rates in patients with T1 tumors of the bladder who received
 intravesical mitomycin: a prospective, randomized clinical trial. *J. Urol.* 175, 1641–4 (2006).
- 1285147.Divrik, R. T., Şahin, A. F., Yildirim, Ü., Altok, M. & Zorlu, F. Impact of Routine Second Transurethral1286Resection on the Long-Term Outcome of Patients with Newly Diagnosed pT1 Urothelial
- 1287 Carcinoma with Respect to Recurrence, Progression Rate, and Disease-Specific Survival: A
- 1288 Prospective Randomised Clinical Trial. *Eur. Urol.* **58**, 185–190 (2010).
- 1289 148. Burger, M. *et al.* Photodynamic diagnosis of non-muscle-invasive bladder cancer with
 hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data.
 Eur. Urol. 64, 846–54 (2013).
- 1292 149. Daneshmand, S. *et al.* Hexaminolevulinate blue-light cystoscopy in non-muscle-invasive bladder
 1293 cancer: review of the clinical evidence and consensus statement on appropriate use in the USA.
 1294 *Nat. Rev. Urol.* 11, 589–96 (2014).
- 1295 150. Karadeniz, M. S. *et al.* Bipolar versus monopolar resection of benign prostate hyperplasia: a
 1296 comparison of plasma electrolytes, hemoglobin and TUR syndrome. *Springerplus* 5, 1739 (2016).
- 1297 151. Osman, Y. & Harraz, A. M. A Review Comparing Experience and Results with Bipolar Versus
 1298 Monopolar Resection for Treatment of Bladder Tumors. *Curr. Urol. Rep.* 17, 21 (2016).
- 1299 152. Böhle, A., Jocham, D. & Bock, P. R. Intravesical bacillus Calmette-Guerin versus mitomycin C for
 1300 superficial bladder cancer: a formal meta-analysis of comparative studies on recurrence and
 1301 toxicity. J. Urol. 169, 90–5 (2003).
- 1302 153. Sylvester, R. *et al.* Long-Term Efficacy Results of EORTC Genito-Urinary Group Randomized Phase
 1303 3 Study 30911 Comparing Intravesical Instillations of Epirubicin, Bacillus Calmette-Guérin, and
 1304 Bacillus Calmette-Guérin plus Isoniazid in Patients with Intermediate- and High-Risk . *Eur. Urol.*1305 57, 766–773 (2010).
- 1306 154. Lamm, D. L. *et al.* Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1
 1307 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest

- 1308 Oncology Group Study. J. Urol. **163**, 1124–9 (2000).
- 1309 155. Sylvester, R. J., van der MEIJDEN, A. P. M. & Lamm, D. L. Intravesical bacillus Calmette-Guerin
 reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the
 published results of randomized clinical trials. *J. Urol.* 168, 1964–70 (2002).
- 1312 156. Kamat, A. M. *et al.* Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive
 1313 Bladder Cancer: Recommendations From the International Bladder Cancer Group. *J. Clin. Oncol.*1314 **34**, 1935–44 (2016).
- 1315 157. Yates, D. R. *et al.* Treatment options available for bacillus Calmette-Guérin failure in non-muscle1316 invasive bladder cancer. *Eur. Urol.* 62, 1088–96 (2012).
- 1317 158. Sylvester, R. J., Oosterlinck, W. & van der Meijden, A. P. M. A single immediate postoperative
- 1318 instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta T1 bladder
- 1319 cancer: a meta-analysis of published results of randomized clinical trials. *J. Urol.* 171, 2186–90,
 1320 quiz 2435 (2004).
- 1321 159. Perlis, N. *et al.* Immediate post-transurethral resection of bladder tumor intravesical
- 1322 chemotherapy prevents non-muscle-invasive bladder cancer recurrences: an updated meta-
- analysis on 2548 patients and quality-of-evidence review. *Eur. Urol.* **64,** 421–30 (2013).
- 1324 160. Novara, G. *et al.* Systematic review and cumulative analysis of perioperative outcomes and 1325 complications after robot-assisted radical cystectomy. *Eur. Urol.* **67**, 376–401 (2015).
- 1326 161. Yuh, B. *et al.* Systematic review and cumulative analysis of oncologic and functional outcomes
 1327 after robot-assisted radical cystectomy. *Eur. Urol.* 67, 402–22 (2015).
- 1328 162. Bochner, B. H. *et al.* Comparing Open Radical Cystectomy and Robot-assisted Laparoscopic
 1329 Radical Cystectomy: A Randomized Clinical Trial. *Eur. Urol.* 67, 1042–50 (2015).
- 1330 163. Smith, N. D. *et al.* The RAZOR (randomized open vs robotic cystectomy) trial: study design and
 1331 trial update. *BJU Int.* **115**, 198–205 (2015).
- 1332 164. Kurpad, R., Woods, M. & Pruthi, R. Current Status of Robot-Assisted Radical Cystectomy and
 1333 Intracorporeal Urinary Diversion. *Curr. Urol. Rep.* **17**, 42 (2016).
- 1334 165. Bruins, H. M. *et al.* The impact of the extent of lymphadenectomy on oncologic outcomes in
 patients undergoing radical cystectomy for bladder cancer: a systematic review. *Eur. Urol.* 66,
 1336 1065–77 (2014).
- 1337 166. World Health Organization (WHO) Consensus Conference on Bladder Cancer *et al.* Urinary
 1338 diversion. *Urology* 69, 17–49 (2007).
- 1339 167. Daneshmand, S. et al. Enhanced recovery protocol after radical cystectomy for bladder cancer. J.

1340 Urol. **192,** 50–5 (2014).

- 1341 168. Tyson, M. D. & Chang, S. S. Enhanced Recovery Pathways Versus Standard Care After Cystectomy:
 1342 A Meta-analysis of the Effect on Perioperative Outcomes. *Eur. Urol.* 70, 995–1003 (2016).
- 1343 169. Stein, J. P. *et al.* Radical cystectomy in the treatment of invasive bladder cancer: long-term results 1344 in 1,054 patients. *J. Clin. Oncol.* **19**, 666–75 (2001).
- 1345 170. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant chemotherapy in
- 1346 invasive bladder cancer: update of a systematic review and meta-analysis of individual patient
- 1347 data advanced bladder cancer (ABC) meta-analysis collaboration. *Eur. Urol.* 48, 202–5; discussion
 1348 205–6 (2005).
- 1349 171. Yuh, B. E., Ruel, N., Wilson, T. G., Vogelzang, N. & Pal, S. K. Pooled analysis of clinical outcomes
- with neoadjuvant cisplatin and gemcitabine chemotherapy for muscle invasive bladder cancer. *J. Urol.* 189, 1682–6 (2013).
- 1352 172. Sternberg, C. N. et al. Immediate versus deferred chemotherapy after radical cystectomy in
- 1353 patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): an
- 1354 intergroup, open-label, randomised phase 3 trial. *Lancet. Oncol.* **16**, 76–86 (2015).
- 1355 173. Leow, J. J. *et al.* Adjuvant chemotherapy for invasive bladder cancer: a 2013 updated systematic
 1356 review and meta-analysis of randomized trials. *Eur. Urol.* 66, 42–54 (2014).
- 1357 174. Bayoumi, Y., Heikal, T. & Darweish, H. Survival benefit of adjuvant radiotherapy in stage III and IV
 1358 bladder cancer: results of 170 patients. *Cancer Manag. Res.* 6, 459–65 (2014).
- 1359 175. Solsona, E. *et al.* Feasibility of radical transurethral resection as monotherapy for selected
 patients with muscle invasive bladder cancer. *J. Urol.* **184**, 475–80 (2010).
- 1361 176. Lyons, M. D. & Smith, A. B. Surgical bladder-preserving techniques in the management of muscle1362 invasive bladder cancer. *Urol. Oncol.* 34, 262–70 (2016).
- 1363 177. Knoedler, J. J. *et al.* Does Partial Cystectomy Compromise Oncologic Outcomes for Patients with
 Bladder Cancer Compared to Radical Cystectomy? A Matched Case-Control Analysis. *J. Urol.* 188,
 1365 1115–1119 (2012).
- 1366 178. Ploussard, G. *et al.* Critical analysis of bladder sparing with trimodal therapy in muscle-invasive
 bladder cancer: a systematic review. *Eur. Urol.* 66, 120–37 (2014).
- 1368 179. Bellmunt, J. & Petrylak, D. P. New therapeutic challenges in advanced bladder cancer. *Semin.*1369 *Oncol.* 39, 598–607 (2012).
- 1370 180. Alimohamed, N. S. & Sridhar, S. S. Options in metastatic urothelial cancer after first-line therapy.
 1371 *Curr. Opin. Support. Palliat. Care* 9, 255–260 (2015).

1372 181. Donin, N. M. *et al.* Immunotherapy in the Treatment of Urothelial Carcinoma. *J. Urol.* (2016).
1373 doi:10.1016/j.juro.2016.02.3005

1374 182. Svatek, R. S. *et al.* The economics of bladder cancer: costs and considerations of caring for this
1375 disease. *Eur. Urol.* 66, 253–62 (2014).

- 1376 183. Ghosh, A. & Somani, B. K. Recent Trends in Postcystectomy Health-related Quality of Life (QoL)
- 1377 Favors Neobladder Diversion: Systematic Review of the Literature. *Urology* **93**, 22–6 (2016).

184.

1378

qol/bladder-cancer-eortc-qlq-nmibc24-eortc-qlq-blm30. at <http://groups.eortc.be/qol/bladder-
cancer-eortc-qlq-nmibc24-eortc-qlq-blm30>

Bladder Cancer: EORTC QLQ-NMIBC24, EORTC QLQ-BLM30 [online], http://groups.eortc.be/

- 1381 185. Blazeby, J. M. *et al.* Validation and reliability testing of the EORTC QLQ-NMIBC24 questionnaire
 1382 module to assess patient-reported outcomes in non-muscle-invasive bladder cancer. *Eur. Urol.*1383 66, 1148–56 (2014).
- 1384 186. Anderson, C. B. *et al.* Psychometric characteristics of a condition-specific, health-related quality1385 of-life survey: the FACT-Vanderbilt Cystectomy Index. *Urology* **80**, 77–83 (2012).
- 1386 187. Gilbert, S. M. *et al.* Development and validation of the Bladder Cancer Index: a comprehensive,
 1387 disease specific measure of health related quality of life in patients with localized bladder cancer.
 1388 *J. Urol.* 183, 1764–9 (2010).
- 1389 188. Danna, B. J., Metcalfe, M. J., Wood, E. L. & Shah, J. B. Assessing Symptom Burden in Bladder
 1390 Cancer: An Overview of Bladder Cancer Specific Health-Related Quality of Life Instruments. *Bl.*1391 *cancer (Amsterdam, Netherlands)* 2, 329–340
- 1392 189. Melnyk, M., Casey, R. G., Black, P. & Koupparis, A. J. Enhanced recovery after surgery (ERAS)
 1393 protocols: Time to change practice? *Can. Urol. Assoc. J.* 5, 342–8 (2011).
- 1394 190. Cerantola, Y. *et al.* Guidelines for perioperative care after radical cystectomy for bladder cancer:
 1395 Enhanced Recovery After Surgery (ERAS([®])) society recommendations. *Clin. Nutr.* **32**, 879–87
 1396 (2013).
- 1397 191. Karl, A. *et al.* A new concept for early recovery after surgery for patients undergoing radical
 1398 cystectomy for bladder cancer: results of a prospective randomized study. *J. Urol.* 191, 335–40
 1399 (2014).
- 1400 192. Snyder, C. F. *et al.* Implementing patient-reported outcomes assessment in clinical practice: a
 1401 review of the options and considerations. *Qual. Life Res.* 21, 1305–14 (2012).
- 1402 193. Basch, E. *et al.* Symptom Monitoring With Patient-Reported Outcomes During Routine Cancer
- 1403 Treatment: A Randomized Controlled Trial. J. Clin. Oncol. **34,** 557–65 (2016).

- 1404 194. Nordlander, R., Hedman, A. & Pehrsson, S. K. Rate responsive pacing and exercise capacity--a
 1405 comment. *Pacing Clin. Electrophysiol.* **12**, 749–51 (1989).
- 1406 195. Detmar, S. B., Muller, M. J., Schornagel, J. H., Wever, L. D. V & Aaronson, N. K. Health-related
 1407 quality-of-life assessments and patient-physician communication: a randomized controlled trial.
 1408 JAMA 288, 3027–34 (2002).
- 1409 196. Velikova, G. *et al.* Measuring quality of life in routine oncology practice improves communication
 1410 and patient well-being: a randomized controlled trial. *J. Clin. Oncol.* 22, 714–24 (2004).
- 1411 197. Wu, A. W., Kharrazi, H., Boulware, L. E. & Snyder, C. F. Measure once, cut twice--adding patient1412 reported outcome measures to the electronic health record for comparative effectiveness
 1413 research. J. Clin. Epidemiol. 66, S12–20 (2013).
- 1414 198. Davis, R. *et al.* Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in 1415 adults: AUA guideline. *J. Urol.* **188**, 2473–81 (2012).
- 1416 199. Lotan, Y. *et al.* Prospective external validation of a bladder cancer detection model. *J. Urol.* 192,
 1417 1343–8 (2014).
- 1418 200. Loo, R. K. *et al.* Stratifying risk of urinary tract malignant tumors in patients with asymptomatic
 1419 microscopic hematuria. *Mayo Clin. Proc.* 88, 129–38 (2013).
- 1420 201. Mbeutcha, A., Lucca, I., Mathieu, R., Lotan, Y. & Shariat, S. F. Current Status of Urinary
 1421 Biomarkers for Detection and Surveillance of Bladder Cancer. *Urol. Clin. North Am.* 43, 47–62
 1422 (2016).
- 1423 202. Kavalieris, L. *et al.* A segregation index combining phenotypic (clinical characteristics) and
 1424 genotypic (gene expression) biomarkers from a urine sample to triage out patients presenting
 1425 with hematuria who have a low probability of urothelial carcinoma. *BMC Urol.* 15, 23 (2015).
- 1426 203. Godoy, G., Gakis, G., Smith, C. L. & Fahmy, O. Effects of Androgen and Estrogen Receptor
 1427 Signaling Pathways on Bladder Cancer Initiation and Progression. *Bl. cancer (Amsterdam,*
- 1428 Netherlands) **2**, 127–137 (2016).
- 1429 204. Dobruch, J. *et al.* Gender and Bladder Cancer: A Collaborative Review of Etiology, Biology, and
 1430 Outcomes. *Eur. Urol.* 69, 300–10 (2016).
- 1431 205. McGrath, M., Michaud, D. S. & De Vivo, I. Hormonal and Reproductive Factors and the Risk of
 1432 Bladder Cancer in Women. *Am. J. Epidemiol.* 163, 236–244 (2005).
- 1433 206. Daugherty, S. E. *et al.* Reproductive factors and menopausal hormone therapy and bladder
 1434 cancer risk in the NIH-AARP Diet and Health Study. *Int. J. cancer* 133, 462–72 (2013).
- 1435 207. Izumi, K. et al. Expression of UDP-glucuronosyltransferase 1A in bladder cancer: association with

- 1436 prognosis and regulation by estrogen. *Mol. Carcinog.* **53**, 314–24 (2014).
- Takayama, K. *et al.* Identification of novel androgen response genes in prostate cancer cells by
 coupling chromatin immunoprecipitation and genomic microarray analysis. *Oncogene* 26, 4453–
 63 (2007).
- 1440209.Izumi, K., Zheng, Y., Hsu, J.-W., Chang, C. & Miyamoto, H. Androgen receptor signals regulate1441UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-
- 1442 induced bladder carcinogenesis. *Mol. Carcinog.* **52**, 94–102 (2013).
- 1443 210. Izumi, K. *et al.* Androgen deprivation therapy prevents bladder cancer recurrence. *Oncotarget* 5,
 1444 12665–12674 (2015).
- 1445 211. Mandel, P., Tilki, D. & Eslick, G. D. Extent of lymph node dissection and recurrence-free survival
 1446 after radical cystectomy: a meta-analysis. *Urol. Oncol.* 32, 1184–90 (2014).
- 1447 212. Nix, J. *et al.* Prospective randomized controlled trial of robotic versus open radical cystectomy for
 1448 bladder cancer: perioperative and pathologic results. *Eur. Urol.* 57, 196–201 (2010).
- Parekh, D. J., Messer, J., Fitzgerald, J., Ercole, B. & Svatek, R. Perioperative Outcomes and
 Oncologic Efficacy from a Pilot Prospective Randomized Clinical Trial of Open Versus Robotic
 Assisted Radical Cystectomy. J. Urol. 189, 474–479 (2013).
- 1452 214. Fukuhara, H., Ino, Y. & Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn.
 1453 *Cancer Sci.* 107, 1373–1379 (2016).
- 1454 215. Adam, L. *et al.* Adenoviral Mediated Interferon-α 2b Gene Therapy Suppresses the Pro-
- 1455 Angiogenic Effect of Vascular Endothelial Growth Factor in Superficial Bladder Cancer. J. Urol.
 1456 **177**, 1900–1906 (2007).
- 1457 216. Dinney, C. P. N. *et al.* Phase I trial of intravesical recombinant adenovirus mediated interferon 1458 α2b formulated in Syn3 for Bacillus Calmette-Guérin failures in nonmuscle invasive bladder
 1450 and a black app. 250, 6 (2012)
- 1459 cancer. J. Urol. **190**, 850–6 (2013).
- 1460 217. Navai, N. *et al.* Phase 1b Trial to Evaluate Tissue Response to a Second Dose of Intravesical
 1461 Recombinant Adenoviral Interferon α2b Formulated in Syn3 for Failures of Bacillus Calmette–
 1462 Guerin (BCG) Therapy in Nonmuscle Invasive Bladder Cancer. *Ann. Surg. Oncol.* 23, 4110–4114
 1463 (2016).
- 1464 218. Iyer, G. *et al.* Genome sequencing identifies a basis for everolimus sensitivity. *Science* 338, 221
 1465 (2012).
- 1466 219. Lerner, S. P. *et al.* Summary and Recommendations from the National Cancer Institute's Clinical
 1467 Trials Planning Meeting on Novel Therapeutics for Non-Muscle Invasive Bladder Cancer. *Bl.*

- 1468 *cancer (Amsterdam, Netherlands)* **2,** 165–202
- Rosenberg, J. E. *et al.* Atezolizumab in patients with locally advanced and metastatic urothelial
 carcinoma who have progressed following treatment with platinum-based chemotherapy: a
 single-arm, multicentre, phase 2 trial. *Lancet (London, England)* 387, 1909–20 (2016).
- 1472 221. Sacher, A. G. & Gandhi, L. Biomarkers for the Clinical Use of PD-1/PD-L1 Inhibitors in Non–Small1473 Cell Lung Cancer. *JAMA Oncol.* 2, 1217 (2016).
- Allory, Y. *et al.* Telomerase reverse transcriptase promoter mutations in bladder cancer: high
 frequency across stages, detection in urine, and lack of association with outcome. *Eur. Urol.* 65,
 360–6 (2014).
- 1477 223. Hurst, C. D., Platt, F. M. & Knowles, M. A. Comprehensive Mutation Analysis of the TERT
- 1478 Promoter in Bladder Cancer and Detection of Mutations in Voided Urine. *Eur. Urol.* 65, 367–3691479 (2014).
- Simon, R. *et al.* Amplification pattern of 12q13-q15 genes (MDM2, CDK4, GLI) in urinary bladder
 cancer. *Oncogene* 21, 2476–83 (2002).
- 1482 225. Guo, G. *et al.* Whole-genome and whole-exome sequencing of bladder cancer identifies frequent
 1483 alterations in genes involved in sister chromatid cohesion and segregation. *Nat. Genet.* 45, 1459–
 1484 63 (2013).
- 1485 226. Ching, C. B. *et al.* HER2 gene amplification occurs frequently in the micropapillary variant of
 1486 urothelial carcinoma: analysis by dual-color in situ hybridization. *Mod. Pathol.* 24, 1111–9 (2011).
- Simon, R. *et al.* High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy
 number alterations in urinary bladder cancer. *Cancer Res.* 61, 4514–9 (2001).
- 1489 228. Cairns, P., Shaw, M. E. & Knowles, M. A. Initiation of bladder cancer may involve deletion of a
 1490 tumour-suppressor gene on chromosome 9. *Oncogene* 8, 1083–5 (1993).
- 1491 229. Solomon, D. A. *et al.* Frequent truncating mutations of STAG2 in bladder cancer. *Nat. Genet.* 45, 1492 1428–30 (2013).
- 1493 230. Berggren, P. et al. p53 mutations in urinary bladder cancer. Br. J. Cancer 84, 1505–11 (2001).
- 1494 231. Wang, D. S. *et al.* Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. *Int. J.*1495 *cancer* 88, 620–5 (2000).
- 1496 232. Habuchi, T. *et al.* Oncogene amplification in urothelial cancers with p53 gene mutation or MDM2
 1497 amplification. *J. Natl. Cancer Inst.* 86, 1331–5 (1994).
- 1498