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1. Introduction

(a) Motivating challenges

Modern industrialized societies heavily rely on the use and steady supply of electric energy.

Therefore, it is of paramount importance to guarantee the stable, reliable and efficient operation of

our power systems. However, the latter are bulk, complex and highly nonlinear systems that are

continuously subjected to a large variety of disturbances and contingencies [1,2]. Hence, ensuring

the stability of a power system is a daunting task, which has been at the core of power system

operation since its early days in the 1920s [3,4]—see [1, Chapter 1] for a review of the research

history on power system stability analysis.

Over the past decades, the complexity of this task has continuously exacerbated due to the

penetration of large shares of volatile renewable energy sources. While this is a very desirable

development from environmental and societal factors, the reliable and efficient integration of high

amounts of renewable energy sources represents a major technical challenge for the operation of

power systems [5,6]. In particular, the increasing presence of such units results in power systems

more frequently operating closer to their security margins [5,6]. As a consequence, the problem of

power system stability can be expected to become even more relevant in the coming years. This

makes it important to derive easily and quickly verifiable analytic conditions for stability, which

is the topic addressed in the present work.

A further motivation for our work is the fact that—despite the rich and extensive literature

on power system stability—even today many basic questions remain open. This applies to the

analysis of vast networks, but also to individual network components and is explained by the

complexity of their dynamics. Thus, researchers and practitioners alike are forced to invoke

several assumptions simplifying the mathematical tasks of stability analysis and control design.

Amongst the most prevalent assumptions are neglecting fast dynamics [7–9], constant voltage

amplitudes and small frequency variations [1, Chapter 11], [9]. Invoking such assumptions allows

to derive reduced-order synchronous generator (SG) models [1, Chapter 11] and employ algebraic

line models [7–9], which significantly simplifies the analysis. Unfortunately, most of the employed

assumptions are not physically justifiable in generic operation scenarios. A paramount example

for this is the common approximation of the motion of the machine rotor, i.e., the swing equation,

in terms of mechanical and electrical power instead of their corresponding torques. However, as

this approximation is only valid for small frequency variations around the nominal frequency,

it is not an adequate representation of the true physical system when the latter is subjected to

large disturbances [1,2,10]; see also the discussions in [11–14]. In summary, a main limitation of

current power system stability analysis methods is that they are based on reduced-order models

only valid within a limited range of operating conditions. A direct consequence of this is that any

stability assessment relying on such reduced-order models may lead to erroneous predictions

[13,14], which could lead to severe outages and—in the worst case—even to a blackout.

(b) Existing literature and contributions

In the present work, we perform a global stability analysis of a classical and very well known

system called the single-machine-infinite-bus (SMIB) model [2,10]. Thereby, the main distinction

to existing results [1,2] is that, motivated by the above discussion, we consider a fourth-order

nonlinear SG model derived from first principles—instead of the usual simplified SG models.

A thorough analysis and understanding of the SMIB scenario is a fundamental step in the

development of a systematic mathematical framework for the analysis of more complex power

system dynamics under less restrictive and more realistic assumptions as in [11,12] or in the

classical literature [1,2,10]. Furthermore, the insights that can be gained from our analysis can

provide valuable practical conclusions for the design, control and operation of SGs as well as
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for the implementation of an emerging strand of control concepts that aim at operating grid-

connected inverters such that they mimic the dynamics of conventional SGs [15–17]. The latter

objective also has motivated the related works [18,19]. The analysis in [18] proceeds along the

classical lines of constructing an integro–differential equation resembling the forced pendulum

equation and, subsequently, showing that the SMIB system is almost globally asymptotically

stable if and only if an equilibrium of that forced pendulum equation is almost globally

asymptotically stable. In [19] the same authors provide slightly simpler conditions for stability

resulting from verifying if a real-valued nonlinear map defined on a finite interval is a contraction.

But, as stated in [19], these conditions are hard to verify analytically. Furthermore, and perhaps

more importantly, the geometric tools employed to establish the results in [18,19], don’t seem to

be applicable to a multi–machine power system. In [12] a scenario similar to that of the SMIB

system is analyzed. However, the analysis in [12] is conducted under very stringent assumptions

on the specific form of the infinite bus voltage, as well as the steady-state values of the mechanical

torque. A nonlinear analysis of the SMIB system is also conducted in [20], yet using a power rather

than a torque balance in the swing equation and neglecting the stator dynamics. Then the SMIB

model reduces to a nonlinear forced pendulum, as also studied in [21,22].

To achieve our main objective, i.e. the provision of sufficient conditions for almost global

stability of the attractive equilibrium set of the SMIB system, we employ the recently developed

framework of input-to-state (ISS) stability for periodic systems with multiple invariant sets [22].

Therein, the ISS approach from [23,24] is combined with the cell structure principle developed

in [25–29] to derive necessary and sufficient conditions for ISS of periodic systems. This permits

to relax the usual sign definiteness requirements on the Lyapunov function and its time-derivative

by exploiting the periodicity of the system. This relaxation is essential to establish the main result

of the present paper. More precisely, the main contributions of the paper are three-fold.

• Provide a sufficient condition for ISS of the equilibrium set of the SMIB system.

• By using this result, establish almost global asymptotic stability of the attractive

equilibrium set of the SMIB system, i.e., we show that for all initial conditions, except

a set of measure zero, the solutions of the SMIB system asymptotically converge to an

asymptotically stable equilibrium point.

• Illustrate the efficiency of the proposed conditions numerically via a benchmark example

taken from [2, Table D.2].

Differently from our previous related work [30,31], in which LaSalle’s invariance principle is

employed, the present ISS-based approach has the advantage of providing additional robustness

guarantees with respect to exogeneous inputs. Both properties—stability and robustness—are

highly desirable from a practical point of view to characterize the performance of power systems

under persistent disturbances, such as load variations [32, Section D]. Yet, they are also deemed to

be hard to establish, in particular in the global setting considered in the present paper [32, Section

D].

The remainder of the paper is structured as follows. The SMIB model is introduced in Section 2.

The stability analysis is conducted in Section 3. Section 4 presents a benchmark numerical

example. The paper is concluded in Section 5 with a summary and an outlook on future work.

Notions of ISS of systems with multiple invariant sets. For the notions of ISS of systems

with multiple invariant sets, we follow the conventions and definitions in [22–24] for dynamical

systems evolving on a Riemannian manifold M of dimension n. Hence, the distance of a point

x∈M from the set S ⊂M is denoted by |x|S =mina∈S ∆(x, a), where the symbol ∆(x1, x2)

denotes the Riemannian distance between x1 and x2. Furthermore, |x|= |x|{0} denotes the usual

Euclidean norm of a vector x∈R
n. For further details on properties of dynamical systems and, in

particular, systems with multiple invariant sets the reader is referred to [24,33,34] and references

therein.



4

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

2. Model of a synchronous generator connected to an infinite
bus

The SMIB system is introduced in this section based on [30,31,35]. We employ a generator

reference direction, i.e, current flowing out of the SG terminals is counted positively. Following

[30,31], we make some standard assumptions on the SG [15,35], which are also used in [12,18,19]:

the rotor is round; the machine has one pole pair per phase; there are no damper windings

and no saturation effects; there are no Eddy currents; the rotor current if is a real constant. The

latter can be achieved by choosing the excitation voltage such that if is kept constant, see [12].

Furthermore, we assume that all three-phase signals are balanced [8,35]. With regards to the SG

this is equivalent to assuming a "perfectly built" machine connected in star with no neutral line,

see also [18,19].

We denote the three-phase voltage at the infinite bus by

vabc :=
√
2V






sin(δg)

sin(δg − 2π
3 )

sin(δg +
2π
3 )




 , (2.1)

where V ∈R>0 is the root-mean-square (RMS) value of the constant voltage amplitude (line-to-

neutral) and

δg = δg(0) + ωst∈R, (2.2)

with the grid frequency ωs being a positive real constant. Furthermore, the electrical rotor angle

of the SG is denoted by δ :R≥0 →R and the electrical frequency by ω= δ̇. As illustrated in Fig. 1,

δ is the angle between the axis of coil a of the SG and the d-axis. Recall that the rotor current

if is constant by assumption and denote the peak mutual inductance by Mf ∈R>0. Then the

three-phase electromotive force (EMF) eabc :R≥0 →R
3 induced in the stator is given by [15,35]

eabc =Mf ifω






sin(δ)

sin(δ − 2π
3 )

sin(δ + 2π
3 )




 . (2.3)

We denote the stator resistance by R ∈R>0 and the stator inductance by L=Ls +Ms, where

Ls ∈R>0 is the self-inductance and Ms ∈R>0 is the mutual inductance. In the SMIB scenario,

the inductance and resistance of the transmission line connecting the SG to the infinite bus are

often included in the parameters L and R, see [2, Section 4.13.1]. Also note that L> 0, since in

practice Ls >Ms. Then the electrical equations describing the dynamics of the three-phase stator

current iabc :R≥0 →R
3 are given by

L
diabc
dt

=−Riabc + eabc − vabc. (2.4)

The SMIB model is completed with the electromechanical equations describing the rotor dynamics,

given by

δ̇= ω,

Jω̇=−Dω + Tm − Te,
(2.5)

where the electrical torque Te is computed as [15]

Te = ω−1i⊤abceabc. (2.6)

Furthermore, J ∈R>0 is the total moment of inertia of the rotor masses, D ∈R>0 is the damping

coefficient and Tm ∈R≥0 is the mechanical torque provided by the prime mover, which we

assume is constant.

For our stability analysis, it is convenient to perform a coordinate transformation that maps

sinusoidal three-phase waveforms with constant amplitude and frequency—such as (2.1)—to
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constant signals. This can be achieved by representing the system (2.4), (2.5) and (2.6) in dq-

coordinates via the dq-transformation given in Appendix (a). In the present case, we choose the

transformation angle

ϕ := ωst (2.7)

and denote the angle difference between the rotor angle δ and the dq-transformation angle ϕ by

θ := δ − ϕ.

In dq-coordinates, the grid voltage (2.1) is given by the following constant vector (see [8]),

vdq=

[

vd
vq

]

=
√
3V

[

sin(δg − ϕ)

cos(δg − ϕ)

]

=
√
3V

[

sin(δg(0))

cos(δg(0))

]

,

where the second equality follows from (2.2). Likewise, the EMF in dq-coordinates is given by

edq =

[

ed
eq

]

=

[

bω sin(θ)

bω cos(θ)

]

, (2.8)

where we have defined

b :=
√

3/2Mf if . (2.9)

Hence, the electrical torque Te in (2.6) is given in dq-coordinates by

Te = ω−1i⊤abceabc = ω−1i⊤dqedq = b(iq cos(θ) + id sin(θ)). (2.10)

Furthermore, with ϕ given in (2.7) and Tdq(·) given in (5.1), we have that

dTdq(ϕ)

dt
iabc = ωs

[

−iq
id

]

,

see [8, equation (4.8)]. Consequently, by replacing the rotor angle dynamics, i.e., δ̇, with the

relative rotor angle dynamics, i.e., θ̇, the SMIB model given by (2.4), (2.5) and (2.6) becomes in

dq-coordinates

θ̇= ω − ωs,

Jω̇=−Dω + Tm − b (iq cos(θ) + id sin(θ)) + d1(t),

Li̇d =−Rid − Lωsiq + bω sin(θ)− vd + d2(t),

Li̇q =−Riq + Lωsid + bω cos(θ)− vq + d3(t),

(2.11)

where d(t) =
[

d1(t), d2(t), d3(t)
]⊤

∈R
3 is an external perturbation which is locally essentially

bounded and measurable. The signal d(t) is included to capture model uncertainties originating

from possible time-varying excitation current if ,mechanical torque Tm or voltage amplitudes vd,

vq. The model (2.11) is used for the analysis in this paper.

Remark 1. In the related works [12,18,19] the dq-transformation angle ϕ is chosen as the rotor angle,

i.e., ϕ= δ. This yields ed = 0 in (2.8). Furthermore, in [18,19] a dq-transformation is chosen in which

the d-axis lags the q-axis by π/2. In our notation, this coordinate frame can be obtained by setting the

transformation angle to ϕ= δ + π.Hence, eq = bω in [12] and eq =−bω in [18,19]. The analysis reported

in the paper can be conducted in any coordinate frame. Yet, the one employed here is independent of the rotor

angle of a specific machine and, hence, seems to be more suitable to extend the results to the multi-machine

case, which motivates our choice of ϕ.

3. Almost global stability
This section is dedicated to the analysis of almost global stability of an equilibrium point of the

system (2.11). Our analysis is conducted by employing the recently proposed framework of ISS-

Leonov functions [22]. To this end, we perform the following three steps. First, we construct a
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a1

a2
+

b2+

c1

c2+

b1

if

a-axis

b-axis

c-axis

d-axis

q-axis

θ = δ − ϕ

Figure 1: Schematic representation of a two-pole round-rotor SG based on [35, Figure 3.2]. The
abc-axes correspond to the axes of the stator coils denoted by a1,2, b1,2 and c1,2. The axis of coil
a is chosen at θ= δ − ϕ= 0. The rotor current if flows through the rotor windings. The dq-axes
denote the rotating axes of the dq-frame corresponding to the mapping Tdq(ϕ) with ϕ given in
(2.7) and Tdq(·) given in (5.1) of Appendix (a).

suitable error system in Section 3(a). Then, we show in Section 3(b) that the set of equilibria of the

error system is decomposable in the sense of [22, Definition 3]. This is a fundamental prerequisite

for the main ISS analysis—the third and final step performed in Section 3(c)—which in essence

consists of verifying the conditions of [22, Theorem 3]. The almost global stability claim, given in

Section 3(d), then follows in a straightforward manner from the ISS property.

For the analysis, we employ the following definition.

Definition 1. An equilibrium point (modulo 2π) of the system (2.11) is almost globally asymptotically

stable if it is asymptotically stable and for all initial conditions, except those contained in a set of zero

Lebesgue measure, the solutions of the system converge to that equilibrium point (modulo 2π).

(a) Error coordinates

It is convenient to introduce the two constants

c : = b
√

(v2
d
+ v2q )((Lωs)2 +R2), P :=

1

c

[

−b2ωsR+ (Tm −Dωs)((Lωs)2 +R2)
]

. (3.1)

Note that (2.9) implies that c is nonzero if the rotor current if is nonzero, which is satisfied in any

practical scenario.

The existence of isolated equilibria is a natural prerequisite for any stability analysis. Therefore,

we make the following natural assumption that by [30, Proposition 1] implies the existence of two

unique steady-state solutions (modulo 2π) of the system (2.11).

Assumption 1. The parameters of the system (2.11) are such that if > 0 and that |P|< 1 if d= 03 for

all t∈R.

With Assumption 1, we denote one of the two equilibrium points of the system (2.11) by

(θs1, ω
s, isd,1, i

s
q,1) and introduce the error states

x :=
[

θ̃, ω̃, ĩd, ĩq
]⊤

, θ= θ̃ + θs1, ω= ω̃ + ωs, id = ĩd + isd,1, iq = ĩq + isq,1. (3.2)
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In the error coordinates (θ̃, ω̃, ĩd, ĩq) the dynamics (2.11) take the form

˙̃
θ=ω̃,

J ˙̃ω=−D(ω̃ + ωs)− b(isd,1 + ĩd) sin(θ
s
1 + θ̃)− b(isq,1 + ĩq) cos(θ

s
1 + θ̃) + Tm + d1(t),

L˙̃id =−R(isd,1 + ĩd)− Lωs(isq,1 + ĩq) + b(ω̃ + ωs) sin(θs1 + θ̃)− vd + d2(t),

L˙̃iq =−R(isq,1 + ĩq) + Lωs(isd,1 + ĩd) + b(ω̃ + ωs) cos(θs1 + θ̃)− vq + d3(t).

(3.3)

Moreover, in the equilibrium point (θs1, ω
s, isd,1, i

s
q,1) with d(t) = 03, we have from (2.11) that

0 =−Dωs + Tm − b
(
isq,1 cos(θ

s
1) + isd,1 sin(θ

s
1)
)
,

0 =−Risd,1 − Lωsisq,1 + bωs sin(θs1)− vd,

0 =−Risq,1 + Lωsisd,1 + bωs cos(θs1)− vq.

(3.4)

Hence, by using (3.4) the system (3.3) becomes in error coordinates

˙̃
θ=ω̃,

J ˙̃ω=−Dω̃ − b̃id sin(θ
s
1 + θ̃)− bisd,1(sin(θ

s
1 + θ̃)− sin(θs1))− b̃iq cos(θ

s
1 + θ̃)

− bisq,1(cos(θ
s
1 + θ̃)− cos(θs1)) + d1(t),

L˙̃id =−Rĩd − Lωs ĩq + bωs(sin(θs1 + θ̃)− sin(θs1)) + bω̃ sin(θs1 + θ̃) + d2(t),

L˙̃iq =−Rĩq + Lωs ĩd + bωs(cos(θs1 + θ̃)− cos(θs1)) + bω̃ cos(θs1 + θ̃) + d3(t),

(3.5)

the equilibrium of which is now shifted to the origin. The remainder of this section is devoted to

the analysis of this system.

Remark 2. As can be seen from (2.9), the signs of c and, hence, P defined in (3.1) depend on the sign

of the constant rotor current if . For the subsequent analysis, it is important to know the sign of c, as it

determines which of the two equilibria of the system (2.11) is stable. Assumption 1 is made without loss of

generality because the analysis for if < 0 follows verbatim.

(b) Decomposable invariant set containing all equilibria

With Assumption 1, the system (3.5) has a finite and disjoint set of equilibria (modulo 2π) in the

sense of [22, Definition 3]. Denote this set by

W =
{

04 ∪
(

[θs2, ω
s, isd,2, i

s
q,2]

⊤ − [θs1, ω
s, isd,1, i

s
q,1]

⊤
)}

. (3.6)

The lemma below shows that—for bounded solutions—W contains all α- and ω-limit sets of

the system (3.5)—see [22–24] for details. This feature is instrumental to apply the ISS-Leonov

framework [22] and establish our main result.

Lemma 1. Consider the system (3.5) with Assumption 1. Suppose that all its solutions are bounded and

that

4RD[(Lωs)2 +R2]> (Lbωs)2. (3.7)

Then the set W is decomposable in the sense of [22, Definition 3] and contains all α- and ω-limit sets of the

system (3.5).
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Proof. In order to show that the set W contains all α-and ω-limit sets of (3.5) and that it is

decomposable, note that the electrical dynamics in (3.5) takes the form

L˙̃idq =

[

u

w

]

+

[

bω̃ sin(θs1 + θ̃)

bω̃ cos(θs1 + θ̃)

]

, (3.8)

where we defined
[

u

w

]

:=

[

−R −Lωs
Lωs −R

]

ĩdq +

[

bωs(sin(θ̃ + θs1)− sin(θs1))

bωs(cos(θ̃ + θs1)− cos(θs1))

]

.

Following [30], consider the function

W (x) =
L

2
(u2 + w2) +

Jω̃2

2

[

(Lωs)2 +R2
]

+ q(θ̃), (3.9)

where x is defined in (3.2),

q(θ̃) = c[− cos(θs1 − φ+ θ̃)− sin(θs1 − φ)θ̃ + cos(θs1 − φ)] (3.10)

and1

φ= arctan

(
Lωsvd +Rvq
Lωsvq −Rvd

)

. (3.11)

Clearly, W is continuously differentiable as a function W :R4 →R (but not as a function W :

S× R
3 →R, where S denotes the unit circle). With (3.5), a lengthy but straightforward calculation

yields

Ẇ =−R[u2 + w2]−D((Lωs)2 +R2)ω̃2 + ω̃u Lbωs cos(θ̃ + θs1)− ω̃w Lbωs sin(θ̃ + θs1)

+ d1ω̃((Lω
s)2 +R2) + d2(Lω

sw −Ru)− d3(Lω
su+Rw),

=−
[

ω̃ u w
]

M
[

ω̃ u w
]⊤

−
[

ω̃ u w
]

Mdd,

where

M =







D((Lωs)2 +R2) −Lbωs cos(θ̃+θs
1
)

2
Lbωs sin(θ̃+θs

1
)

2

−Lbωs cos(θ̃+θs
1
)

2 R 0
Lbωs sin(θ̃+θs

1
)

2 0 R






, Md =






−
(

(Lωs)2 +R2
)

0 0

0 R Lωs

0 −Lωs R




 .

(3.12)

In order to show that W indeed contains allα- and ω-limit sets of (3.5), we consider the nominal

version of the system (3.5), i.e., with d(t) = 03 for all t∈R. Since R> 0, the Schur-complement

implies that M > 0 if and only if (3.7) holds. Then, we have immediately that (3.7) implies that

Ẇ ≤ 0.

Consequently, by invoking LaSalle’s invariance principle [36] we conclude that all bounded

solutions of the nominal system (3.5) converge to the set where

ω̃=w= u= 0 ∀t∈R. (3.13)

From (3.8) we have that ω̃=w= u= 0 implies ĩdq constant. Since ω̃= 0 also implies θ̃ constant,

W is the only invariant set under the restriction (3.13) and it contains all α- and ω-limit sets of

(3.5). Consequently, if d(t) = 03 for all t∈R, then Ẇ ≤ 0 implies that W is decomposable in the

sense of [22, Definition 3], completing the proof.

1Here arctan(·) denotes the standard arctangent function defined on the interval [0, π). Since the case vd = vq = 0 is

excluded by definition of vd and vq , φ is well-defined.
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(c) A condition for ISS

Recall the function q(θ̃) defined in (3.10) and let

h(θ̃) = q(θ̃)− ǫ

2
θ̃2, (3.14)

where ǫ is a positive real parameter. Denote

ǫmin := inf
{

ǫ∈R>0 |h(θ̃)≤ 0 ∀θ̃ ∈R

}

. (3.15)

It is shown in [30, Lemma 1] that c > 0 defined in (3.1) is an upper bound for ǫmin, i.e., the infimum

in (3.15) is indeed always achievable. The lemma below is useful to establish our main ISS result.

Lemma 2. Let ǫ > ǫmin. Then for all θ̃ ∈R and any ε∈ [0, ǫ− ǫmin),

− ǫ

2
θ̃2 ≤ h(θ̃)≤− ε

2
θ̃2.

Proof. By the definition of ǫmin we have that

h̄(θ̃) := q(θ̃)− ǫmin

2
θ̃2 ≤ 0.

Hence,

h(θ̃) = h̄(θ̃)− 1

2
(ǫ− ǫmin)θ̃

2 ≤−1

2
(ǫ− ǫmin)θ̃

2 ≤− ε
2
θ̃2

for any ε∈ [0, ǫ− ǫmin). To derive the lower bound for h, we note that since ǫ > ǫmin,

− ǫ

2
θ̃2 ≤ h(θ̃) ⇔ 0≤ h(θ̃) +

ǫ

2
θ̃2 = h̄(θ̃)− 1

2
(ǫ− ǫmin)θ̃

2 +
ǫ

2
θ̃2 ≤−1

2
(ǫ− ǫmin)θ̃

2 +
ǫ

2
θ̃2 ≤ ǫ

2
θ̃2,

completing the proof.

To streamline the presentation of our result the following assumption is needed. A physical

interpretation of this key assumption is given in the discussion in Remark 4 below.

Assumption 2. There exist constants χ> 0 and ψ > 0 satisfying

Q̄=







χ
2ǫmin

1 0

1
(

(Lωs)2 +R2
)(

D − χJ
2 − ψ

4

)

Lbωs

0 Lbωs 4
(

R− χL
2

)

− ψ






> 0. (3.16)

In addition, we borrow the following result from [30].

Lemma 3. [30] Consider the system (3.5) verifying Assumptions 1 and 2. Then, all solutions

x=
[

θ̃, ω̃, ĩd, ĩq
]⊤

of the system (3.5) are bounded.

We are now in a position to present our ISS result.

Theorem 1. Consider the system (3.5) with Assumptions 1 and 2. The system (3.5) is ISS with respect to

the set W defined in (3.6).

Proof. Note that Lemma 3 implies that all solutions of the system (3.5) are bounded under

Assumption 2. Moreover, we see that Q̄> 0 in (3.16) reduces to (3.7) for χ=ψ= 0. As Q̄> 0

for some χ> 0, ψ > 0 by assumption, the condition of Lemma 1 is met. Consequently, the set W
is decomposable and contains all α- and ω-limit sets of the system (3.5).
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The remainder of the claim is established by invoking [22, Theorem 3]. To this end, we need to

construct a function V, that—along all solutions of the system (3.5)—satisfies the following two

properties

α1(|x|W )− σ(|θ̃|)≤ V (x)≤ α2(|x|W + g) (3.17)

and

V̇ (x)≤−λ(V (x)) + γ(|d|), (3.18)

where g≥ 0 is a scalar, α1 ∈K∞, α2 ∈K∞, σ ∈K∞, γ ∈K∞, and λ :R→R is a continuous

function satisfying λ∈K∞ for nonnegative arguments. Following [22, Definition 7], such function

V is called an ISS-Leonov function2.

Recall W defined in (3.9), h defined in (3.14) and consider the following ISS-Leonov function

candidate V :R4 →R,

V (x) =
L

2
(u2 + w2) +

Jω̃2

2

[

(Lωs)2 +R2
]

+ h(θ̃). (3.19)

In the first step of the proof, we show that V satisfies condition (3.17). Note that Lemma 2

implies that for all x∈R
4,

L

2
(u2 + w2) +

Jω̃2

2

[

(Lωs)2 +R2
]

− ǫ

2
|θ̃|2 ≤ V (x)≤ L

2
(u2 + w2) +

Jω̃2

2

[

(Lωs)2 +R2
]

− ε

2
|θ̃|2

≤ κ|(θ̃, ω̃, ĩd, ĩq)|W

for some real κ> 0. Thus, property (3.17) is satisfied.

The second and last step of the proof consists in verifying condition (3.18). Recall M and Md

given in (3.12). Differentiating V given in (3.19) along solutions of the system (3.5) yields

V̇ =−






ω̃

u

w






⊤

M






ω̃

u

w




−






ω̃

u

w






⊤

Mdd− ǫθ̃ω̃

=−
[

x

d

]⊤ [

Qx Qxd
Q⊤
xd γI3

]

︸ ︷︷ ︸

:=Q

[

x

d

]

− χ

(
L

2
(u2 + w2) +

Jω̃2

2

[

(Lωs)2 +R2
]

− ε

2
|θ̃|2

)

+ γ|d|2,

(3.20)

where

Qx =









1
2χε

1
2 ǫ 0 0

1
2 ǫ ((Lωs)2 +R2)(D − χJ

2 ) −Lbωs cos(θ̃+θs
1
)

2
Lbωs sin(θ̃+θs

1
)

2

0 −Lbωs cos(θ̃+θs
1
)

2 R− χL
2 0

0
Lbωs sin(θ̃+θs

1
)

2 0 R− χL
2









, Qxd =
[

01×3
1
2Md

]

.

We need to verify that Q≥ 0. Since γ > 0, the Schur complement implies that Q≥ 0 if and only if

Qx − 1

γ
QxdQ⊤

xd =Qx − 1

4γ








0 0 0 0

0 ((Lωs)2 +R2)2 0 0

0 0 (Lωs)2 +R2 0

0 0 0 (Lωs)2 +R2







≥ 0. (3.21)

2From (3.17), we see that the sign definiteness requirements of an ISS-Leonov function are relaxed compared to the standard

Lyapunov function, because V does not have to be positive definite with respect to the variable θ̃, i.e., the variable with

respect to which the dynamics (3.5) is periodic. Furthermore, the time-derivative of V only needs to be negative definite for

positive values of V. See [22] for further details.
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Furthermore, since χ> 0, ε > 0 and γ > 0, applying the Schur complement also to the matrix in

(3.21) implies that Q≥ 0 if and only if

R− χL

2
− 1

4γ

(

(Lωs)2 +R2
)

> 0 (3.22)

and

((Lωs)2 +R2)

(

D − χJ

2

)

− 1

4γ
((Lωs)2 +R2)2 − ǫ2

2χε
− (Lbωs)2

4(R− χL2 − 1
4γ ((Lωs)2 +R2))

≥ 0.

(3.23)

Recall from Lemma 2 that 0< ε< ǫ− ǫmin.Hence, the left-hand side of (3.23) attains its maximum

with respect to ε for ε= ǫ− ǫmin. We select this value for ε and proceed by requiring (3.23) to be

satisfied with strict inequality. This ensures that there exists a 0< ε< ǫ− ǫmin for which Q≥ 0. It

is then straightforward to verify that this implies that the expression on the left-hand side of (3.23)

attains its maximum with respect to ǫ for ǫ= 2ǫmin > ǫmin. For this choice of ǫ (3.23) becomes

((Lωs)2 +R2)

(

D − χJ

2

)

− 1

4γ
((Lωs)2 +R2)2 − 2ǫmin

χ
− (Lbωs)2

4(R− χL
2 )− 1

γ ((Lωs)2 +R2)
> 0.

(3.24)

Hence, by defining the auxiliary variable ψ= ((Lωs)2 +R2)γ−1 > 0, (3.23) being satisfied with

strict inequality is equivalent to positive definiteness of the matrix Q̄ in (3.16). Clearly, Q̄> 0 also

implies that (3.22) is satisfied. Recall that Q̄> 0 by Assumption 2. Hence, Q≥ and

V̇ ≤−χV + γ|d|2, (3.25)

which is property (3.18). Consequently, with Assumption 2, V satisfies conditions (3.17) and

(3.18), which implies that V is an ISS-Leonov function for the system (3.5). Hence, by invoking [22,

Theorem 3] (or, equivalently, [22, Corollary 1]) it follows that the system (3.5) is ISS with respect

to the set W. This completes the proof.

Remark 3. The ISS-Leonov function V defined in (3.19) is not periodic in θ̃. Thus, it does not qualify as a

usual ISS Lyapunov function [24]. Yet, this non-periodicity of V in θ̃ is essential for being able to treat the

constant terms in the dynamics (3.5) and to establish the ISS claim in Proposition 1. Furthermore, in order

to ensure continuity of the ISS-Leonov function in (3.19) it is necessary to consider the angle θ̃ evolving

in R rather than, as usual, on the torus S. The same applies to the function W defined in (3.9). In R, θ̃

is not bounded a priori. While it is shown in [22, Theorem 3] that existence of an ISS-Leonov function

with θ̃ ∈R ensures boundedness of the distance |x|W with x∈ S× R
3, this does not imply boundedness

of |x|W for x∈R
4. Since boundedness of solutions is a fundamental prerequisite to invoke Lemma 1 (that

ensures decomposability of W), we need the auxiliary Lemma 3 to establish boundedness of solutions of the

system (3.5) evolving in R
4.

Remark 4. By using the standard definitions for the reactance X, the conductance G and the susceptance

B [2,10], i.e.,

X = ωsL, G=
R

R2 +X2
, B =− X

R2 +X2
,

condition (3.7)—which is implied by Assumption 2—can be rewritten as

4DG(R2 +X2)2 >X2b2 ⇔ 4D
R

X
> |B|b2.

This shows that a high damping factor D and a high R/X ratio, i.e., a high electrical dissipation, are

beneficial to ensure ISS of the system (3.5) with respect to the equilibrium set W . On the contrary, a high

value of |b|, i.e., a high excitation and consequently large EMF amplitude, deteriorate the likelihood of

verifying the ISS property for the system (3.5). Both observations are sensible from a physical perspective

and consistent with practical experience.
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(d) Main stability result

We give now conditions for almost global asymptotic stability of one of the two equilibria

(modulo 2π) of the system (2.11). This result follows as a corollary of Theorem 1 after the

relaxation of Assumption 2—setting ψ= 0—as indicated below.

Corollary 1. Consider the system (3.5) with Assumption 1. Suppose that d(t) = 03 for all t∈R and that

Assumption 2 is satisfied for ψ= 0. Then, the equilibrium point (θs1, ω
s, isd, i

s
q) satisfying |θs1 − φ|< π

2

(modulo 2π) with φ defined in (3.11) is almost globally asymptotically stable, i.e., for all initial conditions,

except a set of measure zero, the solutions of the system (2.11) asymptotically converge to that equilibrium

point.

Proof. For d(t) = 03 for all t∈R, we have that γ = 0 in Q in (3.20). Hence, Q≥ 0 is equivalent to

Qx ≥ 0, see (3.20). By following the proof of Theorem 1, with ǫ= 2ǫmin, we see that Qx ≥ 0 is

implied by Q̄> 0 for ψ= 0. As the latter holds by assumption, it follows that, see (3.25),

V̇ ≤−χV. (3.26)

This shows that for all initial conditions, the solutions of the system (3.5) asymptotically converge

to the set W. Recall from the proof of Theorem 1 that, under the standing assumptions, Ẇ ≤ 0.

Furthermore, by the definition of q(θ̃) in (3.10), we have that

q(0) = 0, q′(0) = 0, q′′(0) = c cos(θs1 − φ).

Hence, the function W defined in (3.9) has a local minimum at the origin if |θs1 − φ|< π
2 ,

while it has a local maximum at |θs1 − φ|> π
2 . Therefore, if |θs1 − φ|< π

2 , the origin is locally

asymptotically stable, while it is unstable if |θs1 − φ|> π
2 .

To establish almost global asymptotic stability of the equilibrium point satisfying |θs1 − φ|< π
2 ,

we follow [31] and invoke [37, Proposition 11]. To this end, consider the Jacobian of the system

(3.5) evaluated at an equilibrium point, i.e.,

J =








0 1 0 0
b
J

(
isq sin(θ

s)− isd cos(θ
s)
)

−D
J − b

J sin(θs) −D
J cos(θs)

b
Lω

s cos(θs) b
L sin(θs) −R

L −ωs
− b
Lω

s sin(θs) b
L cos(θs) ωs −R

L







.

By using (3.4) and (3.11), we obtain

det(J ) =
b cos(θs − φ)

J
√

R2 + (Lωs)2
.

Hence, det(J )< 0 if |θs − φ|> π
2 , i.e., if the considered equilibrium point is unstable.

Furthermore, J is a real-valued matrix of dimension 4. Consequently, if det(J )< 0, then J
has at least one positive real eigenvalue and from [37, Proposition 11] it follows that the region

of attraction of the unstable equilibrium has zero Lebesgue measure. Hence, for all initial

conditions, except a set of measure zero, the solutions of the system (3.5) asymptotically converge

to the equilibrium point (θs1, ω
s, isd, i

s
q) satisfying |θs1 − φ|< π

2 (modulo 2π). This completes the

proof.

4. Numerical example
The analysis is illustrated on a numerical benchmark example with data taken from [2, Table D.2,

H16]. All system parameters are given in per unit (pu) including normalized time (for ωBase =

2π60rad/sec), see Table 1. Furthermore, based on [2, Example 5.1], we assume a line resistance of
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Table 1: Parameters of the system (3.5) taken from [2, Table D.2, H16]

Parameter Numerical value Parameter Numerical value
in pu in pu

ωs 1 J 3 · 2558.9
Dnom 3 · 2 V 1
R 0.0221 L 1.21

Rℓ = 0.02 pu and a line inductance of Lℓ = 0.4 pu. The nominal damping coefficient is given by

Dnom = 3 · 2 pu (see [2, Table D.2])3.

Condition (3.16) is a linear matrix inequality (LMI) with decision variables χ> 0 and ψ > 0.

Hence, its feasibility can be verified efficiently using standard software tools, such as Yalmip [38].

For the subsequent experiments we take D as additional decision variable and seek to determine

the minimal damping coefficient Dmin required for our condition (3.16) to be satisfied. Thereby,

following our previous work [30,31], we consider a large variety of operating scenarios. More

precisely, we modify the machine loading by varying Tm, as well as the excitation by varying if .

All other parameters are kept constant. Furthermore, we define the error coordinates x in (3.2)

with respect to the unstable equilibrium point, i.e., satisfying |θs1 − φ|> π
2 .

The resulting values for Dmin are shown in Figure 2a. Since the machine torque Te is

normalized with respect to the single-phase power base, the rated torque corresponds to T se =

3.0 pu. Also, usually it is only possible to load large SGs at their rated power if the amplitude

of the EMF eabc is higher than the rated voltage [39, Chapter 5]. This explains the chosen ranges

of values for Es and T se in Figure 2a. By Theorem 1 the SMIB system (3.5) is ISS with respect

to the corresponding equilibrium set W (if it exists) for any damping coefficient D≥Dmin.

Furthermore, by Corollary 1 we conclude that—for d(t) = 03 for all t≥ 0—the equilibrium point

with |θs1 − φ|< π
2 (modulo 2π) with φ defined in (3.11) is almost globally asymptotically stable.

Both properties are further illustrated in Figure 2b for D= 62.4Dnom, T
s
e = 3 pu and |Es|=

1.566 pu. The bold lines correspond to the case d(t) = 03, while the dashed lines correspond

to the case d1 = 0.25 sin(3t), d2 = 0.5 sin(5t), d3 = 0.3 sin(t). It can be seen from the simulation

results that the trajectories of the perturbed system (i.e., d(t) 6= 03) remain close to those of the

unperturbed system (i.e., d(t) = 03), as predicted by the ISS property.

Moreover, in line with the observations made in [30,31], Figure 2a shows that the required

damping increases with the machine loading and the excitation magnitude. This is consistent with

the well-known power-angle characteristic that can be employed for reduced-order SG models

and states that the likelihood of an SG to undergo instability after a change in load increases with

the SG being operated closer to its generation limit [1,35].

5. Conclusions
A global stability analysis of the equilibria of a realistic SMIB model has been presented. The main

result is established by using the powerful property of ISS, which is verified using an ISS-Leonov

function for periodic systems with multiple invariant sets—an approach first advocated in [22].

Compared to the usual Lyapunov functions, ISS-Leonov functions have the advantage that the the

conditions of sign definiteness imposed are obviated. This key feature turns out to be essential for

3The scaling factor 3 in J and D originates from the following fact. In [2], the mechanical equation (2.5) is expressed in pu

with respect to the 3-phase base power S3φ.Hence, the pu values of J, D, Tm and Te are also expressed with respect to S3φ.

In the model (2.5), the electrical torque Te in (2.10) is expressed with respect to the single-phase power
S
3φ
3
. Consequently,

one way to match our model (2.5) with the parameters in [2] is to scale J andD by a factor 3, i.e., to represent the mechanical

equation (2.5) with respect to the power base
S
3φ
3
.
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(a) Minimum required damping coefficient
Dmin compared to nominal damping
coefficient Dnom for condition (3.16) to
be satisfied in a broad range of operating
conditions.
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(b) Simulation results for the system (3.5).
The solid lines show the state trajectories of
ω̃, ĩd, ĩq for the case d(t) = 03. The dashed
lines correspond to the case d1 = 0.25 sin(3t),
d2 = 0.5 sin(5t), d3 = 0.3 sin(t).

Figure 2: Numerical evaluation of the conditions (3.16) and illustration of the ISS property.

the analysis of the SMIB system carried out in this paper. The conservativeness of the derived

conditions has been assessed via extensive numerical evaluations on a benchmark problem.

Our current research is directed towards the development of transient stability analysis

methods for power system models with time-dependent transmission lines and physically more

realistic SG models (e.g., considering torque and voltage control loops as well as saturation

effects), which is a natural extension of the presented results. Given the “scalable" nature of the

analysis tools employed here this seems a feasible—albeit difficult—task. Another objective is

to further reduce the conservativeness of the conditions by improving the construction of the

employed Lyapunov function.

Appendix

(a) The dq-transformation

The dq-transformation employed in the model derivation of the SMIB model in Section 2 is stated,

see [1,2,8]. Let x :R≥0 →R
3 be a balanced three-phase signal, cf. (2.3), (2.1), and ̺ :R≥0 →R.

Consider the mapping Tdq :R→R
2×3,

Tdq(̺) :=

√

2

3

[

cos(̺) cos(̺− 2
3π) cos(̺+ 2

3π)

sin(̺) sin(̺− 2
3π) sin(̺+ 2

3π)

]

. (5.1)

Then, fdq :R
3 × R→R

2,

fdq(x(t), ̺(t)) = Tdq(̺(t))x(t)

is called dq-transformation.
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