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Abstract

In [10,/11/12[ 18, 6] Poisson equatiornthe whole spacwas studied for so called
ergodic generatorg corresponding to homogeneous Markov diffusioAs,(t > 0)
in R?. Solving this equation is one of the main tools @hffusion approximatiorin
the theory of stochastic averaging and homogenisatione BElaimilar equatiomvith
a potentialis considered, firstly because it is natural for PDEs, andrsdg with a
hope that it may be also useful for some extensions relatéswbriwogenization and
averaging.

1 Introduction

Let us consider a stochastic differential equatiofkin

dXt = O'(Xt) dBt -+ b(Xt) dt, XO = X. (1)

Assume the matrix fllmction and the vector functioh are Borel bounded, and =
(a¥(z), z € RY) = 500* uniformly non-degenerate; some further conditions will be
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assumed in the sequel (heré stands for the transposed mate) however, the above
already suffices for the existence of solutioh [3]. Denote

d d

3 o? )
frnd v 2
L E a (x)ﬁxlﬁxj + E b'(x) et

i,j=1 =1

The Poisson equation
Lu(z) = —f(z), =€ R, (2)

is one of the well-known equations in mathematical phys@sly relatively recently, in
the last two decades it was understood how useful is thistiequaithout boundary con-
ditions and in the whole spad®: namely, it is a powerful tool in the theory of averaging
and homogenization, see€ [1,[2, 8], et al. This understandamythe reason for the series
of papers([10, 11, 12] and for some further versions and sides in [6,?]. In all pa-
pers in the latter references such equations watteout zero order term&lso known as
potentials). On the other hand, equatiovith potentials are also very frequent in physics
and even more popular than without them. In the cases wherauthor presented these
results at the PDE seminars, the most frequent questionwigszero order terms are not
included in the equation?

Hence, the goal of this paper is to transfer some of the resmhrences about Poisson
equation “in the whole space” without a potential to the eigua

Lu — cu = —f, (3)

with a potentiak. Note straight away that the cas€, ¢(z) > 0 is the most simple one
where — at least, for bounded functiofis- convergence of the integral representing the
solution

u(z) = /000 E, exp(— /Ot c(Xs)ds)f(X,)dt, (4)

and the equation itself for this representation follow audtically. So, we will concen-
trate on the more interesting situations where eithiemot separated away from zero yet
remaining non-negative, or even if the functiomay change its sign, with a hope that
in the future it could be possibly useful, in particular, fmntrolled Markov processes
and, perhaps, for a probabilistic interpretation of therkt@dltz equation. The problem of
equations with parameters is not addressed here.

The paper consists of Introduction; Reminder of equatioitsout potentials; Main
results; Proofs; and the latter part is additionally splibiseveral sections and subsections.



2 Equation without potential: quick reminder

Let us present the main assumptions. They will be used in élxe gection, too, except
that the first one (A1) will be replaced by a stronger assuonpfA5). Also note that the

centering condition (A4) is needed only in this section, aflsb in one case out of three
cases in the Main results.

(A1) Assumption 1 (polynomial recurrence)

lim sup(b(x), x) = —oo0. (5)

|z| =00

(A2) Assumption 2 (boundedness and non-degeneracy)
The coefficiento* is uniformly non-degenerate

inf inf oo™ ()€ > 0; (6)

z [¢[=1
o, b, f andc are Borel bounded.

(A3) Assumption 3 (regularity)
The coefficient = oo™ is uniformly continuous.

(A4) Assumption 4 (f—centering)

[ f@ntas) =0 ™
(A5) Assumption 5 ( exponential recurrence)
limsup(b(x),z/|z|) = —r < 0. (8)
|z| =00

Remark 1 The assumption (A3) may be totally dropped in one-dimeasitase. In the
multi-variate case it is assumed so as to guarantee weakuenigss of solutions of the
equation[(1). The assumption (A5) may be strengthenédhtoip, (b(x), x/|x|) = —o0,

in which case some other references on large deviationteswduld be required but the
results would be established not just for small values afly; however, this would also
require new references about convergence rates and mixdoguse for this assumption to
be non-empty, the drift may not be globally bounded. The thediness of other coefficients
may also be relaxed, but we do not pursue this goal here,



Here is the main result from [10] about the equatidn (2); wendbshow further ad-
vances already established, which relate to the more iedabase of equations with pa-
rameters. Note that under the assumptions (Al) — (A3), theatémn (1) has a weakly
unique Markov and strong Markov solutidi;) with a unique stationary measuue(cf.

[3.[17]).

Proposition 1 ([10]) Under the assumptions (A1) — (A4), the equatidn (2) has disalu
win (., W3, This solution is itself centered, it has a moderate growth,(not faster
than some polynomial), and this solution is unique in thasslof functions. The repre-
sentation[(#) with: = 0 holds true for this solution.

Recall that the assumption (A5) is not needed in this ProiposiOn the other hand,
where it will be used (in the next sections), it clearly regisithe weaker assumption (Al).

3 Equation with a potential

Now we turn to the main goal of the paper, the equatidon (3) wiffotentiak. As it was
already mentioned, a natural candidate for the solutiomegunction

u(z) = /0 "B, exp (— /0 t c(X,) ds) F(X,) dt,

seel(#), of course, provided that this expression is wdlhdd. Recall that in the sequel it
will be assumed that bothandc are bounded. Beside the most simple dagec(z) > 0,
we are able to tackle three different situations. In all afsth cases we will assume the
assumption (A5), which, actually, replaces the weaker &g, (see below.

Case 1 ¢(z) = ec;(x), wheree > 0 is small enoughand [ ¢;du > 0.

Case 2 ¢(x) > 0, & [ecdu > 0. Itis not assumed that(s small or bounded away
from zero here).

Case 3 ¢(r) = —e < 0 with e — which is a constant — small enough.

Note that all three cases do not include each other, alththegltase 1 and the case 2
do intersect. In all three cases we assume (A2) — (A5). Thetoureabout the case 2
was suggested by A. Piunosvkiy; hopefully, it might be ukefuhe theory of controlled
Markov processes (cf. with [9]).



In the cases 1 and 2, denote

c:/cd,u,
C1 = /cld,u.

Theorem 1 In the cases 1 — 2, under the assuptions (A2)—(A3) and (AB)futhction
(u(x), z € R?) given by the representatiofl (4) is a continuous solutiorhie $obolev

classedV?,,, for eachp > 0 of the Poisson equatiohl(3). This solution admits the bounds

and in the case 1 also

Clearly,c = €c;.

|u(x)] < Cexp(vlz)), (9)

with any~y > 0 and a corresponding’ = C(). In the case 3 the same assertions hold
true under the assumptions (A2) — (A5), and, in additionfaimetion given by the formula
() is centered.

Note that in the cases 1-2 there is no need for the centersugrgion (A4). The proof
is split into the next three section devoted to convergetioe gection 4), existence of
derivatives and verification of the equation (the sectigruBjqueness (the section 6).

4 Proof: convergence
In all cases we will use the bound from [14]

1Qu(z, dy) — p(dy)||lrv < Cexp(y|z]) exp(—At), ¢ >0, (10)

where @, (z, dy) is the transition kernel of the proceas§, and is its unique invariant
measure, and “TV” is the total variation distance for two sweas. Note that the inequality
(10) may be read as follows: there exiats> 0 such that for any\ € (0, o), there exists

~ > 0 such that[(10) holds; yet, it may be also read as follows:etlegistsy, > 0 such
that for anyy € (0, o), there exists\ > 0 such that[(I0) holds true. Several close but a
little different corollaries from this inequality will besed in the sequel.

Another bound from([14] reads: there exists> 0 such that for anyy € (0,~,) there
existsC' > 0 such that

sup E, exp(v|X;|) < Cexp(y|z|). (11)

t>0



4.1 Case 1, locally uniform convergence

In this section we show convergence of the integral,

u(z) == /O T B, exp (- /O t c(Xs)ds) F(X,) dt,

in the case with:(z) = eci(z), & = [ erdp > 0, with e > 0 small enough. Denote

T
Hp(B,2) =T 'InE, exp (6/ 1 (Xs) ds) ,
0

or, equivalently,

Boowp (3 [ ei(X)ds ) = Buoxp(T Hr(5. )

Let
H(B) = lim Hr(3,z),  B€R"

Under the condition (A5), this limit does exist for all vatuef 5 locally uniformly with
respect tg3 andz, see, e.g.,[16, Theorem 1]. Sinék (5, x) is convex with respect to
3, and due to this locally uniform convergence, the limitingdtion 7 (/3) is also convex.
Since H is clearly finite for any value ofs, it is also continuous as any finite convex
function. It follows thatH is differentiable at the origi® = 0, see, e.g./[15]. Because
the reference may be not very well accessible, we recalldis@ of this simple reasoning.
For this aim it is convenient to perform the following tramghation,

T
Hzlp(ﬁ,x) =T 'InE, exp (5/ (c1(Xs) — 1) ds) = Hr(B,x) — Bey.
0

Further, due to the Law of Large Numbers — by virtue of a gooximgifor X, see, e.g.,
[17] — we have,

T—o00

(P,) lim T—l/o (c1(X,) — &) ds =0,

and alsdim;_,., T~ 'E, fOT ¢1(X,)ds = ¢. Moreover, under the assumption (A5) due to
the exponential mixing bound (cf._[14,116]), for aay> 0 there existC = C'(x), A > 0,
such that an exponential inequality holds,

]P)x(|T_1/O (c1(Xs) —&1) ds| = €) < C(x) exp(—At), (12)
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with someC'(z) = exp(v|z|), v > 0. Note that here\ > 0 does not depend an With
e > 0 small enough, and using the split of unity

1= 1(|T—1/O (c1(X,) —¢1)ds| <€) + 1(\T‘1/0 (c1(X,) — &) ds| > e),

and the elementary inequality+ b < 2 (a V b) and, hencen(a+0b) < In(2 (a Vb)) (with
a,b > 0), we now compute for any3| < b, say,

Hi(B,7)=T"'In (Ew exp(ﬂ/0 (c1(Xs) — &) ds)1(|T_1/0 (c1(Xs) — 1) ds| <€)

+E,enp (5 Na(X) - a) as)ar | N(a(X,) — 7 ds| > 0)

< T In (2(exp(|8] Te) V (exp(|8] Tller — & |]) C() exp(=AT))) < 2be.

Hereb > 0 may be taken small enough in comparison {gince the latter does not depend
on ). This implies that for a fixed: — and, actually, locally uniformly with respect 10
— the functionf71(3, z) = o(|B|) uniformly in T — co. Thus,HY(3) := H(B) — &8 =
o(|8]), which, clearly, means tha{ (3) is differentiable at zero and that'(0) = ¢,. Note
that this is also in accordance with the fact that( 5, ) — H (/) and since both functions
are convex in3, we also havdi.(0,z) — H'(0) (see, e.g./[13]). For any > 0 we may
assume that

|Hr(B,z) — H(B)| < d+or(l), as T — oc.

In any case, sinc&’(0) = ¢, > 0, in some neighbourhood of zero,

H(pB) >0, >0, & H(p) <0, [<0. (13)
Therefore, convergence of the integral in the definition &llows from (13). Indeed, we
estimate, for > 0 small and independent an and with anyd > 0 and takings = —e
we have,

|u(x)\g||fy\3/o E, exp <—g/0 cl(Xs)ds> dt:Hf||B/0 exp(tH,(—e, z) dt

< 17115 / exp(tH (=€) + 6 + 0,(1) + 7o) dt < o,

Also note that heres > 0 may be chosen arbitrarily small, which means that the rate
of growth of the functioru is slower than any exponential ¢f|. (In fact, some better
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polynomial growth bound on(z) holds true, too.) More precisely, for any> 0 small
enough (and, hence, actually, for apy- 0) there exists' > 0 such that

|u(z)] < Cexp(vlz]). (14)

4.2 Case 2, locally uniform convergence

Recall that we wish to show convergence of the integral,

ulw) = /0 "B, exp (- /0 t c(XS)ds) F(X,) dt,

in the case where
clx) >0, & /cd,u>0.

We will use an exponential estimate similar[fol(12),
t
Pm(/ c(Xs)ds < (¢ —0)t) < Cexp(v|z])exp(—At), (15)
0

along with a split of unity into two indicators. It follows #h again the expression foris

well defined. Indeed,
[e%e) t
/ E, exp (—/ c(X5s) ds) f(Xy)dt
0 0

:/OOO]Ex exp <— /Ot o(X.) ds) f(Xt)l(/Ot (X)) ds < (G — 6)¢) dt

+ [T me (- [ () as) s | (X ds > (e~ 0)1)dr.

Here the second term clearly converges for smalihile the first term converges due to
the assumption > 0 and f bounded, because of the inequalityl(15), as required.

Also, with the help of[(Il1) it follows,

u(z)] < Cexp(ylz|). (16)



4.3 Case 3, locally uniform convergence and centering

Convergence along with the bound farix)| in this case follows straightforward from the
inequality [10), if we only admit thatc = € < A. The bound orju(z)| then reads,

ju(z)| = | / T Euexp(et) (X)) d] < O fll5(A— 9 exprlal). (A7)

The centering condition holds true due to the same centassgmption ory: by
virtue of Fubini’s theorem,

[ wttan) = [ utao) | TR, exp (et) f(X,) dt

_ /O h / 1(d2)Ey exp (+et) f(X,) dt = 0,

where the fact was used that the meagui®stationary and, hencé,u(dx)E, f(X;) = 0
for eacht > 0.

5 Proof: other properties

5.1 \Verification of the equation: simplified version

As we already know from the previous section, the functiariven by the representation
@) is well-defined, that is, the integral in the right handestonverges for alt ¢ R,
Let us argue why: is, indeed, a solution of the Poisson equation. To make @xtie
idea, assume for simplicity continuity of both functionand f and suppose that existence
of two (classical) derivatives of the functianis known; later on it will be shown how
to drop all these additional assumptions, including ctadsierivatves instead of Sobolev
ones. By the Markov property,

u(z) = /0 "B, exp (- /0 t c(XS)ds) F(X,) dt

v, e (- [ e ds) utx)

from which,

T—0

—f(z) == lim T~ /OT E, exp (— /Ot c(X;) ds) f(X) dt

9



— :]‘riEET_l <Exu(XT) exp (— /OT c(Xs) d8> - U(ﬂf))

T — tc(Xs)ds
- lim %Em /O c /0 (Lu — cu)(X,) dt = Lu(z) — cu(),

as required. However, as we said earlier, in the sequel wet@ipnstify the equation
without the additional assumption about continuity.

5.2 Continuity of solution u

This continuity ofu will be used in the proof of existence of two Sobolev deriwediin

the next subsection. Actually, we shall see a bit more thahgantinuity: in all three
cases 1 — 3 it will be shown that the integral foconverges to a continuous limidcally

uniformlywith respect toc. So, similarly to[[10] we obtain,

M

u(xr) = lim u™ (z)

N—oo

N t
= Nh—IgoEZ/O exp (—/O c(Xs) ds) f(Xy)dt,

whereu¥ () is continuous as a solution of the Cauchy problem for a pdi@biéferential
equation, see [5]. So, the limit is also continuous, due éddhkally uniform convergence.
Note that neither continuity of nor of c was used in this consideration.

5.3 Two Sobolev derivatives for, and verification of the equation

Considerr := inf(t : X, ¢ B) and the following equation in the bal# = B;(xy) =
{x eRY: |z — x| <1},

Lv—co=—f in B, Vlop = u

Since we already know thatis continuous, this boundary condition is well-defined. fEhe
is a unique solutiom € () ., WZ? in B [[7], which by virtue of It6—Krylov’s formulal[4]
admits a representation,

o(z) = E, ( /0 "exp (— /0 () ds) F(X,) dt + exp (— /0 " (X)) ds) u(XT)) |

10



Due to the strong Markov property, exactly the same reptasen holds true fok(z) in
the left hand side; sa, = v on B, i.e.,

u(z) = E, ( /0 "exp (- /0 t c(X,) ds) F(X,) dt + exp (— /0 T (X)) ds) u(XT)) .

Henceu € (., W (B) C C(B) (seel]). This consideration also justifies the equation
for u without the additional assumption about continuityfadndc.

6 Proof: unigueness of solution

6.1 Uniqueness, case 1

Unigueness may be shown in a standard manner for the classaafdns satisfying the
moderate growth established earlier. In all three casesdlwilus is the same. For the
difference of two solutions = u! — u? we haveLv — cv = 0. So, using moment
inequalities and a standard localization procedure, byyapplt6—Krylov’s formula and
taking expectations, we get

o(z) = ul(z) — 1u2(z) = E, exp(— /O o(X) ds)u(X)).

We now use a unity split

1= 1(/t (X)) ds > (&1 — 0)) + 1(/tcl(Xs) ds < (@ — O)t)

and an exponential estimate

Px(/o c1(Xg)ds < (61 —0)t) < Cexp(v|z]) exp(—At).

Then it follows that)(z) = 0. Indeed, due to the bound {12), we estimate withamyo,

o(2)] < Ex exp(~ / () ds) ()]

— E, exp(— /O c(X,) ds)|v(X,)[1( /0 c(X,)ds > (¢ — 6)t)

11



+E, exp(—/o c(Xs) d$)|v(Xt)|1(/0 1 (Xs)ds < (¢1—0)t)

< E, exp(—e(c1 — 6)t)C exp(v|Xy|)

+ exp(ef| e [[£) (Exlv(Xt)\2)1/2(Px(/O a(X,)ds < (& —8)1)"?
< Cexp(—e(c; — 0)t)Cexp(v|z|)

+C exp(V'|z]) exp(—(N/2 — €|ler]|)t) = 0, t — oo

In teh middle of the calculus we have applied Caushy—Bowvigslky—Schwarz’ inequality.
So, ife > 0 was chosen small enough, it shows that= «?, which completes the proof
of the Theoren]1 in the case 1.

6.2 Uniqueness, case 2

For the difference of two solutions= u! — u? we haveLv — cv = 0. So, using moment
inequalities and a standard localization procedure, byyapplto—Krylov’s formula and
taking expectations, we get

o(z) = ul () — u2(x) = By exp(— /0 () ds)o(Xy).
We now use a unity spli
| = 1(/; o(X.)ds > (@ — 0)t) + 1(/; o(X.)ds < (71 — 6)t)
and an exponential estimate
B [ o) ds < (6= 0)) < Coxplofal) exp(—30),

Then it follows that(z) = 0. Indeed, recall that in the case2> 0, Hence, due to the
bound [15), we estimate, with any> 0,

j0(2)] < Eq exp(— / () ds)[o(X,)

12



=E, exp(—/o c(Xs)ds)|U(Xt)|1(/0 c(Xs)ds > (¢ —0o)t)

E, exp(— / () ds) [o(X,)] 1 / o(X,)ds < (e — B)t)

< E,exp(—(¢—6)t)Cexp(r|Xy|)

+(Ex\v(Xt)|2)”2(Pz(/ c(X)ds < (¢ = 8)t))"/?

0

< Cexp(—(¢c —0)t)C exp(v|z]|)

+Cexp(V|z|) exp(=A/2)t) — 0, ¢ — 0.

So,u! = u?, which completes the proof of the TheorEm 1 in the case 2.

6.3 Uniqueness, case 3

For the difference of two (centered) solutions= «! — «? we haveLv — cv = 0. So,
using moment inequalities and a standard localizationguioee, by applying 1to—Krylov’s
formula and taking expectations, we get

v(z) = ut(z) — i (z) = K, exp(—/O c(Xs) ds)v(X,) = exp(+et)E v(Xy).

Recall the boundl(x)| < C'exp(~|x|), wherey > 0 can be chosen arbitrarily small (and,
of course, respectively,’ depends ony). By using the bound$ (10) and {11) and taking
0 < < ¢, and due to the centering property:gfwe estimate,

(@) < exp(+et)[Eyv(Xy)| = exp(+et) | /v(y)Qt(x,dy)l

= exp(+et) ‘ / v(y)(Qi(z, dy) —u(dy)‘

<o) ( [ dywdy) (1@t - >\)1/2

13



< exp(+et) Cexp(y|z|) exp(—=t A/2) = 0, t— oo,

if ¢ > 0 is small enough. We used, in particular, Cauchy—BouniakgvSchwarz’ in-
equality and the fact that integrates exponentiatsp(y|z|) with smally. So,u! = ?,
which completes the proof of the Theoréin 1 in the case 3.
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