Recessive mutations in the kinase ZAK cause a congenital myopathy with fiber type disproportion.
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Running title: ZAK mutations in congenital myopathy
Abstract
Congenital myopathies define a heterogeneous group of neuromuscular diseases with neonatal or childhood hypotonia and muscle weakness. The genetic cause is still unknown in many patients, precluding genetic counseling and better understanding of the physiopathology. To identify novel genetic causes of congenital myopathies, exome sequencing was performed in three consanguineous families. We identified two homozygous frameshift mutations and a homozygous nonsense mutation in the mitogen-activated protein triple kinase ZAK. In total six affected patients carry these mutations. RT-PCR and transcriptome analyses suggested nonsense mRNA decay as a main impact of mutations. The patients demonstrated a generalized slowly progressive muscle weakness accompanied by decreased vital capacities. A combination of proximal contractures with distal joint hyperlaxity is a distinct feature in one family. Common histopathological features encompassed fiber size variation, predominance of type 1 fiber and centralized nuclei. A peculiar subsarcolemmal accumulation of mitochondria pointing towards the center of the fiber was a novel histological hallmark in one family. These findings will improve the molecular diagnosis of congenital myopathies and implicate the mitogen-activated protein kinase (MAPK) signaling as a novel pathway altered in these rare myopathies.
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Abbreviations
CM = congenital myopathy; CNM = centronuclear myopathy; DMD = Duchenne muscular dystrophy ; ES = exome sequencing; FDR= False discovery rate; LGMD = Limb-girdle muscular dystrophy; MAF = Minor allele frequency; MAPK = mitogen-activated protein kinase; MDC1A = Limb-girdle muscular dystrophy 1A; RPKM= reads per kilobase per million mapped reads; UCMD = Ullrich muscular dystrophy; XLMTM = X-linked myotubular myopathy; ZAK = mitogen-activated protein triple kinase or sterile alpha motif and leucine zipper containing kinase;
Introduction
Congenital myopathies (CM) form a heterogeneous group of genetic muscle diseases characterized by congenital or early childhood hypotonia, muscle weakness and structural abnormalities in muscle biopsies Nance et al., 2012()
. CMs are accompanied by chronic long-term disability, a strong decrease in the quality of life and a shorter lifespan 
 ADDIN EN.CITE 

(North et al., 2014)
. They are sub-classified in seven distinct types based on clinical presentation and characteristic features on biopsy. Main classes encompass nemaline myopathies with protein aggregates, core myopathies with well-defined muscle fiber areas devoid of oxidative activity, centronuclear myopathy with predominance of fibers with internal and centralized nuclei, and congenital fiber type disproportion with a bias toward smaller and more abundant type 1 fibers 
 ADDIN EN.CITE 

(North et al., 2014)
. Extensive studies of large families and cohorts led to the identification of approximately 30 genes (www.orpha.net) mutated in CMs; this number is even higher when considering the overlap with congenital muscular dystrophies 
 ADDIN EN.CITE 

(Bonnemann et al., 2014)
. Despite these advances, nearly half of patients still have no molecular diagnosis Amburgey et al., 2011()
. This is due to the extensive clinical and genetic heterogeneity and to the limitation of gene-by-gene diagnostic sequencing. Therefore, each uncovered novel CM gene probably explains an increasingly smaller subset of remaining unsolved patients. The use of next-generation sequencing (NGS) methods, such as gene panels or exome sequencing (ES), will overcome some of the diagnostic challenges and help uncover novel CM genes Tetreault et al., 2015()
. The identification of the disease-causing gene allows a better care and prognosis for the patients, and a more accurate genetic counseling Vasli and Laporte, 2013()
. Moreover, the identification of novel implicated genes lead to underlying pathological mechanisms, and highlights novel targets that may be more amenable for the development of treatments.
In this study, in an effort to identify additional genes implicated in congenital myopathies, three consanguineous families, from different ethnic backgrounds, were exome sequenced independently and were found to carry different homozygote mutations in the mitogen-activated protein triple kinase ZAK.

Material and methods

Patients

One patient originated from France (Family 1), two affected siblings from Quebec (Family 2) and three affected siblings from the UK (Family 3) were recruited independently. All patients and family members underwent a detailed neurological examination by experienced neurologists. Sample collection was performed with written informed consent from the patients and all participating family members, according to the declaration of Helsinki. Genomic DNA was extracted from peripheral blood lymphocytes using standard procedures.
Histology

Left deltoid muscle for patient I-1 and deltoid muscle for patient II-1 were analyzed. For conventional histochemical techniques 10 μm thick cryostat sections were stained with haematoxylin and eosin (H&E), modified Gomori trichrome (mGT), Periodic acid Schiff technique (PAS), Oil red O, reduced nicotinamide adenine dinucleotide dehydrogenase-tetrazolium reductase (NADH-TR), succinate dehydrogenase (SDH), cytochrome c oxidase (COX), and adenosine triphosphatase (ATPase) preincubated at pH 9.4, 4.63, 4.35 and examined with a Zeiss Axioplan Bright Field Microscope and photos processed with the Axio Vision 4.4 software (Zeiss, Germany) 
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(Malfatti et al., 2015)
. The fibre type pattern was determined by counting 1000 fibres from each patient in ATPase 9.4 and 4.35 reactions, and by calculating the percentage of type 1 and type 2 fibres.
Electron microscopy

Muscle specimens were fixed with glutaraldehyde (2.5%, pH 7.4), post fixed with osmium tetroxide (2%), dehydrated and embedded in resin (EMBed-812, Electron Microscopy Sciences, USA). Ultra-thin sections were stained with uranyl acetate and lead citrate. The grids were observed using a Philips CM120 electron microscope (80 kV; Philips Electronics NV, Eindhoven, The Netherlands).

Genetic analyses 
Family 1

MTM1, BIN1 and DNM2 were excluded for I-1 by Sanger sequencing of exons and intron-exon boundaries. MTM1 level was normal by Western blot analysis. RYR1 was excluded by cDNA sequencing from muscle, while no pathogenic variant was found in TTN in the ES analysis. 
Homozygosity-by-descent analysis was performed after hybridization of fragmented genomic DNA on Affymetrix genomewide human SNP 6.0 arrays, following the manufacturer’s protocols (www.affymetrix.com).

Family 2

Genotyping analysis of microsatellite markers allowed us to exclude COL6A1 and COL6A2. Due to lack of informative markers in close proximity to COL6A3 we excluded the presence of mutations in this gene by sequencing all exon and exon-intron boundaries of the genomic DNA and the entire cDNA 
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(Tetreault et al., 2006)
.
Homozygosity mapping was performed using the Illumina OmniExpress SNPs chip (700K markers). Homozygous regions larger than 1Mb shared by both affected, heterozygous in parents and unaffected sibling were identified using Genome Studio (Illumina, California, USA) and AutoSNPa Carr et al., 2006()
.
Family 3

Direct sequencing of FKRP, DYSF and CAPN3 and copy number analysis of SMN1 excluded pathogenic mutation of these genes in III-1. Haplotype analysis of all known LGMD loci in 2010 was performed in patients III-1 and III-2, which excluded most loci, but was compatible with possible linkage to the loci encompassing DYSF (excluded by sequencing) and TTN (no putative pathogenic variants later identified by ES).  
Exome sequencing

Exome sequencing was performed on affected sibling and parents of family 1, both affected siblings and the mother of family 2, and on two of the three affected siblings (patients III-1 and III-2) in family 3. ES for family 1 was performed at BGI (China). ES for family 2 was performed at Perkin Elmer sequencing service center (Perkin Elmer, USA). ES for family 3 was performed by deCODE genetics (Iceland). Fragmented genomic DNA was enriched with the Agilent SureSelect Human all Exon 50Mb capture library (v4) and sequenced 90nt paired-end on Illumina HiSeq2000 sequencer. Patient I-1 was also sequenced at CNG (Evry) following targeted enrichment on a custom library of 2500 genes including genes implicated in neuromuscular diseases and functional candidate genes for congenital myopathies based on data mining. Alignment to the reference genome was done with BWA or SOAP and variant calling with Samtools, SVA or GATK Bao et al., 2011()
. Common variants (> 1%) found in dbSNP, 1000 genomes, Exome Variant Server, and internal exome databases were filtered out. Non-synonymous variants predicted to be damaging, putative splicing variants and coding indel found homozygous in affected and heterozygous in parents were selected, based on the known consanguinity of the families. Truncating variants in the ZAK gene (NM_133646) were identified in all sequencing experiments and in all three families and their presence and segregation confirmed by Sanger sequencing (primers in Supplementary Table 1; exome coverage metrics in Supplementary Table 2).
RNA studies
RNA-seq was performed on RNA extracted from muscle tissue of patient II-1. TruSeq mRNA stranded library preparation was used and the sequencing was performed on an Illumina Hiseq 2000 at McGill University and Genome Quebec Innovation Center (Montreal, Canada). The reads were aligned using STAR Dobin et al., 2013()
. Read counts were obtained using Featurecounts Liao et al., 2014()
 and expression data using DESeq Love et al., 2014()
. To obtain differential expression, the counts were compared to muscle from two samples with normal muscle pathology. Fold change ≥ 2 for up-regulated and ≤ -2 for down-regulated with a p-value ≤ 0.05 was considered significant. Gene Ontology (GO) term and pathway enrichment analysis was performed using DAVID (https://david.ncifcrf.gov). The lists of up-regulated and down-regulated genes were compared to a background list consisting of genes expressed in 11 muscles RNA-seq samples. Selected genes had a RPKM ≥ 1 
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(Mortazavi et al., 2008)
 in more than five samples. For GO term, biological process, molecular function and cellular compartment were considered. Clusters with an enrichment score above 1.5 were considered significant. For KEGG analysis, pathways with a corrected Benjamini p-value ≤ 0.05 and a % FDR > 20 were considered relevant 
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(Paco et al., 2013)
.
For RT-PCR, total RNA was extracted from cells and tissues with Tri-Reagent (Sigma), and cDNA was reverse transcribed using the SuperScript II Reverse Transcriptase (Invitrogen) and random hexamer primers. Real-time quantitative RT-PCR was performed using a Lightcycler 480 (Roche Diagnostics, Meylan, France) with the SYBR Green 1 Master kit (Roche Diagnostics); results were standardized to GAPDH and 18S. Primers for ZAK fragments are in Supplementary Table 1.

Results
Clinical features
Family 1

The male patient from family 1 is French from Caucasian origin. Parents are first-degree cousins.  He was affected from 28mo and is presently aged 27yr (Table 1). Muscle weakness is proximal in upper limbs and diffuse, proximal and distal in lower limbs. Winged scapula is present. The patient can walk up to 200m, has difficulties climbing stairs and is not able to run. Fatigability and diurnal cramps are noted. Clinical examination did not reveal hyperlaxity or contractures. Hyperlordosis is present, and ventilatory capacity slightly decreased from 85% at 17yr to 80% at 21yr. Apart from a slightly elongated face, no facial weakness, ptosis or ophtalmoplegia are present and tongue movement, speech and swallowing are normal. EMG was myopathic in the four limbs. Repetitive nerve stimulation showed a decrement of 10% of the compound motor action potential. Cardiac examination by ECG and cardiac ultrasound was normal. CK was mildly elevated (777, 604, 1334U/l). 
Family 2

Family 2 is of French-Canadian origin from the southwestern part of Quebec. Parents are third degree cousins and do not present any myopathy phenotype, although distal laxity is observed in parents and an unaffected sister. No variants in genes associated with collagenopathies or distal laxity segregating with the hyperlaxity phenotype were identified. Age at diagnosis was 4yr and 2yr for female patients II-1 and II-2. Patient II-1 passed away at age 37 and the youngest is now aged 33yr (Table 1) 
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(Tetreault et al., 2006)
. They were hypotonic with contractures at birth. They demonstrated a generalized slowly progressive muscle weakness. Motor delay was observed in both patients, patient II-1 walked at 3 yr and patient II-2 at 17mo. Patient II-2 is still ambulant but patient II-1 was wheelchair bound following a car accident and a period of prolonged immobilization at 32yr. They both have hyperlaxity, cervical spine hypermotility and contractures; patient II-1 showed elbow laxity and repetitive shoulder dislocation due to the hyperlaxity in combination with ankle and finger contractures. Patient II-1 also has a mild scoliosis, which did not necessitate any surgery. Vital capacity was decreased to 63% and 86% in patients II-1 and II-2, respectively. Cardiac examination by ECG and ultrasound was normal, and there was no CNS involvement. CK level are normal for both siblings (32U/I for patients II-1 and 90U/I for patients II-2) (Table 1).
Family 3

Family 3 is of British Pakistani origin. Parents are first-degree cousins and are unaffected. They have six offspring, of whom three are affected. Patient III-1 is female, and developed pain in her legs and walking difficulties at age 4-5 years, and was noted to have scoliosis at that time. Since then she experienced slowly progressive weakness. On examination at age 32 years she had waddling gait, hyperlordosis, and prominent proximal lower limb with mild foot extensor weakness (Table 1). There was mild proximal upper limb weakness with scapular winging. There was no facial weakness, contractures or hyperlaxity. FVC was 98% in sitting and 86% in lying. Recent echocardiography and ECG were normal. CK was mildly elevated (439U/l). Patient III-2 is male and was noted to be floppy from birth with slow motor development. He had calf hypertrophy and pain in legs while walking in childhood. On examination at age 26 years he had striae, asymmetric calf hypertrophy, quadriceps wasting, a waddling gait and scapular winging (Table 1). CK was mild to moderately elevated (709-1526U/l). Patient III-3 is male and was reported to have floppiness from birth and delayed motor development and scoliosis. He has proximal upper and lower limb weakness with calf hypertrophy and scapular winging. CK was normal to mildly elevated.
Muscle pathology for the three families 
Affected cases from all families shared the histopathological features (Fig. 1) of fiber size variation with hypo and hypertrophic fibers and numerous rounded fibers. Type 1 fibers were very predominant and common to all patients; type 2 fibers were atrophic for patient II-1 (Fig. 1F) and normal in size for patient I-1. Patients I-1 and II-1 also displayed regional replacement of fibers by adipocytes but no inflammatory infiltrate. Some split fibers were noted for patient I-1 (Fig. 1A-C), while an increase in endomysial connective tissue was specific for patient II-1 (Fig. 1D-E). Hyaline bodies were absent. The muscle biopsy of patient I-1 was classified as centronuclear myopathy with rimmed sarcolemma based on the predominance of fibers with central nuclei and abnormal accumulation of mitochondria at the periphery. Centralized and internalized nuclei were also a common feature for patient II-1, sometimes with clump of nuclei. The main difference between the biopsies was the presence of rimmed vacuoles (Fig. 1E) sometimes containing eosinophilic or basophilic masses in patient II-1, while fibers in patient I-1 had a spicular aspect due to the peculiar subsarcolemmal accumulation of mitochondria clearly noted on SDH staining (Fig. 1B). The presence of rimmed vacuoles was also an important feature in patient III-2 (Fig. 1G-H). Both patients III-2 and III-3 had evidence of sarcoplasmic disorganization and patient III-2 also has accumulation of subsarcolemmal material, in keeping with findings in patient I-1 (Fig. 1I).

Electron microscopy analysis revealed that central nuclei are tightly surrounded by myofibrils but not by a halo of membranes and organelles as for classical centronuclear myopathies with mutations in MTM1, BIN1 or DNM2 (Fig. 1J). In patient I-1, it confirmed the spicular aspect is due to subsarcolemmal accumulations of mitochondria that point towards the center of the fiber, separating the myofibrils (Fig. 1K). In patient II-2, it showed the rimmed vacuoles contain whorls of cytomembranes, suggesting an autophagosomal origin (data not shown).
Identification of recessive ZAK mutations

In order to identify the genetic basis of this myopathy, NGS was performed on all families independently (Supplementary Table 2). Targeted sequencing of 2500 candidate genes followed by exome sequencing from patient I-1 and parents was performed. After filtering following a recessive inheritance mode of transmission based on family structure and known consanguinity, the only gene that displayed pathogenic variants on both alleles with the expected segregation was ZAK on chromosome 2q31.1, encoding for the sterile alpha motif and leucine zipper containing kinase (Fig. 2). ZAK mapped to one of the largest homozygous regions, based on DNA microarray analysis and confirmed by exome data (Supplementary Fig. 1A). For family 2, an exome approach was used on both affected siblings and their mother. After filtering for rare homozygous variants (<1% MAF), four candidate genes were identified: RHBG, TMEM177, ZAK and LOXHD1. All of these genes were present in a homozygous region previously identified by homozygosity mapping (Supplementary Fig. 1B). Segregation analysis with the entire family allowed the exclusion of three of these genes, leaving ZAK as the only candidate. In family 3 patients III-1 and III-2 underwent ES and the resulting variants were filtered to include rare (<1% MAF) homozygous variants. SNP data extracted from ES was applied in Homozygosity Mapper to define regions of autozygosity (Supplementary Fig. 1C). Only two genes had rare homozygous variants and these were both within a region of autozygosity (ZAK, CAMK2D). Segregation analysis in patient III-3, both parents and one unaffected sibling excluded CAMK2D and confirmed ZAK as the only remaining candidate gene. Candidate ZAK homozygous variants were: a deletion c.490_491delAT in exon 7 leading to a frameshift and a predicted premature stop codon p.Met164fs*24 in patient I-1, a nonsense variants (c.515G>A; p.Trp172*) also in exon 7 in cases II-1 and II-2, and a T insertion in exon 4 leading to a premature stop codon (c.280_281insT p.Asn95*) in siblings III-1, III-2 and III-3 (Fig. 2A-D).

The mutations were confirmed using Sanger sequencing, and parents were all heterozygous for the changes in accordance with a recessive inheritance. These mutations were not reported in dbSNP, 1000 genomes, NHLBI Exome Variant Server, or the ExAC database. In addition, we did not observe these variants in two internal French and Canadian exome databases (1550 and 2000 samples including ethnically matched individuals) and by Sanger sequencing of controls (200 French and 65 French-Canadians). Noteworthy, there are no homozygous nonsense or frameshift variants for the ZAK gene in any of these databases, supporting the notion that truncations or loss of function in this protein are deleterious. The sequencing of a cohort of 184 unrelated patients classified as centronuclear myopathy and 26 French-Canadian patients affected by a congenital myopathy with hyperlaxity did not reveal additional mutations.

ZAK, also called MLTK, MRK or MLK7, is a member of the mitogen-activated protein triple kinase (MAPKKK) family implicated in signal transduction and encompasses an N-terminal kinase domain encoded by exons 2 to 9, followed by dimerization domains: a leucine zipper motif and a sterile-alpha motif (SAM) (Fig. 2D) 
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(Liu et al., 2000, Bloem et al., 2001, Gotoh et al., 2001)
. An alternate splice isoform 2 differs in the 3’UTR and does not encode the SAM domain. 
Since all uncovered ZAK mutations are predicted to lead to loss of expression of the full-length protein we explored if RNA sequencing would give us some evidence to support mRNA decay.  To assess the impact of the variants on RNA level, transcriptome analysis on patient I-1 and II-1 were performed. Whole transcript microarrays of cells from patient I-1 detected an important decrease in ZAK mRNA level (down to 43% of controls). This observation was confirmed by RT-PCR analysis using two different primer pairs (Fig. 3A). RNA sequencing on skeletal muscle of patient II-1 also demonstrated a significant decrease of ZAK (fold change -3.5 pvalue: 4.17E-10) compared to control samples (Fig. 3B). Western blot analysis on skeletal muscle proteins from patient III-2 showed a complete absence of the 52 kDa band that corresponds to the shorter isoform 2 of ZAK in muscle (Fig. 3C) (Gross et al., 2002). Together, these data strongly support nonsense mRNA decay as the main impact of ZAK mutations.
Physiopathological insight
ZAK was previously reported to be expressed in different tissues with a higher expression in skeletal muscle and heart where the shorter isoform 2 is predominant 
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(Liu et al., 2000, Bloem et al., 2001, Gotoh et al., 2001, Gross et al., 2002)
. Mining the GTEx database confirmed highest expression in skeletal muscle and bladder among 43 human tissues and the predominant presence of isoform 2 in skeletal muscle Consortium, 2015()
. We used RT-PCR from different mouse tissues and differentiating mouse and human muscle cells in culture and found ZAK is expressed in several tissues, especially in type I skeletal muscles such as diaphragm and soleus, while it appeared more expressed in dividing myoblasts than differentiating myotubes (Fig. 3D-E). Together, these data support the importance of ZAK isoform 2 in skeletal muscle.
We compared the transcriptome of patient II-1 muscle with two controls and identified a total 518 differentially expressed genes (124 down-regulated and 394 up-regulated) (Supplementary Table 3). GO enrichment analysis considering biological process, molecular function as well as cellular compartment was performed using DAVID and was consistent with analysis obtained for KEGG pathways (Table 2). Among the up-regulated GO terms and pathways and the most relevant to a muscle disease were cell adhesion, extracellular matrix (ECM), glycosaminoglycan/carbohydrate binding, muscle development, hypertrophic cardiomyopathy and dilated cardiomyopathy, enzyme receptor protein signaling, and TGF-beta signaling. The main down-regulated categories were gluconeogenesis, glucose metabolism and insulin pathway, sarcomere protein, muscle development and differentiation, calcium and MAPK signaling pathway. 

A similar pattern of up and down regulated genes and pathways are observed in other muscle diseases, especially in Ullrich muscular dystrophy (UCMD) but also in X-linked myotubular myopathy (XLMTM) and others (Supplementary Table 3) 
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(Noguchi et al., 2005, Saenz et al., 2008, Kotelnikova et al., 2012, Paco et al., 2013)
. Genes such as MYH8, TNN2 and MYH3, involved in muscle contraction, regeneration and differentiation, are up-regulated in disease muscles 
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(Paco et al., 2013)
. These genes are usually predominantly expressed in fetal skeletal muscles and could be associated with attempt to regenerate the damage muscle fibers. Collagens and ECM genes, including biglycan (BGN) and lumican (LUM), are up-regulated 
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(Saenz et al., 2008, Paco et al., 2013)
 and are known to be an indication of muscle fibrosis 
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(Zanotti et al., 2005, Zanotti and Mora, 2006)
. In contrast to the increased expression of ECM genes, sarcomeric components of the actin cytoskeleton and Z-disc (ACTA1, ALDOA, CSRP3, FLNC, FHL3, MYOZ3, TTN and TCAP) show a lower expression. Genes involved in the glycolytic pathway (PGM1, PGAM2 and FBP2) have a lower expression 
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(Noguchi et al., 2005)
. It is also interesting to observe a decrease expression of the MAPK signaling pathway, since ZAK is a member of the MAPKKK family. The down-regulation of this pathway did not stand out in the transcriptome analysis performed on other muscle diseases and might thus be a more specific signature for ZAK myopathy.

Discussion
We have identified recessive mutations in the kinase ZAK as a novel cause of congenital myopathy. Different mutations were found in three unrelated families with overlapping phenotypes. The mutations were homozygous as suggested from the known consanguinity of the families, segregated as a recessive trait with the disease, caused a premature stop codon within the kinase domain at the N-terminus of the protein, and led to nonsense mRNA decay. 
Clinical and histological spectra

Patients with ZAK mutations share a generalized slowly progressive muscle weakness of neonatal or childhood onset with a mild to moderate decrease in vital capacity (63-98% of predicated vital capacity). Developmental delay and scoliosis are also important clinical features of ZAK myopathy. Unlike other congenital myopathies such as centronuclear, core or nemaline myopathies, no prominent facial weakness is present. The presence of mild contractures with distal hyperlaxity is a major feature in family 2, but is not observed in the other families with the exception of patient III-2 for whom hyperlaxity was described. Inherited muscle diseases are known to have a high clinical heterogeneity, and genetic and environmental heterogeneity may link a single gene with variable clinical features, severity and age of onset 
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(Cirak et al., 2013)
. We believe the patients in this study share sufficient clinical and pathological features to support a common disease mechanism. Noteworthy, although patients of family 3 presented with a congenital/early childhood onset, they displayed a LGMD phenotype in adulthood, suggesting ZAK mutations as a cause of LGMD phenotype as well. At the histopathological level, all patient biopsies share fiber size variation and predominance of type 1, as in other CM. The presence of rimmed vacuoles and especially the spicular subsarcolemmal accumulation of mitochondria could be pathological feature useful to identify additional patients to be tested for ZAK mutations. Targeted or exome sequencing of a larger cohort of patients with myopathies will be needed to characterize the full clinical and pathological spectrum linked to ZAK mutations. Thus, ZAK represents an excellent novel candidate for patients with undefined congenital myopathies or LGMD and no genetic cause identified so far.

Pathological mechanisms

ZAK is a serine-threonine kinase that was implicated in the activation of the ERK, JNK and p38 pathways 
 ADDIN EN.CITE 

(Liu et al., 2000, Bloem et al., 2001, Gotoh et al., 2001, Christe et al., 2004)
. Overexpression in cultured cells induces apoptosis Liu et al., 2000()
 and preliminary experiments in zebrafish confirmed that exogenous expression of ZAK is toxic (unpublished data) suggesting a tightly regulated level of ZAK is needed, consistent with its role in signal transduction. ZAK was also implicated in actin fiber modulation and in the TGF-beta-induced cardiomyocyte hypertrophy in vitro while ZAK overexpression in vivo induced cardiac hypertrophy 
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(Christe et al., 2004, Huang et al., 2004, Hsieh et al., 2015)
. The link between ZAK and these different pathways is interesting since most are involved in myogenesis Burks and Cohn, 2011()
. Signalization through the p38 pathway regulates muscle regeneration and causes the irreversible withdrawal from the cell cycle, which is necessary for the myoblasts differentiation. JNK pathway is known to act as a negative regulator of myogenesis, whereas ERK has many roles such as both enhancing myoblast proliferation and repressing their differentiation. A possible role of ZAK in muscle regeneration is in concordance with the variable muscle fiber size and the presence of central nuclei observed on the muscle biopsies. 

Our pathological data supports that loss of ZAK in human leads to fiber size variation and type 1 predominance as well as accumulation of mitochondria at the periphery fibers in some cases. In vitro assays have shown that ZAK isoform 2 (also known as MRK-beta) preferentially activates the p38/ERK6 pathway via MKK3/MKK6 
 ADDIN EN.CITE 

(Gross et al., 2002)
. Moreover, p38 is constitutively activated in type I skeletal muscle but not in type II fibers muscle and a p38 KO shows specific reduction of slow muscle size over time, indicating a role for p38 in slow muscle growth 
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(Foster et al., 2012)
. Interestingly, the number of type I fibers was significantly increased in soleus from p38 KO mice 
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(Foster et al., 2012)
. Thus, it is plausible that disruption of this MAPKKK cascade underlies the predominance of type I fibers observed in patients. 


Recently, mutations in ZAK were identified in patients affected by development limb defects. Spielmann et al. reported a missense variant (Phe368Cys) and an in-frame deletion both in the SAM domain, which is only present in the longer ZAK isoform 1 (Fig. 2D) 
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(Spielmann et al., 2016)
. The six patients reported in our study carry truncating mutations in the kinase domain and have a distinct phenotype with no split-foot abnormality. This suggests that limb defects are specifically due to variants present in the SAM domain without loss of ZAK. The mutated long isoform of ZAK could potentially act as a dominant negative resulting in a down-regulation of Trp63 in the limb bud 
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(Spielmann et al., 2016)
. The complete inactivation of ZAK seems to have a more severe effect in mice, since the knockout mouse was reported to be embryonic lethal due to severe cardiac edema and growth retardation 
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(Spielmann et al., 2016)
.  In contrast, we are reporting six patients with null mutations in ZAK and presenting a myopathy phenotype. Though we have no evidence for this apparent species difference, it maybe that ZAK is more essential for normal developmental in mice than in Human.

Transcriptome analysis from muscle of one ZAK patient showed similarities with other muscle diseases, in particular congenital myopathies such as UCMD with up-regulation of ECM components as well as a down-regulation of sarcomeric genes and down-regulation of gluconeogenesis as in XLMTM. Up-regulation of ECM genes seems to be common to many dystrophic processes and is potentially an indication of signal transduction defects. While alteration in the regulation of signal transduction can have a wide cellular impact, future studies will be needed to identify the precise role of ZAK and its specific substrates in skeletal muscle and to decipher the molecular cascade of events leading to the associated myopathy.
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Tables


Table 1: Summary of the main clinical, histological and molecular features
Table 2:  GO terms and KEGG pathways enrichment. 
Figure legends

Figure 1: Muscle pathology. (A-C) HE, SDH and Gomori trichrome staining from patient I-1 muscle biopsy. Arrows point to centralized nuclei and arrowheads to subsarcolemmal accumulation of mitochondria. (D-F) Muscle pathology from patient II-1 biopsy. (D) Islands of muscle fibers are lost and replaced by adipocytes. (E) Scattered atrophic or rounded fibers are mixed with normal sized and hypertrophied fibers. Several muscle fibers (arrows) have typical rimmed vacuoles. Endomysial connective tissue is increased in some areas. A few muscle fibers have centrally situated myonuclei. (H&E 350x). (F) The vast majority of muscle fibers are of histochemical type I. The remaining few type II fibers are atrophic. (Myofibrillar ATPase, preincubation pH 10.2; 350x). (G-I) Muscle pathology from patient III-2 biopsy. (G) Muscle fibers with linear cracks and rimmed vacuoles. When displaced, nuclei tend to be in a central position. (H) Scattered fibers with multiple nuclei. (I) Numerous ring fibers (Desmin staining). (J-K) Electron microscopy on patient I-1 biopsy. (J) Ultrastructure of a central nucleus tightly surrounded by myofibrils. (K) Peculiar subsarcolemmal accumulation of mitochondria pointing inside the fibers.  

Figure 2: Genetic analysis and identification of ZAK mutations. (A-C) Pedigrees of the three families and chromatopherograms showing the mutations observed in each family, in relation to the reference sequence NM_133646. Black symbol indicates affected individuals and the dot indicates heterozygous carriers. (A) Family 1 (B) Family 2, (C) Family 3. (D) The ZAK protein encompasses a kinase domain (aa 16-277) with an ATP binding site (aa 45), a proton acceptor site (aa 133) and autophosphorylation sites (aa 161, 165), a leucine zipper (LZ; aa 287-308), and a sterile alpha motif (SAM; aa 336-410 in isoform 1. Two isoforms (iso 1 and iso 2) are known and differ in their C-terminus. Red arrows indicate positions of the frameshift in family 1, the nonsense in family 2 and the frameshift in family 3. Blue arrows indicate the positions of mutations linked to limb defects and reported in Spielmann et al 
 ADDIN EN.CITE 

(Spielmann et al., 2016)

Figure 3: ZAK expression and impact of mutations. (A) RT-PCR from patient I-1 (P1) and control cells with primers amplifying exons 3 to 11 (ZAK_a) or 9 to 11 (ZAK_b). GAPDH and 18S were used as housekeeping gene controls. (B) Gene reads counts from RNA-seq data on muscle biopsies from patient II-1 and two control samples. (C) Western blot analysis of muscle extract from patient III-2 with an anti-ZAK antibody. (D) Comparative RT-PCR analysis of different mouse tissues. GAPDH was used as a housekeeping gene control to normalize the values, which are displayed as a ratio compare to quadriceps. (E) Comparative RT-PCR analysis of mouse and human myoblasts and myotubes from 0 to 13 days of in vitro differentiation. GAPDH was used as a housekeeping gene control to normalize the values, which are displayed as a ratio compare to mouse C2C12 muscle cells at 3d. Error bars represent s.e.m.

Supplementary materials

Supplementary Table 1: Primer sequences for amplification of genomic DNA or coding DNA.

Supplementary Table 2: Exome coverage metrics.
Supplementary Table 3: List of genes representing significant changes in expression in patient II-1. 

Supplementary Figure 1: Homozygosity-by-descent mapping in the three families. A) Family 1, the largest homozygous regions are listed based on the microarrays analysis and the interval and size are based on the exome data that confirmed their homozygosity (hg19 release). B) Family 2, largest homozygous regions and size are based on SNPs array. ZAK is contained in the 2q31 homozygous region. C) Family 3, the homozygous region identified using Homozygosity Mapper and based on exome data. 
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