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Abstract

We study the optimal investment/abandonment decision for a project, where costly se-

quential experimentation provides information about its true profitability. We derive the opti-

mal decision rule by appropriately extending the Bayesian framework of sequential hypothesis

testing. The optimal decision time takes the form of the first exit time of a particular inaction

region. We find that increased noise in the observations lowers the value of the project, and

that the effect on the expected time at which a decision is taken is ambiguous. Delays in obser-

vations affect both project value and the inaction region. The model is illustrated with a health

technology assessment application using data on standard versus robot-assisted laporascopic

prostatectomy.
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1 Introduction

Since its introduction by Myers (1977) and its textbook treatment by Dixit and Pindyck (1994),

the real options approach has been used in many fields of economics, finance, and management

to understand (investment) timing decisions and project valuation. The approach recognizes that

most investment projects are (partly) irreversible and subject to uncertainty. In this paper we

focus on a decision maker (DM) who knows the profitability in various states of the world, but

faces uncertainty about this state. The uncertainty is resolved gradually through sequential ex-

perimentation in continuous time. Profitability in the “good” state of the world gives an incentive

to invest if the DM is sufficiently sure that this state of the world prevails. The costs of sequential

experimentation give an incentive to abandon the project if the DM is sufficiently sure that the

“bad” state of the world prevails. Throughout, to keep matters concrete, we apply our model to

a typical health technology assessment (HTA) problem that relies on information obtained from a

clinical trial.

The paper extends the simplest model of sequential hypothesis testing with sampling costs,

first developed by Wald (1947), analysed in a Bayesian set-up by Mikhalevich (1958) and further

developed by Shiryaev (1967)1, to a decision-theoretic setting that allows for comparisons with

standard real options models. This is done by extending the Shiryaev (1967) model to a case

where discounted expected payoffs are maximized, rather than non-discounted statistical losses

minimized.2 It turns out that these extensions are simple enough to allow for analytical results,

while being rich enough to allow for practically relevant and economically interesting conclu-

sions.

Sequential experimentation is modeled by assuming that the DM observes an arithmetic Brow-

nian motion with either a positive or zero trend; these are the two states of nature. The obser-

vations provide (costly) information about these states of nature.3 The DM wishes to find the

optimal time to invest in or abandon an investment project. Optimality here is taken to mean

maximization of the discounted expected value of the project – the revenues and costs of which

depend on the state of nature in such a way that its net present value (NPV) is positive (negative)

in case the trend is positive (zero) – net of the costs of observations.

Like Shiryaev (1967) we can prove that there exists a unique solution to this problem (Sec-

1See also Shiryaev (1978, Section 4.2).
2The Shiryaev (1967) model does not allow for discounting.
3We argue in Section 3 that this set-up can be seen as the continuous-time limit of a simple sequentially conducted

clinical trial.
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tion 3) that depends only on the process measuring the posterior belief in the trend being positive.

This solution consists of a connected “inaction region” (Stokey, 2009) in the interior of the unit

interval. The upper boundary of this region represents the trigger beyond which investment is op-

timal, whereas the lower boundary represents the trigger below which abandonment is optimal.

We also obtain analytical results on comparative statics and the expected time until a decision is

taken (Section 4). In addition, we extend the model to include measurement delays (Section 5).

Such delays are of particular relevance to the case of HTA, where health benefits of treatments are

typically only observed after significant periods of time.

We find that, first, the investment (abandonment) trigger is decreasing (increasing) in the

volatility of the observations and that the value of the project decreases in volatility. These

findings are the exact opposite of standard findings in the real options literature (see Dixit and

Pindyck, 1994, Chapter 5 for a standard model). This is related to a difference in the source of un-

certainty. In the standard real options approach the costs and/or benefits of a project are assumed

to be uncertain. By setting a higher adoption threshold and, thus, typically, waiting longer for

more information the decision-maker can lower the probability of erroneously adopting or aban-

doning the project. As a consequence higher uncertainty implies wider adoption/abandonment

bounds and a higher (option) value for the project. In our model, uncertainty enters as noise in

the (clinical trial) observations. There is no uncertainty over benefits and costs conditional on the

true state of nature. Rather, the uncertainty is about the likelihood of each state of the world. This

means that if uncertainty increases (i.e. the observations become more noisy), then the value of

waiting for more information decreases. Consequently, the option value of the project is lower.

We show, numerically, that this does not necessarily mean that decisions are, in expectation, taken

sooner.

In addition, delays in observations have important consequences, both for the value of the

project as well as for the decision bounds. Observational delays are very important in practice, and

particularly in clinical trials where health benefits of treatments can take years to be fully known.

In Section 5, we derive an explicit expression for the value function and show, numerically, that

the inaction region shrinks if the delay gets longer. In fact, we show that there may be cases where

the optimal decision rule is to take an immediate decision, irrespective of the prior. The reason

for this result is that, with delay, the present value of the trial’s cost before the first observation

becomes available can outweigh the (more heavily discounted) informational benefits of the trial.
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2 Related literature

Our paper is closely related to Kwon and Lipmann (2011), who use a similar stochastic set-up

to analyse a somewhat simpler decision theoretic model than that studied here. We extend their

results in several directions. First, we generalize the payoff structure of their model in two ways.

Whereas they study a “new market” model, our model allows for an upgrading of an existing

technology. In addition, our model can deal with both a decision theoretic as well as a purely sta-

tistical approach. The latter is still often used in the literature on clinical trials, so it is important

to show that such a model is a special case of our more general set-up. At a more technical level,

we obtain a slightly stronger result in that we prove uniqueness, rather than mere existence, of the

investment/abandonment triggers. Secondly, in contrast to our model, Kwon and Lipmann (2011)

assume that the observation of signals is costless. Thirdly, we provide more detailed analytical re-

sults on comparative statics. Finally, we extend their model to study the case, important in fields

like health technology assessment, where results of experiments are observed with a delay.

Another closely related paper is Moscarini and Smith (2001), who model an experiment the

volatility of which can be continuously influenced by the DM. This is modeled by assuming that

at any time t the DM can decide how many observations to draw. In our model we have fixed

this number to one. The main advantage of this lack of flexibility is that we are able to derive

analytical comparative statics results. Also, in clinical trials the experimenter usually does not

have the freedom to choose how long treatment per patient is going to take, so that the assumption

of a fixed number of observations over a given time interval is not unrealistic.

Sequential hypothesis testing and bandit problems

There is a close link between the learning that happens in models of sequential hypothesis testing

and multi-arm bandits. The latter are used in situations where agents try to optimise their pay-

offs while simultaneously gathering more information about a risky alternative to a safe option.

Learning only takes place when the risky option is chosen. These models, therefore, analyse the

trade-off between maximizing the current reward and the value of getting more precise informa-

tion about the future reward. Typically, the decision maker can choose between using a “safe”

arm, or a “risky” arm. By playing the safe arm, the agent receives an immediate payoff (initially

usually lower in expectation than when playing the safe arm), but, as the process continues, the

payoffs of the risky arm evolve and the player gathers more information about the distribution of

returns from the risky arm. In the economics literature, bandits have been used to model search
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processes (see Rothschild (1974) and Bergemann and Valimaki (2006) for an overview), learning

and matching in markets such as the labour and consumer markets (see Jovanovic (1979), Sun-

daram (2005) and Arlotto et al. (2014)) and agent experimentation (see Bolton and Harris (1999),

Keller et al. (2005), (Keller and Rady, 2010) and Heiodhues et al. (2015)).

An example of a typical bandit model is provided by Bolton and Harris (1999), who analyse

a game where players have to determine, continuously, the intensity with which a safe and risky

arm are used. In fact, our informational set-up is similar to theirs and their cooperative bench-

mark is quite close to our model. The main differences are that the decision-maker in our model

does not get any payoffs until a decision about which arm to use is chosen (here choosing the safe

arm could be interpreted as abandoning the project), that experimentation is costly, and that the

decision to stop sampling involves sunk costs. In addition, the model by Bolton and Harris (1999)

allows the decision-maker to continuously adjust the intensity with which each arm is played. In

that sense, their model is more like an optimal portfolio problem, rather than an optimal stop-

ping problem. So, while the modeling of learning in bandit problems is closely related to that of

sequential hypothesis testing, the focus and, hence, the mathematical tools to analyse such prob-

lems are substantially different.4 In particular, dynamic programming models, where the goal is

the continuous optimization of a certain performance criterion flow, are solved by selecting an

appropriate feedback policy (and corresponding value function). Optimal stopping, in contrast,

deals with selecting a stopping time to achieve a set purpose. Optimal stopping arises naturally

in situations when the timing of the decision is crucial (e.g., determining when it is optimal to sell

a stock). The “bang-bang” solution, where a trigger determines the switch from one arm to the

other, obtained in the cooperative benchmark of Bolton and Harris (1999) is the optimal decision

rule in a large class of feedback rules. In our model, the decision rule must be a stopping time.

In summary, the results of bandit and optimal stopping problems may look very similar (i.e., the

DM acts when a certain trigger is reached), the DM’s objective is different and, thus, is the solution

method.

In a clinical trial setting, the Bolton and Harris (1999) model could be interpreted as follows.

At each point in time a patient enters the trial and the decision maker uses a mixed strategy to

determine if the patient gets the placebo (safe arm) or the new drug (risky arm). The crucial

difference between this set-up and ours is that the mixed strategy of the decision-maker changes

4Keller et al. (2005) and Keller and Rady (2010), in a similar set-up to Bolton and Harris (1999), study a game of

strategic experimentation where the risky arm distributes lump-sum payoffs according to a continuous time Poisson

process, rather than a model based on Brownian motion.
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over time in light of the evidence. Studying clinical trials in this way moves quite far from current

practice, as the objective of the Bolton and Harris (1999) model is to maximize expected payoffs

during the trial, rather than trying to learn as quickly as possible what decision (adoption or aban-

donment) should be taken. In particular, the Bolton and Harris (1999) could not be implemented

alongside current or past clinical trials, whereas our approach can.

In the clinical trial interpretation of our model, we stay closer to real-world trials where two

patients enter the trial at each time, one being given the placebo and one being given the new drug.

Experimentation is then undertaken continuously until the optimal stopping time. It is only at

this point that the decision maker chooses either for abandonment or adoption of the technol-

ogy and obtain some pre-specified payoff. The abandonment option is typically not analysed in

the bandit literature. An important feature of our model is that the adoption and abandonment

bounds have to be determined simultaneously, which implies that the option values for abandon-

ment and adoption are interdependent. We show in a comparative static exercise (Section 4) how

the bounds vary when changing a number of parameters. It turns out that varying parameters

that directly drive the statistical evidence process (e.g., volatility or mean expected net benefit

of the technology) brings about symmetric changes in the decision bounds in the sense that they

both widen or both shrink the inaction region. This is due to the fact that both adoption and aban-

donment payoffs are functions of the posterior process. On the other hand, we show that varying

parameters that enter only the payoffs, but not the evidential process (e.g., the expected benefit

from adoption if the technology is superior), moves the decision bounds in the same direction,

i.e., they both increase or they both decrease. The effect on the inaction region is then ambiguous.

This is to be expected as the balance of the adoption and rejection payoffs is changing in favour of

one over the other. So, our model provides some novel insights that may also be of interest to the

bandit literature.

Health technology assessment and sequential analysis

While our model can be applied to many investment projects with costly experimentation we

choose to focus in this paper on clinical trials. One advantage is that it makes it easier to see the

practical relevance of the model. Secondly, sequential methods, in the form of group-sequential

analysis have long been applied to the field of medical statistics, albeit typically in discrete time.5

Recently, due to the escalating costs of drug development and testing, there has been great in-

terest in early stopping in clinical trials with the Food and Drug Administration (FDA) issuing

5Among the many references, only the seminal work by Armitage (1975) and Berry (1985) are mentioned here.

6



non-binding guidance for such study designs (FDA, 2010). Additionally, clinical trials evaluating

medicines, medical devices and procedures have also seen, due to changes in regulatory reim-

bursement requirements of many health care systems, the explicit assessment of economic value

of these interventions (Ramsey et al., 2005).

While randomized clinical trials are traditionally considered to be the gold standard for de-

termining the safety and efficacy of health-care interventions (Spiegelhalter et al., 2004) and their

outcomes largely determine whether new health-care technologies are approved by regulatory

agencies, governments have become increasingly concerned about the value for money of such

technologies. In fact, even if a technology displays superior efficacy in a controlled environment

such as a clinical trial, there still remains the question of its cost-effectiveness. In this context, the

example of health technology assessment is topical. In particular, especially for those interven-

tions that display immediate effects, it is now more common for cost-effectiveness evaluations to

be conducted alongside clinical trials (Meltzer and Smith, 2012)

In clinical research, typical adoption/abandonment/postponenment decisions take place after

enough evidence has been provided to pass a purely inferential evidence threshold (usually stated,

explicitly or implicitly, in terms of a p-value). However, such traditional sample size calculations

tend to be based on arbitrary rules of inference, typically Type I and Type II error probabilities,

and do not reflect the cost of making such errors (William and Pinto, 2005). Recently, Montaz-

erhodjat and Lo (2015) emphasised that the traditional approach to inference can bring about

thresholds that are too conservative and lead to ”overly large” trials (Berry, 2006) and long ap-

proval processes for drugs intended to treat serious conditions (FDA, 2006, 2013). They suggest

to incorporate the patient’s perspective when calculating trials’ sample sizes and critical values

for a fixed-sample design. In particular, in their Bayesian framework emphasis is given to the

number of patients affected by a disease and disease severity.

Motivated by the recent changes in health-care technologies approval requirements and in-

creased criticism of standard inferential rules for clinical trials’ design, our model seeks to com-

bine the statistical evidence gathered during clinical research with cost-effectiveness analysis in

order to obtain optimal economic decisions. Since the decision rule (implicitly) used in tradi-

tional inference is a special case of the decision rules that we allow, our approach is superior in

terms of expected net benefits. However, while our model is mainly aimed at providing a dynamic

cost-benefit analysis, it is rich enough to model purely inferential concerns of the type mentioned

above.

Our decision framework is linked to a recent line of research that argues for the explicit in-
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clusion of uncertainty and sunk costs. Palmer and Smith (2000), for example, apply the Dixit and

Pindyck (1994) real options approach to the adjustment (under a certain degree of irreversibil-

ity and uncertainty) of the incremental cost-effectiveness ratio for a drug. Driffield and Smith

(2007) use real options to argue for a watchful waiting regime for diseases with slow progression.

Forster and Pertile (2013) appeal to real options to argue that flexibility and irreversibility of ac-

tions should play a much bigger role in HTA than they are hitherto assigned. However, presently

the real options approach has not been implemented in any systematic way (Meltzer and Smith,

2012).

Closely related to our work is Pertile et al. (2014), who view adoption, treatment and research

decisions as a single economic project, and argue that the dynamic approach to HTA can provide

efficiency gains in resource allocation. Their approach, however, is one of sequential estimation,

whereas ours is one of sequential hypothesis testing. The advantage of our hypothesis testing ap-

proach is that it “dichotomizes” the decision (Draper, 2013). While Draper (2013) argues that this

is unnecessary, it is precisely this assumption that allows us to derive many analytical properties,

even in a more complicated case with delayed observations. Papers without this feature, such

as, for example, Hampson and Jennison (2013) or Chick et al. (2015), typically have to resort to

numerical solutions. In short, what we lose in realism we gain in analytical clarity.

3 The Model and Main Result

Consider a decision-maker (DM) who is observing costly signals in continuous time about the

profitability of an investment project. The profitability depends on the state of the world, θ,

which can be “good” (θ = 1) or “bad” (θ = 0). To make matters concrete, we model a DM who

has to value a new health technology and observes the outcomes of an ongoing clinical trial in

which patients are treated sequentially. In order to make a decision about adopting or abandoning

the new technology, the DM needs to carefully consider the benefits and costs of each decision,

conditional on the events {θ = 1} and {θ = 0}. We require that benefits and and costs are all

measured in monetary units.6 We introduce the following quantities, all of which are assumed to

be known ex ante by the DM:

• B1 > 0: the net benefit of the new health technology if θ = 1;

• B0 ≥ 0: the net benefit of the new health technology if θ = 0;

6In the UK, for example, health benefits are usually measured in quality adjusted life years (QALYs), which allows

for comparison between different health technologies.
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• B ≥ 0: the net benefit of the existing health technology;

• I > 0: the sunk costs of investing in the new health technology;

• c > 0: per period cost of running the clinical trial;

• L ≥ 0: the loss of not using the new technology if θ = 1;

• P ≥ 0: per period penalty, incurred during the trial, of not using the new health technology

if θ = 1.

Remark 1. In a purely economic decision theoretic framework, where profits and losses, rather than

statistical errors are the focus of the analysis, we will typically set P = L = 0. However, our framework

can also be used in a purely statistical setting. In that case, I represents the loss of a Type I error and L

denotes the loss of a Type II error. If one sets B0 = B = P = 0 and B1 = I , then a standard (Bayesian)

statistical decision theoretic model appears.

Remark 2. The last term, P , represents a penalty for not using a new health technology during the trial

that is, in fact, better than the existing technology. It has been argued in the literature (Palmer and

Smith, 2000) that this should be taken into account explicitly in health technology assessment, because

payoffs in an HTA exercise are not just reflecting “profits” and “losses”, but represent human lives.

Any patient who is outside the trial (and those in the trial but not enrolled in the arm with the new

technology) effectively misses out on the incremental benefits related to the new technology (conditional

on it being superior) leading to a loss to the heath-care system. This loss cumulates until the new

technology is adopted (and will continue to accumulate if a superior technology is abandoned). A recent

report explicitly mentions that “[d]elayed adoption leads to loss of health benefits to patients who might

have benefited from earlier access to technologies which prove to be cost-effective” (YHEC, 2009, p. 5).

As this is a controversial issue and no consensus exists in the literature, we will typically set P = 0 in

numerical examples. The payoffs B1, B, B, and L will be in terms of discounted present values over the

life-time of the technology being used on the entire population of patients.

In terms of parameter restrictions it is appropriate to assume that B0 − I < B ≤ B1 − I , so that

the new technology outperforms the current technology if, and only if, the state of the world is

θ = 1. Table 1 summarises the payoffs of investment and abandonment under different states of

the world.
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State of the world

θ = 1 θ = 0

Decision
Adoption B1 − I B0 − I

Abandonment B− L B

Table 1: Payoff matrix of a health technology decision problem.

If the DM takes a decision at time t, when the (posterior) belief in the event {θ = 1} is πt ∈ (0,1),
the expected net present value of adoption/investment, denoted by FI , is

FI (πt) : = πt(B1 − I ) + (1−πt)(B0 − I )

= πt(B1 −B0) +B0 − I .
(1)

Similarly, if at time t the decision maker decides to abandon the new health technology, then the

expected net present value is

FA(πt) : = πt(B− L) + (1−πt)B

= B−πtL.
(2)

So, at time t the DM will choose to invest if, and only if,

πt > π̄ ≡ B+ I −B0

B1 +L−B0
. (3)

Note that B1 > B + I > B0 implies that π̄ > 0. The problem is only interesting if π̄ < 1 (otherwise

investment is never optimal), i.e. if

B1 − I > B− L.

That is, the net payoff of investing in the new health technology if θ = 1 must exceed the payoff of

the current treatment net of the loss that is incurred if θ = 1 and the new technology is not used.

Until a decision is taken, the decision maker is assumed to incur a per-period cost, c > 0, for

conducting a clinical trial and a per-period penalty, P, for not using the new technology in case

θ = 1. Assuming that all payoffs and costs are discounted at a constant rate r > 0, the decision

maker therefore needs to find a stopping time τ∗ that solves the optimal stopping problem

F∗(π) = supτ∈T Eπ

[

−
∫ τ

0
e−rt(c +πtP)dt + e−rτmax{FI (πτ),FA(πτ)}

]

= Eπ

[

−
∫ τ∗

0
e−rt(c +πtP)dt + e−rτ

∗
max {FI (πτ∗),FA(πτ∗)}

]

,

(4)

where T is the set of all stopping times with respect to an appropriate filtration defined below.
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Remark 3. The penalty of not using a superior technology during the running of the clinical trial is

here assumed to be a linear function of the posterior belief in a superior technology. This restriction

to linearity is not necessary. For the proof of Proposition 1 below, a more general penalty function,

P : (0,1) → R+, which is increasing, convex and satisfies P(1) > 0, would be valid. For the model

with delays in measurement that is discussed in Section 5, however, linearity makes the argument much

simpler. For that reason we will restrict ourselves to a linear penalty function in the remainder.

The clinical trial provides information about the true state of nature and is used to obtain the

posterior process (πt)t≥0. We view the optimal stopping problem (4) as one of Bayesian sequential

testing of two simple hypotheses in continuous time. We use the formalization by Shiryaev (1978)

as the starting point of our model. As in his setup we assume that uncertainty is modeled on

a probability space (Ω,F ,Pp) for a family of probability measures (Pp)p∈[0,1], and that, for fixed

p ∈ [0,1], we are given a random variable θ̃, representing the true state of the world and taking

values in {0,1}.7 For p ∈ (0,1), the probability measure Pp is obtained as

Pp = pP1 + (1− p)P0,

where P1 and P0 are degenerate distributions with P1(θ̃ = 1) = P0(θ̃ = 0) = 1.

On this probability space we construct a continuous-time model of a sequential clinical trial.

Before introducing the model in continuous time, we build one in discrete time, to illustrate the

main ideas. Consider a time interval [0, t], for some fixed t > 0. During this time, assume that

we observe the outcomes of the trial sequentially at n equally spaced occasions dt = t/n, i.e., at

times {0 = t0, t1, . . . , tn = t}. The outcome of a clinical trial at time ti is measured in terms of the

cumulative benefit (often measured relative to some existing technology) to the patients in the trial

and is denoted by Xi . We assume that observations consist of a signal and a noise component

and that both components depend on the time interval between observations. This reflects the

idea that more patients will be treated during longer time intervals. To keep things as simple as

possible, the noise component is assumed to be binary, which implies that between times ti−1 and

ti the observed cumulative benefit either goes up by a factor U , or down by a factor D, both with

equal probability. In particular, it is assumed that

U = θµdt +σ
√
dt, and D = θµdt −σ

√
dt.

Here σ measures the magnitude of the noise component, and µmeasures the expected cumulative

benefit per unit of time conditional on the new technology being superior. The total accumulated

benefit at time t after n steps is equal to X(n)(t) :=
∑n

i=1Xi .

7Since we use a Bayesian framework, the parameter θ is assumed to be the realization of a random variable θ̃.
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In order to obtain analytical results, we move to the continuous-time limit of this simple

model. For fixed t, we do this by increasing the number of time steps at which evidence is ob-

served. To that effect, define Xt := limn→∞X(n)(t), where the limit is understood to be in dis-

tribution.8 According to the central limit theorem (CLT), the conditional distribution of Xt is

well-defined and is given by

Xt |θ ∼ N(θµt,σ2t).

The only continuous-time stochastic process X := (Xt)t≥0, that gives these distributions at each

finite time t is the arithmetic Brownian motion (ABM)

Xt = θµt +σBt .

Here (Bt)t≥0 is a standard Pp-Brownian motion, and p and 1− p play the role of prior probabilities

of the statistical hypotheses

H0 : θ = 0, and H1 : θ = 1,

respectively.

Remark 4. Applying the CLT in deriving the limit distribution of Xt only gives point-wise convergence

for fixed t. A fairly straightforward application of Donsker’s Invariance Principle (see, for example,

Steele, 2001, Theorem 5.4) shows that for all x ∈R,

lim
n→∞

P
(

X(n)(·) ≤ x
)

= P (X(·) ≤ x) .

Apart from theoretical importance, this result is of practical interest as it shows that the continuous-time

model is a limiting case of a discrete-time model, the latter more likely being an accurate description in

real-world applications.

Since we interpret the observations X as being obtained from a clinical trial, the parameter

µ represents the cumulative health benefits of the new technology. In many cases, this will be

a benefit relative to some existing technology that is to be expected in one time unit of trials

conditional on the new health technology being superior. What is understood by “superior” can

depend on the particular application. For example, one could compute the per patient break-

even incremental benefit of the new health technology over the best existing treatment net of its

additional cost. The parameter µ then equals this net benefit multiplied by the number of patients

treated in the trial during a year. The parameter σ is a measure of the standard deviation due to

8Note that n→∞ implies that dt ↓ 0.
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random effects on health benefits from patient to patient. Another approach would be to apply

the concept of “clinically important differences” as introduced by Samsa et al. (1999).

The process (Xt)t≥0 generates the filtration FX = (FX
t )t≥0, which is augmented with the Pp-

null sets. The set of FX -stopping times is denoted by T . For all t ≥ 0, the Radon-Nikodym

derivative

Λt :=
d(P1 |FX

t )

d(P0 |FX
t )

,

defines the likelihood ratio process (Λt)t≥0. Shiryaev (1978) shows that the process (Λt)t≥0 admits

the representation

Λt = exp
( µ

σ2

(

Xt −
µ

2
t
))

, t ≥ 0.9

The posterior process (πt)t≥0, with πt = Pp(θ̃ = 1 | FX
t ), can be obtained as a function of the

likelihood ratio process using Bayes’ rule:

πt =

(

p

1− pΛt

)/(

1+
p

1− pΛt

)

.

From Ito’s lemma it then immediately follows that (πt)t≥0 solves the stochastic differential equa-

tion

dπt =
µ

σ
πt(1−πt)dB̄t , with π0 = p, Pp-a.s., (5)

where
(

B̄t

)

t≥0, with

B̄t :=
1

σ

(

Xt −µ
∫ t

0
πsds

)

, (6)

is a standard Pp-Brownian motion, called the innovation process. The process (πt)t≥0 is time-

homogeneous and strongly Markovian under Pp. Note that, since Fπ = FX , the set of Fπ-

stopping times is T , so that problem (4) is well-defined.

With this sequential model of a clinical trial in hand we can solve the optimal stopping prob-

lem (4). In Proposition 1 below, we show that the state space (0,1) can be split into three regions.

The first one is a region around π̄ where continuation of the trial is optimal, thence called the

continuation region, and denoted by

C = {π ∈ (0,1)|F∗(π) >max(FA(π),FI (π))} = (πA,πI ),

where πA and πI , with 0 < πA < π̄ < πI < 1, are the abandonment and investment triggers, respec-

tively. When π gets large enough we enter the investment region, where adoption of the health-care

9From Ito’s lemma it follows that, conditional on θ, the process (Λt )t≥0 follows the geometric Brownian motion

(GBM) dΛ
Λ

= θ
µ2

σ2 dt +
µ
σ dB.
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technology is optimal. This region is denoted by

DI = {π ∈ (0,1)|F∗(π) = FI (π)} = [πI ,1).

Conversely, when π gets low enough, we enter the abandonment region, where abandoning the

clinical trial is optimal. This region is denoted by

DA = {π ∈ (0,1)|F∗(π) = FA(π)} = (0,πA].

In order to derive the value function F∗ in (4), henceforth called the value of the new technology,

we introduce the parameter

γ :=
1

2

√

1+4r

(

σ

µ

)2

>
1

2
,

and, for given 0 < πA < πI < 1, the functions ν̂πA,πI
: [πA,πI ]→ [0,1] and ν̌πA,πI

: [πA,πI ]→ [0,1],

defined by

ν̂πA,πI
(π) :=

√

π(1−π)
πI (1−πI )

(
1−πA
πA

π
1−π

)γ −
(

πA
1−πA

1−π
π

)γ

(
1−πA
πA

πI
1−πI

)γ −
(

πA
1−πA

1−πI
πI

)γ ,

and

ν̌πA,πI
(π) :=

√

π(1−π)
πA(1−πA)

(
1−π
π

πI
1−πI

)γ −
(

π
1−π

1−πI
πI

)γ

(
1−πA
πA

πI
1−πI

)γ −
(

πA
1−πA

1−πI
πI

)γ ,

respectively. In Appendix A we prove the following proposition.

Proposition 1. Suppose that

1. B1 −B0 +P/r > 0,

2. L−P/r ≥ 0,

3. B > B0 − I ,

4. B1 − I > B− L, and

5. B+ c/r > π̄
γ+1/2

π̄+γ−1/2 (L−P/r).

Then there exist unique thresholds πA and πI , πA < π̄ < πI , such that the optimal stopping time is the

first exit time of (πA,πI ), i.e.

τ∗ = inf{t ≥ 0|πt < (πA,πI )}.

14



In addition, the value of the new health technology, if the posterior belief in {θ̃ = 1} is π, equals

F∗(π) =





























FA(π) if π ≤ πA

−
(
c

r
+π

P

r

)

+ ν̂πA,πI
(π)

(

FI (πI ) +
c

r
+πI

P

r

)

+ ν̌πA,πI
(π)

(

FA(πA) +
c

r
+πA

P

r

) if πA < π < πI

FI (π) if π ≥ πI .

(7)

The triggers πA and πI are the unique values for which (7) is C1 for all π ∈ (0,1).

Remark 5. The first four conditions in Proposition 1 are fairly natural parameter restrictions to ensure

that the net present value functions of adoption and abandonment are well-behaved. Condition 5, how-

ever, may be too strong for certain applications. It can be relaxed to a condition that is more difficult to

check and requires more notation; the proof of Proposition 1 gives more details. Note that, in the fairly

natural case where L = P/r, the final condition is always satisfied.

For π ∈ (πA,πI ), the values ν̂πA,πI
(π) and ν̌πA,πI

(π) are the expected discount factors of first

reaching πI and πA, respectively, given the current posterior probability π. So, if we denote the

first hitting times of πI and πA from C by τ̂(πI ) and τ̌(πA), respectively, then

ν̂πA,πI
(π) = Eπ

[

e−rτ̂(πI ); τ̂(πI ) < τ̌(πA)
]

, (8)

and

ν̌πA,πI
(π) = Eπ

[

e−rτ̌(πA); τ̂(πI ) > τ̌(πA)
]

. (9)

In the region C = (πA,πI ) the value of the project is, therefore, equal to the cost of running

the trial forever and never taking a decision, corrected for the expected net value of adopting or

abandoning the health technology at the first time C is exited, at πI or πA, respectively, discounted

back to the current time using the expected discount factor.

4 Comparative Statics

In this section we investigate the sensitivity of the solution to (4) with respect to some of the

model’s parameters.

Proposition 2. Suppose that the conditions of Proposition 1 hold. Let τ∗ = inf{t ≥ 0|πt < (πA,πI )} be
the unique solution to (4). It then holds that
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B = 30 B0 = 40 B1 = 60

I = 20 c = 3

L = 0 P = 0

(a) Payoffs

r = .1 µ = 2 σ = 1

p = .5

(b) Parameter values

Table 2: Parameter values for a base-case numerical example.

• πA is increasing and πI is decreasing in the cost of the trial, c;

• both πA and πI are decreasing in the benefits of the technology if superior, B1;

• both πA and πI are increasing in the benefits of the current technology, B;

• πA is increasing and πI is decreasing in the volatility, σ , provided that πA < 1/2 < πI ;

• πA is decreasing and πI is increasing in the expected benefits in the trial (conditional on θ = 1),

µ, provided that πA < 1/2 < πI .

The proof of this proposition can be found in Appendix B.

In order to assess the quantitative effects on the bounds, the ex ante (prior) value of the new

technology, F∗(p), the expected time until a decision is made, and the expected costs of the trial,

we conduct a numerical analysis. The payoffs and parameters for a base-case scenario are given

in Table 2. For this case it turns out that πA = 19.99% and πI = 79.44%.10 For different values of

the posterior belief in the event {θ̃ = 1} the value of the new technology is depicted in Figure 1a.

This figure shows the value of waiting, for beliefs between the thresholds πA and πI . Note that

this value represents both the upside of the potential benefits if the new technology turns out to

be superior as well as the downside of finding out that the new technology is not superior.

For each π ∈ (πA,πI ) the probabilities of investment and abandonment can actually be com-

puted explicitly as (see, for example, Poor and Hadjiliadis, 2009)

π −πA

πI −πA
, and

πI −π
πI −πA

,

respectively. For the base-case scenario these probabilities of investment and abandonment are

depicted in Figure 1b. The investment probability is linearly increasing, because it becomes more

likely that πI is reached before πA as the posterior belief in {θ̃ = 1} increases. The probability of

an abandonment decision, consequently, goes in the other direction.

10All calculations are executed in Matlab.
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Figure 1: Value of technology and decision probabilities for base-case scenario.

Note that the expected cost of the trial is given by

Ep

[∫ τ∗

0
ce−rtdt

]

=
c

r

(

1− Ep
[

e−rτ
∗])

=
c

r

(

1− ν̂πA,πI
(p)− ν̌πA,πI

(p)
)

.

Note that Ep
[

e−rτ
∗]
and Ep[τ

∗] do not necessarilymove in the same direction. The latter expectation

equals

Eπ[τ
∗] =

2σ2

µ2

{

log
[(

π

1−π

)1−2π(1−πA

πA

)1−2πA
]

+
π −πA

πI −πA
log

[(
πA

1−πA

)1−2πA
(
1−πI

πI

)1−2πI
]}

.

(10)

The derivation of this expectation is standard (see, for example, Poor and Hadjiliadis, 2009).

The comparative statics for the noise in the clinical trial, σ , are given in Figure 2. From a

real options perspective, these appear to be counterintuitive as they show that project value is

lower for higher levels of noise. This is the opposite effect found in the real options literature,

where more uncertainty increases the value. The reason for this difference lies in the nature of the

uncertainty. Here, if σ increases, we are paying to keep a trial alive that provides less information.

That means that waiting leads to less precise information, which makes waiting less valuable. As

the trial is costly, one might as well decide sooner. In other words, the costs of waiting (conducting

more trials) do not outweigh the benefits (the extra evidence accruing from the trials), because the

trials are less informative. The effect of σ on the expected length of the trial and its expected costs

is ambiguous. This happens because of two opposing effects. On the one hand, a higher volatility

makes the trial less informative leading to an increasing trial length. On the other hand, the

decision bounds narrow, which implies a decision is reached earlier. The relative weight of these

effects changes as σ is increased.
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Figure 2: Comparative statics for σ .

Recall that the parameter µ measures the expected net benefit of the new technology in the

trial over a unit of time, conditional on it being superior. This implies that µ and B1 are closely

related. In fact, these two parameters should only differ in so far as that B1 refers to the population

of treated patients after approval, whereas µ refers to the patients treated in the trial. Here we

keep the benefits B1 constant, so we are, implicitly assuming that we are treating more patients

at the same cost in the trial. The comparative statics for the parameter µ are depicted in Figure 3.

It should not come as a surprise that the adoption/abandonment bounds get wider, because, ce-

teris paribus, the trial becomes more informative (relative to the noise component). This increases

the value of waiting for more information and, thus, the value of the new technology. The non-

monotonicity in the expected time until a decision is taken follows from a similar reason as we

identified for σ . On the one hand, we get more information per time period, which leads to deci-

sions being taken sooner. On the other hand, because the value of waiting for more information

increases, we want to make a decision later (the decision bounds widen).

The influence of the annual cost of conducting the trial, c, are given in Figure 4. These are as

to be expected: the higher the costs of the trial the closer the thresholds are together, the lower

the value of the technology, and the sooner, on average, a decision is taken. Here we see that only
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Figure 3: Comparative statics for µ.

the expected costs of the trial are non-monotonic. This happens because there are two opposing

factors at work. On the one hand a decision is taken sooner, which lowers the expected costs. On

the other hand, the per-period costs increase, which makes the expected costs higher.

The effects of the benefits of the new technology if superior, B1, are clear-cut and are reported

in Figure 5. The decision bounds are decreasing and initially widen, but from B1 ≈ 72 start

narrowing again. This explains the non-monotonicity of the expected length and costs of trials,

because B1 does not influence the properties of the posterior process.

Even though it is analytically clear that both decision bounds are increasing in the benefits of

the existing technology, B, Figure 6 shows that the inaction region first widens and then narrows.

Also note that for small values of B a prior of p = .5 leads to immediate investment and, hence,

no trial being started at all. Since B does not influence the prior expected net-present value of

adoption, the value function is flat in this region. Conversely, for large values of B an immediate

decision to abandon is taken, simply because the expected net increase in benefits if the new

technology turns out to be superior over the the old technology are too small to warrant starting

a trial. The non-monotonicities in expected trial length and costs are not surprising in this light:

the decision bounds first widen and then narrow and since B does not influence the properties of
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Figure 4: Comparative statics for c.
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Figure 5: Comparative statics for B1.
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Figure 6: Comparative statics for B.

the posterior process this means that we first wait longer and then start taking decisions sooner.

Finally, in Figure 7 we depict the influence of the prior, p, on the expected time to decision

and the expected trial costs. Note that the prior has no influence on the investment/abandonment

thresholds, so that we can refer to Figure 1b for comparative statics of the ex ante investment/abandonment

probabilities. Figure 7 illustrates a simple intuition: the vaguer the a priori information about the

efficacy of the technology, the longer it will take, on average, before a decision is taken and the

more, on average, it will cost to obtain enough information to make that decision. Obviously, the

prior is vaguest at p = 1/2.

5 Delays in Measurement

An important issue in measuring health benefits as part of a clinical trial is that these are typically

not observed instantaneously but, rather, with a delay. This issue has recently been investigated

by Chick et al. (2015) who use a Bayesian sequential estimation method. Unlike their approach,

in our sequential testing framework, incorporating delays in observations can be achieved as a

straightforward extension of the basic model by following the approach introduced in Øksendal

(2004).

21



0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

prior

Ex
pec

ted
 tim

e to
 de

cis
ion

0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

prior

Ex
pec

ted
 co

sts
 to 

dec
isio

n

Figure 7: Comparative statics for p.

Suppose that the delay in information becoming available is denoted by δ > 0. Thus, at time t

the decision maker observes the information of the patient who entered the trial at time t − δ. If
we insist on decision rules not being anticipating, the decision maker has to restrict herself to the

set Tδ of delayed stopping times, i.e. functions τδ : Ω → [0,∞] such that {ω ∈Ω | τδ(ω) ≤ t } ∈ Ft−δ,
for all t ≥ δ. That is, if at time t the DM stops the trial, the last patient’s treatment starts at time t.

When the results of that patient come in, at time t + δ, the DM decides to invest or abandon.

The value of the project now equals

F∗δ(π) := sup
τδ∈Tδ

Eπ

[

−
∫ τδ

0
e−rt(c +Pπt)dt + e−rτδ max

{

FA(πτδ ),FI (πτδ )
}
]

. (11)

Note that F∗0(π) = F∗(π), cf. (7). We can prove the following result (for the proof see Appendix C).

Proposition 3. If the optimal stopping problem (11) has a solution, then the continuation region has

the form (πδ
A,π

δ
I ), for some constants 0 < πδ

A < πδ
I < 1. The optimal stopping time is τ∗δ = inf{t ≥ 0|πt <

(πδ
A,π

δ
I )}+ δ. Moreover, for every δ > 0 and π ∈ (πδ

A,π
δ
I ) the value of the project is given by

F∗δ(π) = −
(
c

r
+π

P

r

)

+ ν̂πδ
A,π

δ
I
(π)Fδ(π

δ
I ) + ν̌πδ

A,π
δ
I
(π)Fδ(π

δ
A),

where

Fδ(π) ≡ e−rδ
{
c +Pπ

r
+ (B1 −B0)πΦ(b+)− LπΦ(d−)

+ (B0 − I )[πΦ(b+) + (1−π)Φ(b−)] +B[πΦ(d−) + (1−π)Φ(d+)]
}

,

b± =
σ

µ
√
δ

[

log

(

(1− π̄)π
π̄(1−π)

)

± 1

2

µ2

σ2
δ

]

, d± =
σ

µ
√
δ

[

log

(

(1−π)π̄
π(1− π̄)

)

± 1

2

µ2

σ2
δ

]

,

Φ is the cdf of the standard normal distribution, and ν̂ and ν̌ are the expected discount factors defined

in (8) and (9), respectively. The triggers πδ
A and πδ

I are such that F∗δ is C
1 on (0,1).
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Figure 8: Net present values of an immediate decision (left-panel) and probabilities of adoption

upon stopping (right-panel) for different values of δ. The parameter values are taken as in Table 2.

The function Fδ is, in a sense a probability-weighted average of FI and FA, delayed by δ, but

computed at the time the trial is stopped. The DM knows that, when she stops the trial, she will

make a decision in δ units of time. She will then adopt (abandon) if, at that time, the posterior

exceeds (is below) π̄. At the time she decides to stop admitting patients to the trial, she can

compute the probabilities of these events, as well as the expectations of the posterior, conditional

on these events. See Appendix C for details.

Figure 8 shows the net present value of an immediate adoption/abandonment decision for

different values of the delay parameter δ. Note that the NPV is not unambiguously point-wise

increasing or decreasing in δ, but that for small and large values of the posterior, the effect of

delay is unambiguous: the longer the delay in observations, the lower the NPV. The right-panel

of Figure 8 shows the probability of adoption after δ periods as a function of the posterior belief

in a superior technology at the time of stopping the trial. Note that for δ = 0 this probability is

degenerate: 1 if π > π̄ and 0 if π < π̄. When δ > 0 the probability of adoption is increasing in the

posterior at the time the trial is stopped. For values π > π̄, the probability of adoption is higher for

smaller values of δ, as is intuitively clear. For values π < π̄, the probability of adoption is higher

for longer delays. This happens because the variance of the distribution of πδ is larger for larger

values of δ. This gives a higher probability of bigger increases over the time interval [0,δ]. Since

at the moment the trial is stopped the DM expects to abandon (because π < π̄), a longer time delay

essentially means taking a gamble with a larger upside.

Figure 9 shows the value function for the base-case in Table 2 with no delay (left-panel) and

a delay of 0.1 years (right-panel). The value with delay is obviously lower than with delay, for

every level of posterior belief in a superior technology (at the moment of stopping the trial). It
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Figure 9: Project value with no delay (left-panel) and positive delay (right-panel). The parameter

values are taken as in Table 2.

also appears that the continuation region (πδ
A,π

δ
A) is narrower with delay. This is confirmed by

a numerical calculation of the bounds, which gives a continuation region of (.2063, .7860). The

intuition for this result is clear: upon stopping there is another period of length δ over which new

observations become available and during which costs of sampling are incurred. As a result the

DM can stop the trial earlier and take a gamble on what the observations over the period δ are

going to tell her. Obviously this brings extra risk and, thus, a lower value of the project.

The narrowing of the continuation region as a function of the delay δ is also confirmed by a

comparative statics analysis, as shown in Figure 10. We can also see that the value of the project

is monotonically decreasing in δ. The non-monotonicity of the expected time to stopping the trial

and the expected costs of the trial follows from the fact that on the one hand there is a reduction

in the expected time of the trial, because a decision is taken sooner, while, on the other hand, the

trial duration is extended by δ. Since the effect on the expected time until a decision is taken is

non-linear, the combined effect is non-monotonic.

Remark 6. The existence of a solution to (11) depends, firstly, on the existence of a solution to the

equations

ν̂ ′
πδ
A,π

δ
I
(πδ

A)Fδ(π
δ
I ) + ν̌ ′

πδ
A,π

δ
I
(πδ

A)Fδ(π
δ
A) = F ′δ(π

δ
A) (12)

and

ν̂ ′
πδ
A,π

δ
I
(πδ

I )Fδ(π
δ
I ) + ν̌ ′

πδ
A,π

δ
I
(πδ

I )Fδ(π
δ
A) = F ′δ(π

δ
I ), (13)

which ensures that the value function F∗δ is C1 on (0,1). Unlike the case with δ = 0 it is difficult

to obtain analytical results on the existence and uniqueness of such triggers, because of the highly non-

linear nature of Fδ. Secondly, while in the case with δ = 0we can prove sufficiency of the smooth-pasting
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Figure 10: Comparative statics for δ.

conditions, we could not obtain analytical results for δ > 0 (again because of the non-linear nature of

Fδ).

Another issue may arise in the case of delay. Consider the benchmark case from Table 2 with δ = .3.

Here we can find thresholds that make F∗δ a C1 function on (0,1): πδ
A = .4316 and πδ

I = .5504. For

this case the smooth-pasting conditions are also sufficient. However, from Figure 11, which depicts Fδ

(dashed line) and F∗δ (solid line) on C, we can see that both coincide, even in the continuation region C.
This would suggest that, in this case, C = ∅ and, thus, that the optimal stopping time is τ∗δ = 0. Therefore,

starting the clinical trial is not optimal and one should make an adoption/abandonment decision straight

away. The intuition for this result is that, if the delay is long, one incurs sampling costs for a relatively

long time before any benefit occurs. Since these benefits are discounted more, the present value of the

sampling costs may outweigh the informational benefit of observing trial results. It is then optimal not

to incur sampling costs at all. A full investigation of this issue, however, will have to await further

research.
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seems to be empty. The parameter values are taken as in Table 2, with δ = .3.

6 An Illustration: Standard vs Robot-Assisted Laparoscopic Prostate-

ctomy

In this section we apply our model to the choice between robot-assisted and standard laparoscopic

prostatectomy from the perspective of the UK national health service using data from a published

study by Close et al. (2013).11 Standard laparoscopic prostatectomy and robot-assisted laparo-

scopic prostatectomy are favoured over the open technique as these cause less bleeding and allow

for a quicker return to activities. Robot-assisted laparoscopic prostatectomy is increasingly used

compared to the standard technique. However, the high costs has led authorities to question the

value of robotic-assisted procedures to patients and the health care system.

The relevant data for an optimal trial/adoption/abandonment decision are given in Table 3.

These are used to compute the parameter values as given in Table 4. Here it has been assumed

that:

1. the number of patients treated every year will remain constant and the technology will be

used forever (to allow for straightforward computation of the discounted streams of benefits

for the different scenarios);

2. the QALY level of robot-assisted laparoscopic prostatectomy is chosen such that this tech-

nique is just cost effective;

3. the total of 10,000 patients involved in the simulated trial over 10 years were spread uni-

formly over time in pairs;

11Note that Close et al. (2013) do not present the results of a clinical trial, but, rather, a simulation-based analysis.

We use the study mainly to provide a realistic background to illustrate our model.
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Description Parameter Source Value

Benefit of standard prostatectomy (in QALY) QALY0 Close et al. 6.44

Value per QALY vQALY Claxton et al. £13,000

Cost of standard prostatectomy c0 Close et al. £7,628

Cost of robot-assisted prostatectomy c1 Close et al. £9,040

Benefit of robot-assisted prostatectomy (if cost effective) QALY1 derived 7.63

Benefit of robot-assisted prostatectomy (if not cost effective) QALY0 Close et al. 6.44

Patients treated per year patients Close et al. 5,464

Length of trial Close et al. 10 years

Patients treated in trial trial Close et al. 500

Table 3: Relevant trial/decision information for prostatectomy case.

4. the trial costs per patient are assumed to equal the cost difference between the two technolo-

gies with an added £500 for other costs;

5. the penalties for not adopting a superior technology (P and L) are set to zero;

6. the value per QALY is taken from Claxton et al. (2015).

For these values, the adoption and abandonment bounds are πI = .8882 and πA = .0064, re-

spectively. Note that the lower bound is close to zero because the trial is cheap to run relative to

the potential benefits to be gained if the technology turns out to be superior. With a prior belief

of .5 in robot-assisted laparoscopic prostatectomy being cost effective, this implies that at the start

of the trial the probability of adoption (abandonment) is .5598 (.4402). The expected trial costs

are £110,600 and the expected duration of the trial is only .23 years. The value of the project at

the start of the trial is £15.07bn.

Figure 12 gives a histogram of decision times based on 5,000 simulated sample paths. The

right-hand panel gives decision times conditional on robot-assisted laparoscopic prostatectomy

being superior. On this event decisions are taken very quickly; in fact, all sample paths lead to

a decision within .085 years, i.e., after about a month. This happens because, if robot-assisted

laparoscopic prostatectomy is cost effective, then its QALY gain is so much larger than that of the

standard procedure that a clinical trial will pick up on this very quickly. In addition, all sample

paths lead to adoption of the technique. In other words, along no sample path does a Type I error

occur. The left-hand panel gives decision times conditional on robot-assisted laparoscopic prosta-
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Parameter Description Derivation Value

B1 Benefit if superior (Qaly1 · vQaly − c1) · patients/r £16.42bn

B0 Benefit if not superior (Qaly0 · vQaly − c1) · patients/r £13.60bn

B Benefit of current treatment (Qaly0 · vQaly − c0) · patients/r £13.86bn

I Sunk costs of adoption assumed £1mln

c Trial cost flow (c1 − c0 +500) · trial £.38mln p.a.

r Discount rate Close et al. 3.5%

µ Trend if superior (Qaly1 −Qaly0) · vQaly · trial £3.10mln p.a.

σ Volatility of observations assumed £1.5mln p.a.

P Penalty of non-adoption during trial assumed 0

L Penalty of non-adoption after trial assumed 0

p Prior assumed .5

Table 4: Parameter values for laparoscopic prostatectomy case.

tectomy not leading to any superior health benefits over the standard procedure. On this event

decisions are taken very late: clinical trials can (theoretically) last as long as 1,000 years. Unreal-

istic as this may seem, it is not unexpected. Due to the low costs of conducting the trial, the fairly

low number of patients involved per annum, and the high benefits if the robot-assisted technique

turns out to be superior after all, it is optimal to keep the trial going. Finally, in the simulation,

87% of sample paths (conditional on θ = 0) end in an abandonment decision. This implies that

the (simulated) probability of a Type II error is 13%. Note that this performance is actually better

than the usually imposed error probabilities in frequentist studies. In fact, these error probabili-

ties can be computed exactly12 as α = .0056 and β = .1252, showing that our simulations are fairly

accurate.

By choosing the QALY value of robot-assisted laparoscopy such that the technology is just cost

effective we have biased the decision against adoption. Figure 13 shows a comparative statics

exercise for this QALY level. As can be seen the value of the project increases sharply in the QLAY

12This uses the fact that the bounds πI and πA can be written as likelihood ratio bounds ΛI and ΛA , respectively.

Since (Λt )t≥0 follows a GBM conditional on θ, with Λ0 = 1, Pθ − a.s., it can easily be derived that (see, for example,

Stokey, 2009):

Pθ(Λτ∗ = ΛI ) =
1−Λ1−2θ

A

Λ
1−2θ
I −Λ1−2θ

A

, and Pθ(Λτ∗ = ΛA) =
Λ
1−2θ
I − 1

Λ
1−2θ
I −Λ1−2θ

A

.
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Figure 12: Stopping time distribution.

level of robot-assisted laparoscopic prostatectomy (conditional on it being superior). Since this

QALY level only influences the parameter B it is no surprise to see similar comparative statics as

those in Section 4, Figure 6.

7 Concluding Remarks

The Bayesian model presented in this paper was motivated by a desire to bring together sequen-

tial hypothesis testing and real options analysis to inform decision making in health technology

assessment under irreversible costs. In a sequential setting, the decision maker is required to

simultaneously assess (i) whether enough statistical evidence has been gathered, and (ii) if the

newly proposed technology is deemed superior to the existing one.

The proposed framework deals with such requirements by specifying a decision rule that, be-

ing a function of the uncertain outcomes of a clinical trial as well as payoffs, produces inferential

bounds for abandonment or adoption of the new technology. At each point during the clinical

trial the Bayesian posterior process is assessed against an investment and an abandonment deci-

sion bound, indicating whether the trial should continue or not. When the trial stops, a decision

is taken, either for investment or abandonment, and it is ensured that health benefits to the pop-

ulation are maximized.

The framework considers and combines dimensions that in present approaches are typically

studied in isolation. By putting health benefits at the centre of the decision making process, and
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Figure 13: Comparative statics for the QALY level of robot-assisted laparoscopy.

by considering the value of gatheringmore evidence, the model explicitly incorporates: (i) the cost

and benefits of delaying adoption/abandonment of a newly developed health-care technology, (ii)

discounted population payoffs, (iii) the costs of conducting further research, and (iv) the benefits

of gathering further evidence at each point during the trial. As a result, the decision rule derived

in this paper is optimal (i) ex ante, (ii) at any time during the clinical trial, and (iii) at the time

an adoption/abandonment decision is made. Delays in observing health outcomes after a trial

can be incorporated and are shown to lower the value of the new technology, and to shrink the

inaction region. For longer delays, it is not entirely clear what the optimal decision is, although it

appears that an immediate decision might be required. A full investigation of this issue presents

an avenue for future research.
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Appendix

A Proof of Proposition 1

1. Since (πt)t≥0 is a martingale, the optimal stopping problem (4) can be written as

F∗(π) = −
(
c

r
+π

P

r

)

+ supτEπ

[

e−rτmax
{

FI (πτ) +
c

r
+πτ

P

r
,FA(πτ) +

c

r
+πτ

P

r

}]

= −
(
c

r
+π

P

r

)

+ supτEπ

[

e−rτmax
{

πτ(B1 −B0 +P/r) +B0 +
c

r
− I ,B+

c

r
−πτ(L−P/r)

}]

= −
(
c

r
+π

P

r

)

+ supτEπ [e
−rτmax {GI (πτ),GA(πτ)}] ,

(A.1)

where

GI (π) = π(B1 −B0 +P/r) +B0 +
c

r
− I , and GA(π) = B+

c

r
−πτ(L−P/r).

Assumptions 1 and 2 ensure that GI and GA are increasing and non-increasing, respectively,

whereas Assumptions 3 and 4 ensure that GA(0) > GI (0) and GI (1) > GA(1). All these are nat-

ural assumptions. They imply that there is a unique point x̄ ∈ (0,1) such that GI (x̄) = GA(x̄). Note

that x̄ = π̄, cf. (3).

Define the function G : (0,1)→R by

G(π) = 1π≤π̄GA(π) + 1π>π̄GI (π).

Note that G = GA ∨GI and that G is C2 on (0,1) \ {π̄}.

2. From Peskir and Shiryaev (2006) it follows that we need to find a function F∗ ∈ C1, with second

derivatives locally bounded, which dominates G on (0,1), and a set C ⊂ (0,1), that solve the free

boundary problem





















L F∗ − rF∗ = 0 on C, and L F∗ − rF∗ < 0 on (0,1) \ C

F∗ > G on C, and F∗ =G on (0,1) \ C
∂F∗

∂π |∂C =
∂G
∂π |∂C .

(A.2)
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Here L denotes the characteristic operator of (πt)t≥0, i.e., for any ϕ ∈ C2,

Lϕ(π) =
1

2

(µ

σ

)2

π2(1−π)2ϕ′′(π).

Note that the condition

L F∗ − rF∗ < 0 on (0,1) \ C,

is always satisfied since G′′ = 0 on (0,1) \ {π̄}. For (A.2) to make sense, we also need that G > 0. A

necessary and sufficient condition for this to hold is that G(π̄) > 0. The property follows from

GA(π̄) = B+
c

r
− π̄(L−P/r)

> π̄(L−P/r)
[

γ +1/2

π̄ +γ − 1/2 − 1
]

= π̄(L−P/r) 1− π̄
π̄ +γ − 1/2 ≥ 0,

where the strict inequality in the second line follows from Assumption 5 and the weak inequality

in the last line follows from Assumption 2 and the fact that γ > 1/2.

3. On (0,1), define the functions ϕ̂ : (0,1)→R+ and ϕ̌ : (0,1)→R+, by
13

ϕ̂(π) =
√

π(1−π)
(

π

1−π

)γ

, and ϕ̌(π) =
√

π(1−π)
(
1−π
π

)γ

. (A.3)

Note that ϕ̂ and ϕ̌ are the increasing and decreasing solutions to the differential equation Lϕ −
rϕ = 0, respectively. So, any solution to Lϕ − rϕ = 0 is of the form

ϕ(π) = Âϕ̂(π) + Ǎϕ̌(π),

where Â and Ǎ are arbitrary constants. Furthermore, it is easily obtained that

ϕ̂′(π) = ϕ̂(π)
1/2+γ −π
π(1−π) > 0, ϕ̌′(π) = ϕ̌(π)

1/2−γ −π
π(1−π) < 0,

ϕ̂′′(π) = ϕ̂(π)
(1/2+γ −π)(γ − 1/2+π)−π(1−π)

π2(1−π)2 > 0,

and

ϕ̌′′(π) = ϕ̌(π)
(1/2−γ −π)(π − 1/2−γ )−π(1−π)

π2(1−π)2 > 0.

From this it is obtained that
ϕ̌′′(π)
ϕ̂′′(π)

=
ϕ̌(π)

ϕ̂(π)
=

(
1−π
π

)2γ

.

13The results in this part of the proof are standard and can be found in the literature, such as, for example, Borodin

and Salminen (2002). They are collected here for ease of reference.
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4. Fix πL ≤ π̄ and define the mapping π 7→ V̌ (π;πL), by

V̌ (π;πL) = Â(πL)ϕ̂(π) + Ǎ(πL)ϕ̌(π), (A.4)

where the constants Â(πL) and Ǎ(πL) are given by

Â(πL) =
ϕ̌(πL)G

′
A(πL)− ϕ̌′(πL)GA(πL)

ϕ̌(πL)ϕ̂′(πL)− ϕ̌′(πL)ϕ̂(πL)
, and Ǎ(πL) =

ϕ̂′(πL)GA(πL)− ϕ̂(πL)G
′
A(πL)

ϕ̌(πL)ϕ̂′(πL)− ϕ̌′(πL)ϕ̂(πL)
. (A.5)

Note thatL V̌ (π;πL)−rV̌ (π;πL) = 0 for allπ ∈ (0,1). In addition, the function V̌ satisfies V̌ (πL;πL) =

GA(πL) and V̌ ′(πL;πL) = G′A(πL).

Condition 5 implies that

GA(π̄) = B+
c

r
− π̄(L−P/r) > π̄









γ + 1
2

π̄ +γ − 1
2

− 1







(L−P/r) = 1− π̄

π̄ +γ − 1
2

π̄(L−P/r) > 0.

Since G′A ≤ 0, it, therefore, holds that Ǎ(πL) > 0 for all πL ≤ π̄.

The denominator of Â(πL) (and thus Ǎ(πL)) does not change in πL.
14 Since condition 5 ensures

that GA(π̄) > 0,15 it follows that,

∂Â(πL)

∂πL
< 0, and

∂Ǎ(πL)

∂πL
> 0.

5. Condition 5 ensures that Â(π̄) > 0. Therefore, π 7→ V̌ (π; π̄) is a (strictly) convex function,

which satisfies V̌ (·; π̄) → ∞ as π ↑ 1 or π ↓ 0. So, there is a unique point πH ∈ (π̄,1) such that

V̌ ′(πH ; π̄) = G′I (πH ). Since V̌
′(π̄; π̄) = G′A(π̄) < 0, at πH it holds that V̌ (πH ; π̄) < GI (πH ). Also, for π

large enough, it holds that V̌ (π; π̄) > GI (π).

6. Since Â(πL) decreases and Ǎ(πL) increases in πL, the mapping π 7→ V̌ (π;πL) has the property

that for every π > πL it holds that ∂V̌ (π;πL)/∂πL < 0. So, the point πH ∈ (π̄,1) where V̌ ′(πH ;πL) =

G′I (πH ) is decreasing in πL, as is the value V̌ (πH ;πL). Now decrease πL from π̄ to 0. There will be

a unique πA, with corresponding πI at which V̌ (πI ;πA) =GI (πI ) and V̌ ′(πI ;πA) = G′I (πI ).

7. The interval C = (πA,πI ) and the proposed function F∗ together solve the free-boundary prob-

lem (A.2). The fact that πA and πI are the unique triggers that make F∗ a C1 function on (πA,πI )

follows by construction.

14It holds that ϕ̌(πL)ϕ̂
′(πL)− ϕ̌′(πL)ϕ̂(πL) = 2γ .

15Note that GA(π) > 0 ⇐⇒ B+c/r
L−P/r > π. Since

γ+1/2
π+γ−1/2 > 1, it follows that Â(πL) > 0 implies GA(πL) > 0.
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8. The proof that a solution to (A.2) is also a solution to the optimal stopping problem, i.e.,

that

G∗(π) := F∗(π) +
(
c

r
+π

P

r

)

= sup
τ

Eπ [e
−rτG(πτ)] =: sup

τ
Jτ(π),

is standard. Here we will sketch the main argument, for technical details see, e.g., Øksendal

(2010). Obviously, it holds that G∗(π) ≤ supτ J
τ(π). To prove the reverse inequality, take any

stopping time τ. It now holds that

G∗(π) = Eπ [e
−rτG∗(πτ)]− Eπ

[∫ τ

0
e−rt(L − r)G∗(πt)dt

]

≥ Eπ [e
−rτG∗(πτ)] ≥ Eπ [e

−rτG(πτ)] = Jτ(π),

where the first equality follows from Dynkin’s formula (Øksendal, 2010), the first inequality

follows from LG∗ − rG∗ ≤ 0, and the second inequality follows from G∗ ≥ G. Hence, G∗(π) ≥
supτ J

τ(π).

9. Suppose that condition 5 is not satisfied. Then there exists a unique π∗ ∈ (0, π̄) for which

B+ c/r

L−P/r = π∗
γ +1/2

π∗ +γ − 1/2 .

Following previous arguments there also exists a unique π∗ such that

V̌ ′(π∗;π∗) =G′I (π
∗).

Figure 14 illustrates the idea of the proof and from this figure it is clear that the condition needed

is that

V̌ (π∗;π∗) ≤ GI (π
∗).

If this condition is satisfied the arguments above go through unchanged.

B Proof of Proposition 2

Let τ∗ = inf{t ≥ |πt < (πA,πI )} be the unique solution to (A.1). The constants Â(πA) and Ǎ(πA)

in (A.5) can be rewritten as

Ǎ(πA) =
πA(1−πA)

2γϕ̌(πA)









1
2 +γ −πA

πA(1−πA)
GA(πA)−G′A(πA)








, and

Â(πA) =
πA(1−πA)

2γϕ̂(πA)








G′A(πA)−

1
2 −γ −πA

πA(1−πA)
GA(πA)








,

where ϕ̂ and ϕ̌ are as in (A.3), and GA is defined in (A.1).
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Figure 14: The function π 7→ V̌ (π;πL) for different values of πL.

The proof of Proposition 1 was based on the fact that the mapping π 7→ V̌ (π;πL) is such that

V̌ (πL;πL) = GA(πL) and V̌ ′(πL;πL) = G′A(πL) for all πL ∈ (0, π̄). We could also have started by

defining a mapping π 7→ V̂ (π;πH ) with the property that V̂ (πH ;πH ) = GI (πH ) and V̂ ′(πH ;πH ) =

G′I (πH ) for all πH ∈ (π̄,1). It is easy to see that V̂ is given by

V̂ (π;πH ) = B̂(πI )ϕ̂(π) + B̌(πI )ϕ̌(π),

where

B̌(πI ) =
πI (1−πI )

2γϕ̌(πI )









1
2 +γ −πI

πI (1−πI )
GI (πI )−G′I (πI )








, and

B̂(πI ) =
πI (1−πI )

2γϕ̂(πI )








G′I (πI )−

1
2 −γ −πI

πI (1−πI )
GI (πI )








.

Using a similar reasoning as in the proof of Proposition 1 it holds that B̂ > 0, B̌ > 0, and V̂ is

strictly convex.

Finally, note that at the unique solution (πA,πI ) to the optimal stopping problem (A.1) it holds

that

V̂ (πA;πI ) = GA(πA), V̂ ′(πA;πI ) = G′A(πA), V̌ (πI ;πA) = GI (πI ), and V̌ ′(πI ;πA) = G′I (πI ).

1. Consider a change in B (which shifts GA up). It holds that

dV̌ (πI ;πA)

dB
= −

1
2 −γ −πA

2γ

ϕ̂(πI )

ϕ̂(πA)
+

1
2 +γ −πA

2γ

ϕ̌(πI )

ϕ̌(πA)
> 0.
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Since dGI /dB = 0 this implies that V̌ (πI ;πA) > GI (πI ) after an increase in B. This implies that πA

must be increased to re-establish optimality.

Since dV̂ (πA;πI )/dB = 0 and dGA/dB > 0, it holds that V̂ (πA;πI ) < GA(πA) after an increase in

B. This implies that πI must be increased to re-establish optimality.

2. Consider a change in B1 (which shifts GI up and increases its slope). It holds that

dV̂ (πA;πI )

dB1
=

πI

2γ

[

(12 +γ )
ϕ̂(πA)

ϕ̂(πI )
+ (γ − 1

2 )
ϕ̌(πA)

ϕ̌(πI )

]

> 0.

Since dGA/dB1 = 0 this implies that V̂ (πA;πI ) > GA(πA) after an increase in B1. This implies that

πI must be decreased to re-establish optimality.

Since dV̌ (πI ;πA)/dB1 = 0 and dGI /dB1 > 0, it holds that V̌ (πI ;πA) < GI (πI ) after an increase in

B1. This implies that πA must be decreased to re-establish optimality.

3. Consider a change in c (which shifts both GA and GI up by the same amount). Since an increase

in c increases both Â and Ǎ it strictly increases V̌ ′′(π;πA), for all π. Since V̌ is strictly convex and

GI is linear this implies that V̌ (πI ;πA) > GI (πI ) after the change in c. To restore optimality πA has

to be increased.

Similarly, an increase in c increases both B̂ and B̌, which strictly increases V̂ ′′(π;πI ), for all π.

Since V̂ is strictly convex and GA is linear this implies that V̂ (πA;πI ) > GA(πA) after the change in

c. To restore optimality πI has to be decreased.

4. Consider a change in γ . Such a change affects Â, Ǎ, B̂, B̌, ϕ̂, and ϕ̌. Direct computations

reveal that

∂ϕ̂(π)

∂γ
= ϕ̂(π) log

(
π

1−π

)

,
∂ϕ̌(π)

∂γ
= ϕ̌(π) log

(
1−π
π

)

,

∂Â

∂γ
= Â

[

log

(

1−πA

πA

)

− 1

γ

]

+
ϕ̌(πA)

2γ

GA(πA)

πA(1−πA)
,

and

∂Ǎ

∂γ
= Ǎ

[

log

(

πA

1−πA

)

− 1

γ

]

+
ϕ̂(πA)

2γ

GA(πA)

πA(1−πA)
.

It is then easily obtained that

∂V̌ (πI ;πA)

∂γ
=
(

Âϕ̂(πI )− Ǎϕ̌(πI )
)

log

(

1−πA

πA

πI

1−πI

)

+
1

2γ

[

ϕ̂(πI )ϕ̌(πA) + ϕ̌(πI )ϕ̂(πA)

πA(1−πA)
GA(πA)− 2GI (πI )

]

.

(B.1)
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The first term on the right-hand side is the product of two positive terms. [The logarithmic term

is positive because πA < 1/2 < πI . The term in round brackets is positive because differentiability

at πI gives that

Âϕ̂′(πI ) + Ǎϕ̌′(πI ) = G′I (πI ) > 0

⇐⇒
γ + (12 −πI )

πI (1−πI )
Âϕ̂(πI ) +

−γ + (12 −πI )

πI (1−πI )
Ǎϕ̌(πI ) > 0

⇐⇒ Âϕ̂(πI ) >
γ − (12 −πI )

γ + (12 −πI )
Ǎϕ̌(πI ) > Ǎϕ̌(πI ),

(B.2)

where the final inequality follows from πI > 1/2.]

The term between square brackets of (B.1) can be expanded as

ϕ̂(πI )ϕ̌(πA) + ϕ̌(πI )ϕ̂(πA)

πA(1−πA)
GA(πA)− 2GI (πI ) =

(

ϕ̂(πI )

ϕ̂(πA)
+

ϕ̌(πI )

ϕ̌(πA)

)

GA(πA)− 2GI(πI )

=

(

ϕ̂(πI )

ϕ̂(πA)
+

ϕ̌(πI )

ϕ̌(πA)

)
(

Âϕ̂(πA) + Ǎϕ̌(πA)
)

− 2
(

Âϕ̂(πI ) + Ǎϕ̌(πI )
)

= Â
ϕ̂(πA)ϕ̌(πI )− ϕ̂(πI )ϕ̌(πA)

ϕ̌(πA)
+ Ǎ

ϕ̂(πI )ϕ̌(πA)− ϕ̂(πA)ϕ̌(πI )

ϕ̂(πA)

= (ϕ̂(πA)ϕ̌(πI )− ϕ̂(πI )ϕ̌(πA))
︸                              ︷︷                              ︸

<0

[

Â

ϕ̌(πA)
− Ǎ

ϕ̂(πA)

]

=
ϕ̂(πA)ϕ̌(πI )− ϕ̂(πI )ϕ̌(πA)

ϕ̌(πA)ϕ̂(πA)

(

Âϕ̂(πA)− Ǎϕ̌(πA)
)

︸                   ︷︷                   ︸

<0

> 0,

where the last step follows from a similar procedure as in (B.2) and observing that G′A(πA) < 0.

So, in order to restore optimality after an increase in γ , the abandonment trigger πA must be

increased. A similar analysis shows that

∂V̂ (πA;πI )

∂γ
> 0,

so that πI must be decreased after an increase in γ .

The final two results now follow by observing that γ is increasing in σ and decreasing in µ.
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C Proof of Proposition 3

For all π ∈ (0,1), define

F(π) : = max(FA(π),FI (π)),

F∗δ(π) : = sup
τδ∈Tδ

Eπ

[

−
∫ τδ

0
e−rt(c +Pπt)dt + e−rτδF(πτδ )

]

, (C.1)

F̃δ(π) : = Eπ

[

−
∫ δ

0
e−rt(c +Pπt)dt + e−rδF(πδ)

]

,

and

F̃∗(π) : = sup
τ∈T0

Eπ

[

−
∫ τ

0
e−rt(c +Pπt)dt + e−rτF̃δ(πτ)

]

. (C.2)

From Øksendal and Sulem (2007, Proposition 2.11) it follows that F∗δ = F̃∗ and that τ∗δ ∈ Tδ is an

optimal stopping time for (C.1) if, and only if, τ∗δ = τ∗ + δ, where τ∗ ∈ T0 is an optimal stopping

time for (C.2).

It holds that

F̃δ(π) = Eπ

[

−
∫ δ

0
e−rt(c +Pπt)dt

]

+ e−rδEπ[F(πδ)]

= e−rδ
{
c +Pπ

r
+ Eπ

[

1πδ>π̄FI (πδ) + 1πδ<0π̄FA(πδ)
]}

= e−rδ
{
c +Pπ

r
+ (B1 −B0)Eπ[πδ1πδ>π̄]− LEπ[πδ1πδ>π̄]

+ (B0 − I )Pπ(πδ > π̄) +BPπ(πδ < π̄)
}

,

where the second equality follows because (πt)t≥0 is a martingale.

The expectations and probabilities in the last two lines of the above equation are derived in

the following lemma, the proof of which can be found in Appendix D.16

Lemma 1. Define

b± :=
σ

µ
√
δ

[

log

(

(1− π̄)π
π̄(1−π)

)

± 1

2

µ2

σ2
δ

]

and d± :=
σ

µ
√
δ

[

log

(

(1−π)π̄
π(1− π̄)

)

± 1

2

µ2

σ2
δ

]

,

and denote the cdf of the standard normal distribution by Φ. Then

Eπ

[

πδ1πδ<π̄

]

= πΦ(d−), Pπ (πδ < π̄) = πΦ(d−) + (1−π)Φ(d+),

Eπ

[

πδ1πδ>π̄

]

= πΦ(b+), and Pπ (πδ > π̄) = πΦ(b+) + (1−π)Φ(b−).

16We are grateful to Tomasz Zastawniak for his help in establish this proof.
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Therefore,

Fδ(π) = e−rδ
{
c +Pπ

r
+ (B1 −B0)πΦ(b+)− LπΦ(d−)

+ (B0 − I )[πΦ(b+) + (1−π)Φ(b−)] +B[πΦ(d−) + (1−π)Φ(d+)]
}

.

Using the tower property, we can then write:

F∗δ(π) =sup
τ∈T0

Eπ

[

−
∫ τ

0
e−rt(c +Pπt)dt + e−rτFδ(πτ)

]

=− c +Pπ

r
+ sup

τ∈T0
Eπ [e

−rτFδ(πτ)] .

This is a standard optimal stopping problem of the form studied in Appendix A. Therefore,

the same conditions for optimality apply. That is, the state space, [0,1], can be spit into a con-

tinuation region C and a stopping region Γ := [0,1] \ C. As mentioned in Remark 6, the “smooth-

pasting” conditions (12) and (13) are necessary, but not sufficient. Sufficiency is provided by

superharmonicity of the value function. In the continuation region, superharmonicity follows by

construction. In the case of Proposition 1, superharmonicity on Γ follows straightforwardly from

the piece-wise linear nature of the function G. In the model with delay, however, this may not be

the case as we could not obtain an analytic verification due to the highly non-linear nature of Fδ.

What we can say, though, is that, since17

limsupπ↓0
Fδ(π)

ϕ̌(π)
<∞, and limsupπ↑1

Fδ(π)

ϕ̂(π)
<∞,

it follows from Dayanik and Karatzas (2003, Proposition 5.14) that there exist no πL ∈ (0,1), nor
πH ∈ (0,1), such that (0,πL) ⊂ C or (πH ,1) ⊂ C. It appears that, in our numerical example reported

in Remark 6, we find that, C = ∅ and, thus, that the optimal stopping time is τ∗ = 0. Whether this

is indeed the case will be left to future research. Suffice to say here that one has to be careful in

relying solely on smooth-pasting conditions.

D Proof of Lemma 1

1. Fix π ∈ (0,1) and consider the process (πt)t≥π0
, with π0 = π, Pπ-a.s.. To simplify notation we will

drop the subscript π from now on. Consider a solution πt of the stochastic differential equation

(SDE)

dπt =
µ

σ
πt(1−πt)dWt ,

17It holds that Fδ(0) = e−rδF(0) and Fδ(1) = e−rδF(1). In addition 1/ϕ̌→ 1 as π ↓ 0 and 1/ϕ̂→ 1 as π ↑ 1.
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where Wt is a standard Brownian motion under P. Define, for all t ≥ 0,

Zt := π0 exp

{∫ t

0

µ

σ
(1−πs)dWs −

1

2

∫ t

0

µ2

σ2
(1−πs)

2ds

}

.

It then follows from Ito’s lemma that Zt follows the SDE

dZt = Zt

[

µ

σ
(1−πt)dWt −

1

2

µ2

σ2
(1−πt)

2dt

]

+
1

2
Zt

µ2

σ2
(1−πt)

2dt

=
µ

σ
Zt(1−πt)dWt ,

with Z0 = π0. Because of uniqueness of solutions to SDEs, it holds that Zt = πt , P-a.s.. Therefore,

it holds that

πt = π0 exp

{∫ t

0

µ

σ
(1−πs)dWs −

1

2

∫ t

0

µ2

σ2
(1−πs)

2ds

}

.

Now define an equivalent measure Q, by the Radon-Nikodym derivative

dQ

dP
= exp

{∫ t

0

µ

σ
(1−πs)dWs −

1

2

∫ t

0

µ2

σ2
(1−πs)

2ds

}

=
πt

π0
,

and let

Bt :=Wt −
∫ t

0

µ

σ
(1−πs)ds.

It then follows from the Girsanov theorem that Bt is a standard Brownian motion under Q.

2. It, therefore, holds that

EP[πδ1πδ<π̄] = π0EP

[

πt

π0
1πδ<π̄

]

= π0EP

[

dQ

dP
1πδ<π̄

]

= π0EQ[1πδ<π̄] =Q(1πδ<π̄).

Note that

dπt =
µ

σ
πt(1−πt)dBt +

µ2

σ2
πt(1−πt)

2dt,

so that an application of Ito’s lemma gives

d log

(

πt

1−πt

)

= d log(πt)− d log(1−πt)

=
1

πt
dπt −

1

2

1

π2
t

dπtdπt +
1

1−πt
dπt +

1

(1−πt)2
dπtdπt

=
1

2

µ2

σ2
dt +

µ

σ
dBt .

Therefore,

log

(

πt

1−πt

)

= log

(

π0

1−π0

)

+
1

2

µ2

σ2
t +

µ

σ
Bt .
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It then immediately follows that

πt

1−πt
=

π0

1−π0
exp

{

1

2

µ2

σ2
t +

µ

σ
Bt

}

,

and, thus, that

πδ < π̄ ⇐⇒ Bδ√
δ
<
log

π̄(1−π0)
(1−π̄)π0

− 1
2
µ2

σ2 δ

(µ/σ)
√
δ

.

Since Bt is a Brownian motion under Q, it now follows that

EP

[

πδ1πδ<π̄

]

= π0Q(1πδ<π̄) = π0Φ












log
π̄(1−π0)
(1−π̄)π0

− 1
2
µ2

σ2 δ

(µ/σ)
√
δ












.

3. Using the same Radon-Nikodym derivative as before and applying the Girsanov theorem, we

can write

P(πδ < π̄) = E[1πδ
< π̄] = π0EQ

[

1

πδ
1πδ<π̄

]

.

This expectation can be computed explicitly in the following steps, which only use straight-

forward algebra:

π0EQ

[

1

πδ
1πδ<π̄

]

= π0EQ













1−π0 +π0e
1
2
µ2

σ2 δ+
µ
σ Bδ

π0e
1
2
µ2

σ2 δ+
µ
σ Bδ

1
Bδ<

σ
µ

(

π̄(1−π0)
(1−π̄)π0

− 1
2

µ2

σ2
δ
)













= (1−π0)EQ








e
−12

µ2

σ2 δ−
µ
σ Bδ1

Bδ<
σ
µ

(

π̄(1−π0)
(1−π̄)π0

− 1
2
µ2

σ2
δ
)








+π0EQ

[

1
Bδ<

σ
µ

(

π̄(1−π0)
(1−π̄)π0

− 1
2
µ2

σ2
δ
)

]

= (1−π0)

∫ σ
µ

(

π̄(1−π0)
(1−π̄)π0

− 1
2
µ2

σ2
δ
)

−∞
e
−12

µ2

σ2 δ−
µ
σ s 1√

2πt
e−s

2/2tds +π0Φ

(

σ

µ

(

π̄(1−π0)

(1− π̄)π0
− 1

2

µ2

σ2
δ

))

= (1−π0)

∫

π̄(1−π0)
(1−π̄)π0

+ 1
2
µ2

σ2
δ

(µ/σ)
√
δ

−∞

1√
2π

e−z
2/2dz +π0Φ

(

σ

µ

(

π̄(1−π0)

(1− π̄)π0
− 1

2

µ2

σ2
δ

))

= π0Φ(d−) + (1−π0)Φ(d+).

4. A similar analysis gives the results for EP
[

πδ1πδ>π̄

]

and P(πδ > π̄).
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