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Parameter Estimation for VSI-Fed PMSM based on ¢
Dynamic PSO with Learning Strategies

Zhao-Hua Liu , Hua-Liang Wei, Qing-Chang Zhong , Senior Member, IEEE, and Kan Liu

Abstract: A dynamic particle swarm optimization with learning strategy (DPSO-LS) is proposed for key parameter estimation for
per manent magnet synchronous machines (PMSM's), wher e the voltage-sour ce-inverter (VSI) nonlinearities are taken into account in
the parameter estimation model and can be estimated simultaneously with other machine parameters. In the DPSO-L S algorithm, a
novel movement modification equation with variable exploration vector is designed to effectively update particles, enabling swarms to
cover large areas of search space with large probability and thus the global search ability is enhanced. Moreover, a
Gaussian-distribution based dynamic opposition-based learning (OBL) strategy is developed to help the pBest jump out local optima.
The proposed DPSO-L S can significantly enhance the estimator model accuracy and dynamic performance. Finally, the proposed
algorithm is applied to multiple parameter estimation including the VS| nonlinearities of a PMSM. The performance of DPSO-LS s
compared with several existing PSO algorithms, and the comparison results show that the proposed parameters estimation method has
better performance in tracking the variation of machine parameters effectively and estimating the VSI nonlinearities under different

operation conditions.

Index Terms: particle swarm optimization (PSO), dynamic, opposition-based learning (OBL ), parameter identification, voltage source

inverter (VSl) nonlinearity, permanent magnet synchr onous machines (PM SMs).

I.  INTRODUCTION!
I N recent years, permanent magnet synchronous machines (PMSMsidake employedin high-performance applications

(such as industrial robots, servo drive systhigh-speed rail, renew energy generation systems, and housgpdilmhcesdue

to their high efficiency, high-power density, and good dynamic mesp{l]-[3]. Accurate knowledge of the machine parameters
such as winding resistance, direct axis inductances, quadrate axis induciadaedor PM flux linkage are required for control
system design [4]-[6], condition monitoring and fault detection[14]- Usually machine parameters are used as a normal
operation indicator for the PMSM drive system. For exanp@h temperatureancauseanincrease in winding resistance and
the variation of inductances may cause torque ripple. Similarly, glegtiaation in permanent magnet flux may caaidecrease

in the amplitude of fundamental back electromotive force (EMF) and willénfle d-q axis inductances of the machine, which
in turn will have a direct impact on machines performance and power efficieh2y [n real applications, these machine

parameters are not known exactly as they vary with the load torqueshtings of temperature, and other environmental
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conditions. For example, the winding stator resistance is prone to chithgide variation of temperaturand the rotor flux
linkage created by PM may vary with the chesgf temperature and/or operational conditi@8] [14].

The PMSM parameters are a key factor for control system desiggition monitoring and fault diagnosis, and therefore
estimation or direct measurement of the parameters are important. Traditieoally,measurement instruments such as thermal
couplers, search coils and load test berd&j-[17] are employed to observe the machine parameters. However, there are some
drawbacks in the direct measurement due to two reaBos8y, it is difficult to measure the machine parameters when PMSM
operates; Secondly, evéndirect measurement is possihtewould normally significantly increase the instruments cost and the
complexity of the associated implementati@ome researchers proposed to use self-commissioning technique to estimate
PMSM parameters under standstill state [18]. Unfortunately, this methodtasiimate all the needed parameters accurately on
load, for example permanent magnet cannot be estimatedtandstill state. Thus, in practice system identification method is an
ideal technology for directly estimating the needed parameters based onlyemealasured signals instead of using additional
measurement instruments3]. Algorithms such as recursive least-squares (RLS) 1&], [R0], extended Kalman filter (EKF)
[21] [22], model reference adaptive system (MRAZ)|[[24], finite-element method [25] [36adaptive estimation methods [27]
and artificial neural networks (ANNRB] [29] are usually employed for the design of parameter estimatoviigQo linear
parameterization for the RLS algorithm, the RLS estimator usually sufferstfre noise characteristics and may lead to the
reduction of solution accuracy [6]. I12]], an EKF was employed to estimate the winding resistance and ltotdinkage The
results indicate that the estimator suffers from noise and instalitity thus cannot obtain accurate estimates for the actual
parameter values. In [22], an EKF was proposed to estimate the rotorasykpdsition of PMSM. However, it is difficult to use
in real applications because the algorithm is sensitive to noise. The MRAS e&timaiposed in43] and R4] cannot
simultaneously estimate winding resistance, inductance and rotdinffage accuratelyin the MRAS methodpther parameters’
nominal values specified in the motor manual are needed to estimate onetpar&mthis case, the accuracy of identified
parameters depends on the accuracy of the nominal value. In rdaditigal parameter value usually depends on a variable
operating condition caused by the changes of temperature and/ofTlwad-E (finite element) based parameters estimator
proposed in [25] requires a high computational load and it may be challetagk to use this method to estimate PMSM
parameters due to the complex computations. SbNs have also been proposed for estimating parameters of PM34]in [
[29]. Although the ANN method is known to be precise in parameter estimiticually needs a long data set to train and more
knowledge for weight adjustment

Some researchers proposed to inject perturbation signals into the drive systéatain an extra number of state space
equations of PMSM, and then and apply system identification methodotogieimate machine parameters [13] [18] [30]-[32].

In the signal injection method, the designed estimator is based on thetcmmale-q axis (direct and quadrature ddgquation



and the VSI (voltage source inverter) nonlinearities are often ign&iade the used signalsuch as VSI voltages for the
parameter estimator are usually measured from the output voltage PIf tbgulator in a PMSM vector control systetiose
methods are prone to suffer from the effect of nonlinearity®if such as switch voltage drop, switching delay and dead zone
response [33]. As a result, it cannot estimate the actual value of thinenpahameters due to the ignorance of effects of the
nonlinearities on parameters estimation. Some methods were proposedpensate the effect of VSI nonlinearity (see e.g.
[33]-[36]), but these methods need accurate PMSM parameter v8leeause the VSI nonlinearity and machine parameters
cannot be simultaneously estimated by udimgse methods, the errors caused by VSI nonlinearity are combinethénto
parameter estimator and this will affect the accuracy of parameter estinfdtics).the VSI nonlinearity should be considered in
estimating machine parameters.

Due to the easy implementation , low computational cost and fast convegyezezt in dealing with practical industrial
problems, particle swarm optimization (PSO) has recently been introduaadattsactive optimization techniquiessystem
identification, optimal and control of power electroni83]{[45]. The parameter estimation problem can be treated as a grey-box
model based parameter optimization task and the issue of parameter cross-aaupliegeffectively solved by using PSO. In
[37], an improved PSO method for estimating the unknown compositentmal@l parameters was proposedhere a new
crossover operation was introduced to improve the convergence perfernta B8], anther improved PSO was proposed for
parameter estimation of an induction machine by modifying the memeeguation of the standard PSO as linear time-varying
parameters. A least mean square (LMS) method combined with PSO was preséeetifjothe parameters of an induction
motor in [39]. In the field of PMSM parameters identification, some researchers propdse@-dased parameter estimator for
PMSM [40]-[42], this kind of intelligent estimator is effective in estimating the stedeistance and disturbed load torque 4ij,[

a PSO algorithm combined with experimental measurements was proposied identification of PMSMs. Similgr, a PSO
combined with self-commissioning scheme was used in [42] foid#wification and optimization of PMSM parameters. It is
known that the basic PSO is easy to get trapped in local mittiese basic PSO algorithms may not be able to exactly estimate
multiple parameters simultaneoustyich as winding resistanaigaxis inductances and permanent magnet fluxd& g hybrid
methodology combined multiple cooperate PSO and artificial immune systemwasSjeveloped to improve multi-parameter
estimation performance of PMSM. To speed up the search processtiofepam method of GPU accelerated parallel
co-evolutionary immune PSO was proposed for parameter estimation rapdrégure monitoringf a PMSM [44], for which

the performance of the parameter estimates was greatly improvedriynerg PSO andh parallel computing technology.
Neverthelesshe existing?SCbased parameters estimators of PMSM are based on thalgasis equation which neglects the
VSI nonlinearity, thus it cannot estimate the actual value of the maciiameters.

In this study, a dynamic particle swarm optimization with learaistrategy (DPSO-LS) is proposed to design the estimator



of machine parameters and VSI nonlinearity in PM38Myhich the VSI nonlinearity is seen asystem parameter and can be
estimated simultaneously with machine parameters. In the DP$S@-h8vel movement modification equation with variable
exploration vector is designed to update particles, it permits some particles withritaygbility to cover large areas of search
space and thus the global search ability is enhanced. Moreover, a dyppugition-based learning (OBL) operator using
Gaussian-distribution is developed to help pBest jump out local op@B&. is a reinforcement learning strategy using
computing and counter computing simultaneously, and is widely tseatcelerate the convergence properties of many
evolutionary algorithms [46][47]. The proposed algorithm is appliethéoestimation of multiple machine parameters and VSI
nonlinearity of PMSM. The results indicate that it can track parameteation with the changing operation condition
effectively. A comparison of the performance of DPSO-LS with sevexating PSO algorithms is carried pwnd it
demonstrates that the proposed parameters estimation medinodetter track the variation of machine parameters and
estimating the VSI nonlinearities under different operation conditions.

In summary, the major contributions of this paper include:
1) A dynamic estimator using dynamic PSO combined with a dynamic0B&me is proposed for simultaneous estonatf
the machine parameters and VSI nonlinearities of PMSM. The VSI nonlingarégen as system parameters and can be
estimated by the designed estimator, which takes into consideration of tlemdeflof distorted voltage from the VSI and thus
the accuracy of the estimation of machine paraméeéngproved .The proposed estimator can simultaneously estimate machine
parameters and VSI nonlinearity without any priori knowleoligthe PMSM.
2) In order to enhance the accuracy and the dynamic performéiice estimator, a novel movement modification equation
using a variable exploration vector is designed to update the velocity of particlesoveio a dynamic OBL mechanism with
Gaussian distribution is introduced to overcome the blindness pBi& stochastic evolution and enables it jump out the local
optimality. The proposed estimator tefast convergence ratagood accuracy anaigood dynamic response property.
3) The proposed estimator has also taken into account the identifiability ofeagflatameters to be estimated and the VSI
nonlinearities and does not need extra sensors to measure extra machine parametesfarelhthe proposed parameter
estimation methods cost-efficient

The remainder of this paper is organized as follows. An estimator me@dbEefmachine parameters and VSI nonlinearifes

a PMSM is described in sectiofi. A DPSO-LS algorithm is proposed in sectilh, where a scheme to determine the

parameters of the estimator and the optimization procedure and steps are ddsxpieechenal results and the analysis are

given in sectionV. Finally, some concluding remarks are presented in section V.

. PMSMMODEL AND DESIGNOFPARAMETERESTIMATION MODEL
A. PMSM ModelandVSI Nonlinearity



The dg-axis voltage equations of the PMSM are usually employed for the parameteatiestiof the machingl3], which are
given as:

di R L u
—d:——id +—qa)iq ,-d
dt Ld Ld Ld 1)
di R L u
_q:__iq __dajd A B
dt Ly Lq Lg Lg
Te=15Pfpi, +(Ly-Lo) ol (2)

where w is the electrical angular velocityquy, igand j, aredq axis stator voltage and curref,is the number of pole
pairs ,the parameter set{lRy, Lq ,w}is unknown and needs to be identified from measured data. The eq(Btican be

discretized as follows when the machine is under the steady-state:

Ug (K) = Riy (k) - an)(k)iq(k) -
uq(k) = Riq(k) + Lyo(K)i 4(K) +ypao(k)

Taking into account the influence of VSI nonlinearity, (3) could beiteen as:
Ug (K) + DA(K) Vtead= uy (K) A
U (K) + Da(K) Veead = ug, (k) “)

where u, and u, are thedgraxis reference voltages and measured from the PI regulators (V)andddq can be expressed as

[35][36]:

2r s -
= = 5|1 signag)
DA(K) 2cos@) cosf 3) coﬂ+3) _ as
= Sign(l,s)

Dq(k) . _ 2r ) T _ (5)
-sin@@) -sin@- 3 ) sinf- 3 ) sign(cs)
where i ips ics are the statombcthree-phase currents (A).
] 1 ,i=20 ©)
sign=
-1, i<O0

In discrete time domain, the steady-state PMSM equation including the distoitage due to VSI nonlinearity can be
expressed as
Uy (K) + Dd(K)Wead= Riy(K) — an)(k)iq(k) (7a)

Ug (K) + Da(K) Wead = Ri; (K) + Lyao(K)i 4(K) +ya(k) (7b)
The variable \.qq is the distorted voltage caused by the VSI nonlineariied can be represented as
Tdeadt T on-T off V satV «

Vdead= —Ts .V deV satV 3+ — (8)
whereTdead, Ton, Toff ,Vdc,Vsat and Vd are the dead-time period, turn-on ,turn-off times of the switctiévice, the actual and

measured real-time dc bus voltages, the saturation voltage drop of the sadgtiste and the forward voltage drop of the
freewheeling diode, respectively. The switching times and voltage tirops switching device may vary during operations and

difficult to measure due to the changes of current, frequency, DC litdgeo and temperaturkn (8), the dead-time periodiddq



is difficult to measure and compensat&the switching times and voltage drops of switching device vary with theatipg
conditions (such as the dc link voltage and currents). Thereforémipéstant to accurakg estimate and compensate thg,Mn
order to ensure the accuracy of estimated PMSM parameter values.

B. PMSM Parameter Estimator Design

DC vlotageﬁ
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First of all, the VSI nonlinearity is seen as parameters that can be estimated siroslianéth other machine parameters by
the designed estimator using the proposed DPSO-LS algofithmbtain more equations, is set to be zero for decoupling the
flux and torque control, and a very short period of negajitiesi y<0) is then injected to obtain a full rank reference model. The
symbolsidyandid; indicate that thel axis is injected with the curreid=0 andid+0, respectively (see Fig. 1). In Fig.1, under
normal operation condition, the PMSM is under a control state idit®, the DataO (the data associated witt0) are firstly
measured and then a short pulse of negative id<0 is injectethewrdrresponding data, Datal (the data associateddyiil
are recorded after 2ms of injection, both with the same sampling {tigttsampling periods is set to 83.% s) and sampling
number.

The parameters of machine are assumed to be constant as the duratiected mjilse current is very short due to mechanical
inertia and fast response of current loop PI controller. In this taesénfluence of injecting a short pulseidfon output torque
can be neglected hus, the two sets of steady state data (DataO and Datal) can be ubede&iimation of multiple machine
parameters since these parameters can be seen as constant within véimeshdote that \,q4is directy related to the current,

SO Vjead#Vdead: Thus, the distorted voltagee\icandVyeaaineed to be estimated from the daiaotal of six parameters (i.e., R



La, Lg W, VueadsVaead) NEEd to be estimatgtherefore six equations need to be designed. From (7), it is regdy (@a) and (9b)
whenid=0. Whenid#0, (7) can be reformed as (9d) and (9e). The measured data are dntmlédio parts, the first part is
indexed from 1 to Orband the second one is indexed from 0.5n+1 to n. Sinard d are kept as constants, it is reasonable that

VyeaqiS regarded as a constant during the data measurement, two additional equatdesgred as in (9¢) and (9f) during the

varying speedThe full rank reference model is given as

Ugo (K) = — Lyg@(K)i o(K) ~ Daofk )V ceaco (9a)
Uyo(K) = Rico(K) + () — Dao(K)Veaw (9b)
U0 (K) — Ugo(k+0.5M) =y (@ (K)— o (k+ 0.5n))-
Vdead(D @(k) - D @(k +0.51))
Uyt (K) = Riy () — Ly@(K)i (k) — Dato(kVaea (9d)
Uy (K) = Rigy (K) + Lys(K)i () + po(k) ~Da(kVaeas  (9€)
Uy (K) = Uy (k+0.5n) = Lyigy (K)(@ (K)o (K+ 0.50))

of
+ ((K) — (K +0.5n))— Veeaa (D1 (k)— Dgi(k+ 0.5n)) 40
The estimation of the parameters can be addressed as an optimization problerthe/isgstem response to a known input is

(9¢c)

used to find the unknown parameter values of the model. The ideadsnfmare the system response with the parameterized
model based on a cost function, which is defined to measure the sintikstiitgen the system response and the model response

To approximate the dynamic parameters, it needs to define cost fendtidhis study, the three cost functions or fithess

functions, under controtli=0, are defineds

A s 1n.. «
fl(Lq Vdean) = Ekgldek)-’-D oK V deao—U dOQ<)|

I n (10)
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A 10, s
EGUATOES®> |uqo (K)+ D o(k)V sean—U, (k)|

1n,. N A A
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o Vi) == S (12)
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Under control id£0, another three fitness functionare giveras
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Uy (K) — Uy (K+0.5n) -

ol Vi) = - O-ZSn (L oK) (@k) - ok +0.51)) (15)

2n k=1|+y (w(K) — w(k +0.5n))-
Jeeaa(Dg1(K) — Dy k+0.5n))
wheren is the length of samplesj, and Uq indicate the estimated voltagesdg-axis calculated through measured currents

and the estimated parameters and VSI nonlinearities. fLef( R, I:d,ﬁq,z/},\/deam,\/ deat), then all the needed parameters can be

identified simultaneously by minimizing the following objective fungtio

(0= 3 af 16)
where as are weighting coefficient®ote that the designed objective functid©)(is related to the actual permanent magnet
synchronous motor drive system which is highly nonlineartame varying. For example, a sudden change in the outpageol
may occur even there are only some slow variations in the motor diygtem such as current, VSI nonlinearity and machine
parameters. The nonlinear objective function has many local opthatheused optimization method should be capable of
identifying parameters dynamically and adaptively in solving sucllslggn So, it is important to develop an efficient dynamic

parameter tracking approach for the estimation of PMSM parameters andnli§eanties.

lll.  ESTIMATOR PARAMETER OPTIMIZATION WITH DPSO-LS
A Principle of the Basic PSO Algorithm
PSO B3] is a swarm-based intelligent optimization algorithm inspired by the idieasmicking behaviors of bird flocking

foraging. Assuming that the problem is defined in a d-dimo@as space, and each particis composed of two vectors, hamely

the velocity vector ¥{V;1,Viz,...,Vig} and the position vector;{ X1, Xp,,..., Xig} ,the searching scheme can be represesged

Vig t +1) = Vg +c, *rand,()( pBesi( X— X (1))
+¢,* rand,()( gBesf( )t— X( O
Xigt+1) =X ¢)+Vyt +1) (18)
where ¢ is the inertia weight factor decreasing linearly,and ¢ are the acceleration coefficients, raadd rand are two

17)

uniformly distributed numbers generated randomly within [0d3pectivelypBesiy represents the i-th particle has found best
position so far (individual best), gBg& the best position found among the entire population (global best). (E@mit is clear
that the second part represents the private thinking by itself, and thep#nirds the social cognitivey interaction with

neighborhoods.

B.  The Proposed DPSO-LS Agorithm
As mentioned in Section Il, the objective function is multimodal and thereémuires that the optimization method should

have a good global search capability. The existing static optimization metlagdsasily get trapped into some local minimae T

proposed parameter optimization should be able to adaptively change thpal drigectories to explore new search space when



the solution of problem is changing. In order to solve this prgbkemynamic particle swarm optimization with a learning
strategy (DPSO-LS) is proposed formachine parameter and VSI nonjrestiihation.

The implementation of the learning strategy contains two key aspects., Binstyel movement update equation is designed
using a variable exploration vectty enhance the dynamic performance of PSO. Secondly, a dynamic @BlLadsaptive
Gaussian-distribution is propostalovercome the blindness in the search of pBests through stisceaolution and enablés
escape from local optima. It worth noting that the proposed DPSO-€Srdi increase time complexity in comparison with
the basic PSO. Actually, it is easy to implement to solve the optimization prdiglean and to adapt to solve other similar
problems.c .

The general steps of DPS(P are stated as follows.
Algorithm: DPSOLS
Stepl: Initialize population; set up parameters for DPSO-
Step2: for i=1 to N //1<i<N, N is the number of particles
update particlevelocity (M)using the equation (19)
update particlgposition (X)using the equation(20) }
Evaluate the fitness value (Fit(X))of partigle
IF  Fit(Xi) < Fit(Pbes) then Update Pbgf®best«— X)
IF  Fit(Pbes) < Fit(gBbest) Then Update gBest (gBest
Pbes)
end for
Step3: for i=1 to N //1<i<N, N is the number of pBest
If rand <Oc // Oc is a learning probability
Then Gaussian distribution based dynamic OBL strategy
pBestusing the equations (24)-(26) and the Fig. 2.
Evaluate the fitness value (Fit(Xi))aspBest (opposition
pBesi)
Update Pbes{pBest «— pBest UopBest)
End for
Step4: Until a terminate condition is met, or else, returns
step2.
Step5: Output optimal results.

C. Dynamic PSO Model
In recent years, many researchers focused on improving the panfogrof basic PSO [43] [44] (mainly on individual best

position (pBest) and the global best position (gBest). If the particles cenfasty they will always shrink toward local regions
within a few generationgB]. This phenomenon leads &similar search behavior among the swarms and the loss of diversity i
the population. If the particles are trapped in local regions, they will not be gjblepoout due to their homogeneous search
behavior as well as the absence of an adaptive exploration ability [48]JpFove the performance of PSO, the particles should
be able to adaptively change their original trajectories to explore new sp@wod The issue is how to guide particles to move
toward different promising regions and enhance a broader exploratidghe solution space. An improved movement

modification equation with an adaptive exploration vector is proposed tiaufite velocity of particles ,i.e.,



Vgt +1) = v,y +c, *rand,()( Pbedt)t— X ()0

+c, * rand,()( gBegt)t— X( ) (29)
teg*rand()( RY— X,( )
Xgt+D)=X4¢)+V4 € +1) (20)

The exploration vector (R(t);Xt)) is adced to provide a broader exploration of the solution space for thedttictie due to the
use of adaptive variable exploration radius (R(t)) which permits particles ter davge areas of search space with large
probability.

. 'traditionaj
velocity

New velocity '

Self cognition / f ."‘

"Expi‘oration'\‘vector { Social cognition

Particle

',.f"'vdocity vector space

Fig.2.lllustrationofPSO searching behavior with atlegpéxplore mechanism

The exploration radius R(t) learns adaptively as

d d d d
X +X . X maxX mi _
R(t) = (Xme 5 min) +( m 5 min) e M.cos(Zﬂu) (21)

where uis a uniformly random number in [0,1], %, and X...are the designated lower and upper bounds of the prpblem

respectively, 1 is an adjustment parameteri(s usually=2), andt is the iteration indexThe modified velocity equation of

PSO indicates that the swarm members are allowed to explore larger unvisited nedtma objective space (as illustrated in
Fig.2). A large R(xfacilitates an exploration which induces the particles to leave their current regionssaed fhe particles to
search in the other regions. A small)R{thances the exploitation which refines the best solution of the particles bijiego
small vicinity around this best solution. Obviously, the whole féasiblution space can be explored and covered as large as

possible by this modified equation with adaptive variable exploration vector.

D. ADynamic OBL for pBests
Since the pBest can be potentially used as the exemplars to lead the movinghdifeati@r particles, the search status of

pBest particles is important for the entire swarm. In order to help pBeégtigmjump out the local optimal and accelerate the
local search, in this studyn adaptive Gaussian-distributed-based dynamic OBL strategy is proposegiftforcement learning

of pBest. The opposition-based learning (OBL& machine learning method and was firstly introduced by Tizho#&h The



key point for OBL is that it introduces a simple technique which allowsdpalation-based algorithms to search for an optimal
point in the opposite direction of the current search. Mathematical and expatip@ofs show that opposite points are more
beneficial than random pointglq] [48], and can be used to accelerate the convergence properties of other evolutionary
algorithms. The basic idea of OBL is that a search in the opposite directiarried out simultaneously when a solution is

exploited in a direction, i.e.,

X=a+ b— X (22)
where x isareal numbeon the interval [a,b], andX is the opposite number of x. This definition is also valid for D-dimerasgio

space, where forx,,...,Xp € R and x=[a;,b], the D-dimensional point, xis defined as

Xi=a+b-x (23)
Howerver, as pointed out im]] [48], the exploration performance of deterministic OBL or its counterpart wsingiform

distribution is limited. h order to overcome the drawbacks of the traditional OBL and enhanp®ésé convergence speed, in
this study a dynamic OBL strategy using adaptive Gaussian distribstitasigneas
. 2
opBesfy = 3( ¥+ R(X—(1- Gaussign,c”). pBgp
ay (t) = min( pBesyy ), | ()= max( pBegt )

where Gaussia@u,az)is a random number of a Gaussian distribution with a zero et a standard deviatioa)( In

(24)

order to obtain a better dynamic learning performance for pBestsassisned that decreases nonlinearlfor which a good

choice may be given as

t\2
0 = Opmin + (Omax = min(1— ?) (25)
whereomay (fixed to one in this study) ang,, (fixed to zero)are the upper and lower bounds, offhich specifies the learning

scale to reach a new region. We adopt the Box-Muller trans#@htd obtain a Gaussian distributed random variable, i.e.,

Gaussia(;u,o-z) = ,u+a«/—2In(1— 4).cos(z .u (26)

where y and y are uniformly generated random numbers in [0,1].
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Fig.3. The schematic of dynamic OBL for pBests.

The schematic of the dynamic OBL for pBests is shown in Fig.3, vthergymbolOc is the learning probability, the symbol
dis the randomly selected from total dimension (D)ds |_rand* DJ . Since not all dimensions are changed to their opposite

values during OBL, useful information in the original individoaly be preserved. The point and its opposite point are evaluated

new

simultaneously in order to continue with the one that besttHat is, if the fitness @Best ) is better than

fitness(pBest ),then thepBest position of i-th  particle will be replaced with opBestherwise, we continue with pBedtrom

the above description, it is quite clear that the pBest can be forced to junmevwosmlution candidate with the improved OBL
technique. This strategy provides a disturbance at pBestump out performance is enhanced by this improved OBL with

dynamic Gaussian distributiomhich is beneficial to guide particles’ moving direction and enhance convergence speed.

IV. EXPERIMENTALRESULTS

A Hardware Control System and Software Platform
The parameter estimation process is divided into two main procedureslynéime experimental data acquisition and data

processing. To perform our experimerdspermanent magnet synchronous motor prototype and DSP vectad tandware

platform are used as the experimental facility which is listed in Fig.4 antk TabWaveforms of measured three-phase
voltages/currents and electrical angular speeds of PMSM such as norpalaeme condition are shown in Fig.5. The current
signals are obtained from the Hall transducers and then sampled ByEheThe DC link is connected with the DC power

source whose output is fixed to 36V. The sampling period is s& 3a:8. The signals from the DSP are transmitted to a PC via

serial protocol communication network and recorded in memory forusgeof parameter estimation using the proposed



DPSO-LS algorithm, and this is carried out in a host computer installedisithl studio 2012 software.
A series of hybrid PSOs are used éoromparison with DPSO-LS he hybrid PSOs algorithms used include OPSO (OBL for
PSO) [46], HGAPSO (hybrid PSO with genetic algorithm) [50], HPSOWM r{yBSO with Wavelet Mutation) [51], CLPSO
(comprehensive learning PSO) [52], A-CLPSO (An improved comprealetearning PSO) [53] and APSO (adaptive Particle
Swarm Optimization) [54]which are frequently used to test the performance of newly developedttatts for dynamic
optimization problemsTo assess the quality of the estimated machine parameters and VSI nitielinbased on the proposed
DPSO-LS, a statistical analysssperformed and the associated mean, standard deviation and t-testvalcglsulated

With the consideration of the balance between time cost and the precisioltafns, in this study the optimal setting of
parameters for the proposed DPSO-ALS is recommended as followsoghkton size is 50, the inertia weight 9 is on
[0.90, 0.4] and decreases lineatlye two acceleration coefficients c1, c2 are 1.49445 |, the adjustmenteparal set to 6 in
equation(12) , and the opposition learning probabiflig() is set to 0.38 in Fig.3. The optimal settings for other hybridSP86©
the same as suggested in the associated referdocexample the inertia weight is on [0.90, 0.4] and decreases iresrl
described. Both acceleration coefficients@care 1.49445.

The basic settings of these PSOs are as follows: all the PSO algorithms assagnth population size of 50, the maximum

iteration is300 and the number of runs is 30. All the hybrid PSOs are operatéw @ame hardware and software platform. All

experiments are carried out on the same computer equipped wifhdmteM-i5-2450M and 4.0GB DDR3 RAM.

TABLE [
DESIGN PARAMETERS AND SPECIFICATION OF PMSM
Rated speed 400rpm
Rated current 4A
DC link voltage 36v
Nominal terminal wire resistance  0.043
Nominal self inductance 2.91mh
Nominal mutual inductance -0.330mh
Nominal d-axis inductance 3.24mh
Nominal g-axis inductance 3.24mh
Nominal amplitude of flux induced  77.6
by magnets mWb
Number of pole pairs 5
Nominal phase resistance (T=45)  0.330a
Inertia 0.8&25kg
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B. Estimation of PMSM Parameters and VSI Nonlinearities under NoFemaperature

TABLE 1I.
RESULT COMPARISONS AMONG SEVEN PSOS MULTIPLE PARAMETERS AND VSI NONLINEARITIES IDENTIFICATION OF
PMSM UNDER NORMAL TEMPERATURE.
Estimated Parameter OPSO HGAPSO HPSOWM CLPSO A-CLPSO APSO DPSO-LS

R(Q) 0396  0.359 0.384 0.346 0371 0302 0342
w(wb) 0.0777  0.070 0.0784 0085 0782 0797 00783
Ld(h) 0.00239 0.0087  0.00269 0.00313 0.00248 0.00B1  0.00254
La(h) 0.00350 0.0086  0.00386 0.00%4 0.00367 0.00%7  0.00332
Vgeado -00819  -0.282 0368  -0122  -0.187 -0149  -0.068
Vgead1 -0.119  -0.407 0385  -0257  -0.203  -0195  -0.090
Mean 1535 1562 1.289 2.43 2826 2690 1176
Fitness Std.dev 0170  0.383 0.274 0554  0.486  0.486 0118
tvalue  6.623  5.305 1.818  13.603  19.604 17.988 0
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The estimation of PMSM parameters using data measured from normal tengperaioonment are shown in Table, and the
convergence rates of different PSOs are shown in Fig.7. The estimateshMBlearities of voltage under normal temperature
condition (withid=0 andid=-2) are shown in Fig. &.is clear from Table Il that DPSO-LS provides the best performance in
terms of mean, standard deviation and t-test values (the confidencesle3@%s).. From Fig.7, the convergence speed of
DPSO-LS is faster than other hybrid PSOs. The better performance of-DF8&h be explained in two aspects. Firstly, a novel
movement modification equation using a variable exploration vector is desmugdiate the velocity of particles. Secondly, a
dynamic OBL mechanism with adaptive Gaussian distribution is introdiecegercome the blindness in the seanftpBest
through stochastic evolution and enables it jump out the local opthkeatlemonstrated in Tabld, the estimated winding
resistance (0.342) with the consideration of the VSI nonlinearities is quite close to its hominaé \(@13%2) under normal
temperature. Also, the estimated flux linkagé78.3nwb) by DPSO-LS is quite close to its nominal value (#W6). The slight
difference between the estimated and nominal values of machine parametdye caused by nonlinearity on load condition. It

is interesting that the estimat®lwithout the consideration of VSI nonlinearities (0.328is much larger than that with the



consideration of VSI nonlinearities (0.348). The estimated distorted voltaggeMo (iId=0) does not equal tQ\sq1 (id#0), and
this confirms the fact that the,)is directy related to the current.

As shown in Fig. 8, the value ofdqo(id=0) and \feaq1(id#0) canbe estimated simultaneously with other machine parameters
based on the proposed estimator model. Furthermore, the VSI nonlinearitigsnsation can be simultaneously obtaingd b
computing Dd.Vdeadnd adding the value of Dg.Vdetadthe output ofig-axis PI regulators. Thetthe compensation ong¥q
slowly increases until M.qapproaches to zero,and this can help reduce the its influence on system stability.

In comparison with other hybrid PSOs, the estimates of the proddB&D-LS are more accurate and the estimated
parameters for example motor resistamtpaxis inductances and the rotor flux rapidly converge to their pgints. As can be
seen from Fig.7, DPSO-LS converges to the optimum after abogérirations of evolution while other hybrids shows poor
convergence performance.

C. Estimation of PMSM Parameters and VSI Nonlinearities under Vamgngperature Conditions

In order to check the performance of the proposed method f&ingathe change of parameters under varying temperature
conditions, experiments anvarying temperature conditicare carried out. A heater is used to heat the prototype PMSM. The
temperature variation experiments are divided into two steps.

a. Continuously heating the PMSM for 20 minutes and recordingréxrgental data.
b. Estimating the machine parameters and VSI nonlinearities

(t=20 minutes).
The comparisons of the performance of different PSOs are showrabte III , Fig.9 and Fig.10The estimated VSI
nonlinearities of voltage under varying temperature conditions (@ith andid=-2) are depicted in Fig. 11. From Talll§ it is
clear that DPSO-LS outperforms other hybrid PSOs in terms of ntaadasd deviation and t-test values. From Fig.9, it can be
noticed that DPSO-LS has a fastonvergence speed than other hybrid PSOs. Also, the steadiness ofLBRSOetter than

the other methods. Meanwhile, as can be seen from THbknd FiglO that the estimated winding resistance R, d-axis

inductance |, g-axis inductanceland rotor flux linkagey vary with the changing temperature. For example, the estimated
winding resistance value increases from 0.342¢ 0.438 ) under heating temperature, the stator winding resistance value
increases gradually when the temperature rises gradually due tdettts ef the thermal metal. The estimated rotor flux linkage
decreases from 78.3 (m\Wh) to 77.2 (mWh), the abrupt dropeiegtimated rotor flux linkage after 20 minute heating can be
explained by the fact that the residual flux density of the PM  reducestidhéamperature of NdFeB magnets increases [32].

It is interesting to note that for tePSO methods, the estimated value gEllarger tha that of Ly in the surface-mounted
PMSM. This is probably becausgils significantly affected by thehange ofpermanent magnet flux and reaches a magnetic

saturation status, while,lis not so sensitive ag to the change of the flux.
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The estimated Ld and Lq also change when temperature varies, the redlsantie values of d.and Lg are mainly

influenced by the flux density as the flux density has changedgdiire data measurement after20-minitue heating. Furthermore,
from Fig. 11, it can be seen that the estimatggiyaries from -0.068 (v) to -0.072(v), the estimatgghd/varies from -0.090 (v)
to -0.0957 (v) after 20 minute heating, and the estimated distortedesdjiagy(id=0) does not equal toghq: (id#0), this can be

explained by the that the VSI nonlinearity is also influenced by the tetopeariation.



The comparison of dynamic tracking performance shows that DRS{3-hetter and statistically more robust than the other
hybrid PSOs in terms of global search capacity and local search predisisrmay be explained that the proposed dynamic
search scheme, combined with the learning strategy, play a good fioldirig the global optimum for the nonlinear multimodal

optimization problem here.

TABLE III.
RESULT COMPARISONS AMONG SEVEN PSOS AWULTIPLE PARAMETERS AND VSI NONLINEARITIES IDENTIFICATION OF
PMSM UNDER TEMPERATURE VARIATION.

Estimated Parameters OPSO HGAPSO HPSOWM CLPSO A-CLPSO APSO DPSOLS
R(Q) 0.478 0.480 0.434 0.467 0.489 0.462 0.438
w(wb) 0.0765 0.0778 0.0774 0.0762 0.0759 0.0766 0.0772
Ld(h) 0.00268 0.00342 0.00283 0.00202 0.00345 0.00294 0.00283
Lq(h) 0.00352 0.0080 0.00393 0.00319 0.00371 0.00347 0.00329
Vgeado -0.0886 -0.361 0.371 0.173 0.177 -0.098 -0.0772
Vgeadt -0.107 -0.569 -0.323 -0.220 -0.187 -0.192 -0.0057
Mean 1.43 1673 1.259 2.41 2.207 2.398 1.229
Fitness Std.dev 0.228 0.702 0.156 0.624 0.528 1.02 0.127
t-value 3.359 3.988 0.545 11.621 10.856 7.650 0
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Fig.11. Estimated dagwith 20 minute heatinga)Estimated Maa{id=0).(b)Estimated Maa{id+0).

V. CONCLUSION

A novel parameter estimation method for PMSM rotor winding resistangcégLrotor flux linkage and VSI nonlinearities
has been proposed, in which the estimation of the needed parameténe arfilience of VSI nonlinearities were taken into
account simultaneously. Compared to the conventional estimation metingdthistdg-axis equations, the proposed estimator
can provide more accurate estimation of the machine parameters #ittoriBideration of VSI nonlinearitie$he VSI
nonlinearities can be considered as unknown system parameters aedsganltaneously estimated using the proposed method.
Furthermore, the VSI nonlinearities can be estimated individually fromd¢aeis equation with id=0 anid+0, respectively. In
order to enhance the accuracy and the dynamic performance of thatestia dynamic particle swarm optimization with

learning strategy (DPSO-LS) is proposed to estimate the optimum parameteisitizing the defined objective function. In



the DPSO-LS, a novel movement modification equation with variable explorationm wextalesigned to update particles, which
permits some particles with large probability to cover large areas of sgmch. Moreover, a Gaussian-distribution based
dynamic opposition-based learning (OBL) operator was developed to hedp joBip out local optima. The proposed DPISO-
can significantly enhance the performance of the estimator andesnalio effectively track parameter variation with the
changing operation conditions. Compared with several other existing PS@hahgo the performance of DPSO-LS performs
better in tracking the variation of machine parameters and estimatingtheWlinearities under different operation conditions.
The proposed parameters estimation method can be adapted and appliedittoncomhitoring, fault diagnosis and

immeasurable mechanical parameters estimation for practical industrial PMSMsybteens, such as hybrid electric vehicles,
renewable energy power generation. We would also carry out furthestigateons on the application of the method for flux

weakening mode in our future work.
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