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Parameter Estimation for VSI-Fed PMSM based on a 
Dynamic PSO with Learning Strategies  
Zhao-Hua Liu , Hua-Liang Wei, Qing-Chang Zhong , Senior Member, IEEE, and Kan Liu   

 
Abstract: A dynamic particle swarm optimization with learning strategy (DPSO-LS) is proposed for key parameter estimation for 

permanent magnet synchronous machines (PMSMs), where the voltage-source-inverter (VSI) nonlinearities are taken into account in 

the parameter estimation model and can be estimated simultaneously with other machine parameters. In the DPSO-LS algorithm, a 

novel movement modification equation with variable exploration vector is designed to effectively update particles, enabling swarms to 

cover large areas of search space with large probability and thus the global search ability is enhanced. Moreover, a 

Gaussian-distribution based dynamic opposition-based learning (OBL) strategy is developed to help the pBest jump out local optima. 

The proposed DPSO-LS can significantly enhance the estimator model accuracy and dynamic performance. Finally, the proposed 

algorithm is applied to multiple parameter estimation including the VSI nonlinearities of a PMSM.  The performance of DPSO-LS is 

compared with several existing PSO algorithms, and the comparison results show that the proposed parameters estimation method has 

better performance in tracking the variation of machine parameters effectively and estimating the VSI nonlinearities under different 

operation conditions.  

 
Index Terms: particle swarm optimization (PSO), dynamic, opposition-based learning (OBL), parameter identification, voltage source 

inverter (VSI) nonlinearity, permanent magnet synchronous machines (PMSMs). 

I. INTRODUCTION1 

N recent years, permanent magnet synchronous machines (PMSMs) are widely employed in high-performance applications 

(such as industrial robots, servo drive system, high-speed rail, renew energy generation systems, and household appliances) due 

to their high efficiency, high-power density, and good dynamic response [1]-[3]. Accurate knowledge of the machine parameters 

such as winding resistance, direct axis inductances, quadrate axis inductances, and rotor PM flux linkage are required for control 

system design [4]-[6], condition monitoring and fault detection [7]-[11]. Usually machine parameters are used as a normal 

operation indicator for the PMSM drive system. For example, high temperature can cause an increase in winding resistance and 

the variation of inductances may cause torque ripple. Similarly, demagnetization in permanent magnet flux may cause a decrease 

in the amplitude of fundamental back electromotive force (EMF) and will influence d-q axis inductances of the machine, which 

in turn will have a direct impact on machines performance and power efficiency [12]. In real applications, these machine 

parameters are not known exactly as they vary with the load torque, the changes of temperature, and other environmental 
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conditions. For example, the winding stator resistance is prone to change with the variation of temperature, and the rotor flux 

linkage created by PM may vary with the changes of temperature and/or operational condition [13] [14]. 

  The PMSM parameters are a key factor for control system design, condition monitoring and fault diagnosis, and therefore 

estimation or direct measurement of the parameters are important. Traditionally, some measurement instruments such as thermal 

couplers, search coils and load test bench [15]-[17] are employed to observe the machine parameters. However, there are some 

drawbacks in the direct measurement due to two reasons. Firstly, it is difficult to measure the machine parameters when PMSM 

operates; Secondly, even if  direct measurement is possible, it would normally significantly increase the instruments cost and the 

complexity of the associated implementation. Some researchers proposed to use self-commissioning technique to estimate 

PMSM parameters under standstill state [18]. Unfortunately, this method cannot estimate all the needed parameters accurately on 

load, for example permanent magnet cannot be estimated at a standstill state. Thus, in practice system identification method is an 

ideal technology for directly estimating the needed parameters based on regularly measured signals instead of using additional 

measurement instruments [13]. Algorithms such as recursive least-squares (RLS) [6], [19] [20], extended Kalman filter (EKF) 

[21] [22], model reference adaptive system (MRAS) [23] [24], finite-element method [25] [26], adaptive estimation methods [27] 

and artificial neural networks (ANN) [28] [29] are usually employed for the design of parameter estimators. Owing to linear 

parameterization for the RLS algorithm, the RLS estimator usually suffers from the noise characteristics and may lead to the 

reduction of solution accuracy [6]. In [21], an EKF was employed to estimate the winding resistance and rotor flux linkage. The 

results indicate that the estimator suffers from noise and instability, and thus cannot obtain accurate estimates for the actual 

parameter values. In [22], an EKF was proposed to estimate the rotor speed and position of PMSM. However, it is difficult to use 

in real applications because the algorithm is sensitive to noise. The MRAS estimators proposed in [23] and [24] cannot 

simultaneously estimate winding resistance, inductance and rotor flux linkage accurately. In the MRAS method, other parameters’ 

nominal values specified in the motor manual are needed to estimate one parameter. In this case, the accuracy of identified 

parameters depends on the accuracy of the nominal value. In reality, the real parameter value usually depends on a variable 

operating condition caused by the changes of temperature and/or load. The FE (finite element) based parameters estimator 

proposed in [25] requires a high computational load and it may be challenging task to use this method to estimate PMSM 

parameters due to the complex computations. Some ANNs have also been proposed for estimating parameters of PMSM in [28] 

[29]. Although the ANN method is known to be precise in parameter estimation, it usually needs a long data set to train and more 

knowledge for weight adjustment.  

Some researchers proposed to inject perturbation signals into the drive system to obtain an extra number of state space 

equations of PMSM, and then and apply system identification methodologies to estimate machine parameters [13] [18] [30]-[32]. 

In the signal injection method, the designed estimator is based on the conventional d-q axis (direct and quadrature axis) equation 



and the VSI (voltage source inverter) nonlinearities are often ignored. Since the used signals  such as VSI voltages for the 

parameter estimator are usually measured from the output voltage of the PI regulator in a PMSM vector control system, those 

methods are prone to suffer from the effect of nonlinearity of VSI such as switch voltage drop, switching delay and dead zone 

response [33]. As a result, it cannot estimate the actual value of the machine parameters due to the ignorance of effects of the 

nonlinearities on parameters estimation. Some methods were proposed to compensate the effect of VSI nonlinearity (see e.g. 

[33]-[36]), but these methods need accurate PMSM parameter values. Because the VSI nonlinearity and machine parameters 

cannot be simultaneously estimated by using these methods, the errors caused by VSI nonlinearity are combined into the 

parameter estimator and this will affect the accuracy of parameter estimation. Thus, the VSI nonlinearity should be considered in 

estimating machine parameters.  

Due to the easy implementation , low computational cost  and fast convergence speed in dealing with practical industrial 

problems,  particle swarm optimization (PSO)  has recently been introduced as an attractive optimization techniques in system 

identification, optimal and control of power electronics [37]-[45]. The parameter estimation problem can be treated as a grey-box 

model based parameter optimization task and the issue of parameter cross-coupling can be effectively solved by using PSO. In 

[37], an improved PSO method for estimating the unknown composite load model parameters was proposed, where a new 

crossover operation was introduced to improve the convergence performance. In [38], anther improved PSO was proposed for 

parameter estimation of an induction machine by modifying the movement equation of the standard PSO as linear time-varying 

parameters. A least mean square (LMS) method combined with PSO was presented to identify the parameters of an induction 

motor in [39]. In the field of PMSM parameters identification, some researchers proposed a PSO-based parameter estimator for 

PMSM [40]-[42], this kind of intelligent estimator is effective in estimating the stator resistance and disturbed load torque. In [41], 

a PSO algorithm combined with experimental measurements was proposed for the identification of PMSMs. Similarly, a PSO 

combined with self-commissioning scheme was used in [42] for the identification and optimization of PMSM parameters. It is 

known that the basic PSO is easy to get trapped in local minima, these basic PSO algorithms may not be able to exactly estimate 

multiple parameters simultaneously, such as winding resistance, dq-axis inductances and permanent magnet flux. In [43], a hybrid 

methodology combined multiple cooperate PSO and artificial immune system (AIS) was developed to improve multi-parameter 

estimation performance of PMSM. To speed up the search process of particles, a method of GPU accelerated parallel 

co-evolutionary immune PSO was proposed for parameter estimation and temperature monitoring of a PMSM [44], for which  

the performance of the parameter estimates was greatly improved by combining PSO  and a parallel computing technology. 

Nevertheless, the existing PSO-based parameters estimators of PMSM are based on the basic dq-axis equation which neglects the 

VSI nonlinearity, thus it cannot estimate the actual value of the machine parameters.  

In this study, a dynamic particle swarm optimization with learning a strategy (DPSO-LS) is proposed to design the estimator 



of machine parameters and VSI nonlinearity in PMSM, in which the VSI nonlinearity is seen as a system parameter and can be 

estimated simultaneously with machine parameters. In the DPSO-LS, a novel movement modification equation with variable 

exploration vector is designed to update particles, it permits some particles with large probability to cover large areas of search 

space and thus the global search ability is enhanced. Moreover, a dynamic opposition-based learning (OBL) operator using 

Gaussian-distribution is developed to help pBest jump out local optima. OBL is a reinforcement learning strategy using 

computing and counter computing simultaneously, and is widely used to accelerate the convergence properties of many 

evolutionary algorithms [46][47]. The proposed algorithm is applied to the estimation of multiple machine parameters and VSI 

nonlinearity of PMSM. The results indicate that it can track parameter variation with the changing operation condition 

effectively. A comparison of the performance of DPSO-LS with several existing PSO algorithms is carried out, and it 

demonstrates that the proposed parameters estimation method can better track the variation of machine parameters and 

estimating the VSI nonlinearities under different operation conditions. 

  In summary, the major contributions of this paper include: 

1) A dynamic estimator using dynamic PSO combined with a dynamic OBL scheme is proposed for simultaneous estimation of 

the machine parameters and VSI nonlinearities of PMSM. The VSI nonlinearity is seen as system parameters and can be 

estimated by the designed estimator, which takes into consideration of the influence of distorted voltage from the VSI and thus 

the accuracy of the estimation of machine parameters is improved .The proposed estimator can simultaneously estimate machine 

parameters and VSI nonlinearity without any priori knowledge of the PMSM. 

2) In order to enhance the accuracy and the dynamic performance of the estimator, a novel movement modification equation 

using a variable exploration vector is designed to update the velocity of particles. Moreover, a dynamic OBL mechanism with 

Gaussian distribution is introduced to overcome the blindness of the pBest stochastic evolution and enables it jump out the local 

optimality. The proposed estimator has a fast convergence rate, a good accuracy and a good dynamic response property. 

3) The proposed estimator has also taken into account the identifiability of all the parameters to be estimated and the VSI 

nonlinearities, and does not need extra sensors to measure extra machine parameters. Therefore, the proposed parameter 

estimation method is cost-efficient.  

The remainder of this paper is organized as follows. An estimator model for the machine parameters and VSI nonlinearities of 

a PMSM is described in section Ċ. A DPSO-LS algorithm is proposed in section ċ, where a scheme to determine  the 

parameters of the estimator  and the optimization procedure and steps are described. Experimental results and the analysis are 

given in section IV. Finally, some concluding remarks are presented in section V. 

II. PMSM MODEL AND DESIGN OF PARAMETER ESTIMATION MODEL 

A. PMSM Model and VSI Nonlinearity 



The dq-axis voltage equations of the PMSM are usually employed for the parameter estimation of the machine [13], which are 
given as: 
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where Ȧ is the electrical angular velocity, ud, uq id,and iq,  are dq axis stator voltage and current, P is the number of pole 

pairs ,the parameter set{R, Ld, Lq ,ȥ} is unknown and needs to be identified from measured data. The equation (1) can be 

discretized as follows when the machine is under the steady-state: 
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Taking into account the influence of VSI nonlinearity, (3) could be rewritten as:  
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where du and qu are the dq-axis reference voltages and measured from the PI regulators (V),  Dd and Dq can be expressed as  

[35][36]:
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where ias, ibs, ics are the stator abc three-phase currents (A). 
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In discrete time domain, the steady-state PMSM equation including the distorted voltage due to VSI nonlinearity can be 

expressed as  

( ) ( ) ( ) ( ) ( )deadd d q qu k Dd k V Ri k L k i k            (7a) 

( ) ( ) ( ) ( ) ( ) ( )deadq q d du k Dq k V Ri k L k i k k        (7b) 

The variable Vdead  is the distorted  voltage caused by the VSI nonlinearities, and can be represented as 

.( ) 2
dead on off sat d

dead dc sat d
T T T V V

V V V VTs
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where deadT , onT , offT , dcV , satV  and dV are the dead-time period, turn-on ,turn-off times of the switching device, the actual and 

measured real-time dc bus voltages, the saturation voltage drop of the active switch and the forward voltage drop of the 

freewheeling diode, respectively. The switching times and voltage drops in the switching device may vary during operations and 

difficult to measure due to the changes of current, frequency, DC link voltage, and temperature. In (8), the dead-time period Vdead 



is difficult to measure and compensate as the switching times and voltage drops of switching device vary with the operating 

conditions (such as the dc link voltage and currents). Therefore, it is important to accurately estimate and compensate the Vdead in 

order to ensure the accuracy of estimated PMSM parameter values.  

B. PMSM Parameter Estimator Design 
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Fig .1.Schematic diagrams of estimation and mathematical model. 

First of all, the VSI nonlinearity is seen as parameters that can be estimated simultaneously with other machine parameters by 

the designed estimator using the proposed DPSO-LS algorithm. To obtain more equations, id is set to be zero for decoupling the 

flux and torque control, and a very short period of negative id (i.e. id<0) is then injected to obtain a full rank reference model. The 

symbols id0 and id1 indicate that the d axis is injected with the current id=0 and id≠0, respectively (see Fig. 1). In Fig.1, under 

normal operation condition, the PMSM is under a control state with id=0, the Data0 (the data associated with id=0) are firstly 

measured and then a short pulse of negative id<0 is injected, and the corresponding data, Data1 (the data associated with id≠0), 

are recorded after 2ms of injection, both with the same sampling width (the sampling period Ts is set to 83.3 s) and sampling 

number.  

The parameters of machine are assumed to be constant as the duration of injected pulse current is very short due to mechanical 

inertia and fast response of current loop PI controller. In this case, the influence of injecting a short pulse of id on output torque 

can be neglected. Thus, the two sets of steady state data (Data0 and Data1) can be used for the estimation of multiple machine 

parameters since these parameters can be seen as constant within very short time. Note that Vdead is directly related to the current, 

so Vdead0≠Vdead1. Thus, the distorted voltage Vdead0 and Vdead1 need to be estimated from the data. A total of six parameters (i.e., R, 



Ld, Lq ,ȥ, Vdead0,Vdead1) need to be estimated, therefore six equations need to be designed. From (7), it is ready to get (9a) and (9b) 

when id=0. When id≠0, (7) can be reformed as (9d) and (9e). The measured data are divided into two parts, the first part is 

indexed from 1 to 0.5n and the second one is indexed from 0.5n+1 to n. Since iq and id are kept as constants, it is reasonable that 

Vdead is regarded as a constant during the data measurement, two additional equations are designed as in (9c) and (9f) during the 

varying speed. The full rank reference model is given as  
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The estimation of the parameters can be addressed as an optimization problem where the system response to a known input is 

used to find the unknown parameter values of the model. The idea is to compare the system response with the parameterized 

model based on a cost function, which is defined to measure the similarity between the system response and the model response.  

To approximate the dynamic parameters, it needs to define cost functions. In this study, the three cost functions or fitness 

functions, under control id =0, are defined as 
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Under control id ≠0, another three fitness functions  are given as 
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where n is the length of samples, ̂du and ˆqu  indicate the estimated voltages in dq-axis calculated through measured currents 

and the estimated parameters and VSI nonlinearities. Let p̂ = ( 0 1ˆ ˆ ˆ ˆ, , , , ,q dead deaddR L L V V ), then all the needed parameters can be 

identified simultaneously by minimizing the following objective function 

(
1

ˆ
6

) if a fii
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
                         (16) 

where ai’s are weighting coefficients. Note that the designed objective function (16) is related to the actual permanent magnet 

synchronous motor drive system which is highly nonlinear and time varying. For example, a sudden change in the output voltage 

may occur even there are only some slow variations in the motor driven system such as current, VSI nonlinearity and machine 

parameters. The nonlinear objective function has many local optima and the used optimization method should be capable of 

identifying parameters dynamically and adaptively in solving such a problem. So, it is important to develop an efficient dynamic 

parameter tracking approach for the estimation of PMSM parameters and VSI nonlinearities.  

III.  ESTIMATOR PARAMETER OPTIMIZATION WITH DPSO-LS   

A. Principle of the Basic PSO Algorithm 

PSO [43] is a swarm-based intelligent optimization algorithm inspired by the ideas of mimicking behaviors of bird flocking 

foraging. Assuming that the problem is defined in a d-dimensional space, and each particle i is composed of two vectors, namely 

the velocity vector Vi={Vi1,Vi2,…,Vid} and the position vector Xi={Xi1, Xi2,…, Xid} ,the searching scheme can be represented as 

1 1

2 2

( 1) * ()( ( ) ( ))

* ()( ( ) ( ))

id id id id

d id

V t V c rand pBest t X t

c rand gBest t X t

   

 
             (17) 

( 1) ( ) ( 1)id id idX t X t V t                                 (18) 

 where   is the inertia weight factor decreasing linearly, c1 and c2 are the acceleration coefficients, rand1 and rand2 are two 

uniformly distributed numbers generated randomly within [0,1], respectively. pBestid represents the i-th particle has found best 

position so far (individual best), gBestd is the best position found among the entire population (global best). From (17), it is clear 

that the second part represents the private thinking by itself, and the third part is the social cognitive by interaction with 

neighborhoods. 

B.  The Proposed DPSO-LS Algorithm 

As mentioned in Section II, the objective function is multimodal and therefore requires that the optimization method should 

have a good global search capability. The existing static optimization methods may easily get trapped into some local minima. The 

proposed parameter optimization should be able to adaptively change their original trajectories to explore new search space when 



the solution of problem is changing. In order to solve this problem, a dynamic particle swarm optimization with a learning 

strategy (DPSO-LS) is proposed formachine parameter and VSI nonlinearity estimation.  

 The implementation of the learning strategy contains two key aspects. Firstly, a novel movement update equation is designed 

using a variable exploration vector to enhance the dynamic performance of PSO. Secondly, a dynamic OBL using adaptive 

Gaussian-distribution is proposed to overcome the blindness in the search of pBests through stochastic evolution and enables it 

escape from local optima.  It worth noting that the proposed DPSO-LS does not increase time complexity in comparison with 

the basic PSO. Actually, it is easy to implement to solve the optimization problem here, and to adapt to solve other similar 

problems.c . 

The general steps of DPSO-LS are stated as follows. 
Algorithm: DPSO-LS 
Step1: Initialize population; set up parameters for DPSO-L.  
Step2: for i=1 to N //1≤i≤N, N is the number of particles  

update particlei velocity (Vi)using the equation (19)  
update particlei position (Xi)using the equation(20) } 

Evaluate the fitness value (Fit(Xi))of particlei; 
IF  Fit(Xi) < Fit(Pbesti) then Update Pbesti(Pbesti  Xi)  

IF  Fit(Pbesti) < Fit(gBbest) Then Update gBest (gBest
Pbesti)  

end for 
Step3: for i=1 to N //1≤i≤N, N is the number of pBest  
        If rand <Oc // Oc is a learning probability 
Then Gaussian distribution based dynamic OBL strategy for 

pBesti using the equations (24)-(26) and the Fig. 2. 
Evaluate the fitness value (Fit(Xi))of opBesti (opposition 
pBesti) 

Update Pbesti (pBesti  pBestiĤopBesti) 
End for 
Step4: Until a terminate condition is met, or else, returns to 
step2. 
Step5: Output optimal results. 

 

C. Dynamic PSO Model 

In recent years, many researchers focused on improving the performance of basic PSO [43] [44] (mainly on individual best 

position (pBest) and the global best position (gBest). If the particles converge fast, they will always shrink toward local regions 

within a few generations [43]. This phenomenon leads to a similar search behavior among the swarms and the loss of diversity in 

the population. If the particles are trapped in local regions, they will not be able to jump out due to their homogeneous search 

behavior as well as the absence of an adaptive exploration ability [43].To improve the performance of PSO, the particles should 

be able to adaptively change their original trajectories to explore new search space. The issue is how to guide particles to move 

toward different promising regions and enhance a broader exploration of the solution space. An improved movement 

modification equation with an adaptive exploration vector is proposed to update the velocity of particles ,i.e., 
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        (19) 

( 1) ( ) ( 1)id id idX t X t V t                    (20) 

The exploration vector (R(t)-Xjd(t)) is added to provide a broader exploration of the solution space for the i-th particle due to the 
use of adaptive variable exploration radius (R(t)) which permits particles to cover large areas of search space with large 
probability.  
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Fig.2.IllustrationofPSO searching behavior with adaptive explore mechanism 

The exploration radius R(t) learns adaptively as  

( ) ( )max maxmin min . .cos( )
2 2

( ) 2
d d d dX X X X tR t ue  

 
  

         (21) 

where u is  a uniformly random number in [0,1], Xd
min and Xd

max are the designated lower and upper bounds of the problem, 

respectively,   is an adjustment parameter ( is usuallyı2), and t is the  iteration index. The modified velocity equation of 

PSO indicates that the swarm members are allowed to explore larger unvisited regions in the objective space (as illustrated in 

Fig.2). A large R(t) facilitates an exploration which induces the particles to leave their current regions and pushes the particles to 

search in the other regions. A small R(t) enhances the exploitation which refines the best solution of the particles by exploiting a 

small vicinity around this best solution. Obviously, the whole feasible solution space can be explored and covered as large as 

possible by this modified equation with adaptive variable exploration vector.  

D. A Dynamic OBL for pBests  

Since the pBest can be potentially used as the exemplars to lead the moving direction of other particles, the search status of 

pBest particles is important for the entire swarm. In order to help pBest particles jump out the local optimal and accelerate the 

local search, in this study an adaptive Gaussian-distributed-based dynamic OBL strategy is proposed for a reinforcement learning 

of pBest. The opposition-based learning (OBL) is a machine learning method and was firstly introduced by Tizhoosh [46]. The 



key point for OBL is that it introduces a simple technique which allows the population-based algorithms to search for an optimal 

point in the opposite direction of the current search. Mathematical and experimental proofs show that opposite points are more 

beneficial than random points [47] [48], and can be used to accelerate the convergence properties of other evolutionary 

algorithms. The basic idea of OBL is that a search in the opposite direction is carried out simultaneously when a solution is 

exploited in a direction, i.e., 

x a b x                                (22) 

where x is a real number on the interval [a,b], and x is the opposite number of x. This definition is also valid for D-dimensional 

space, where for x1,x2,…,xDęR and xiబ[ai,bi], the D-dimensional point xi cis defined as  

i i i ix a b x                              (23) 
Howerver, as pointed out in [47] [48], the exploration performance of deterministic OBL or its counterpart using a uniform 

distribution is limited. In order to overcome the drawbacks of the traditional OBL and enhance the pBest convergence speed, in 

this study a dynamic OBL strategy using adaptive Gaussian distribution is designed as 
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( ) min( ), ( ) max( )

id d d

d id d id

opBest a t b t Gaussian pBestid

a t pBest b t pBest
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 
    (24) 

where 2( , )Gaussian  is a random number of a Gaussian distribution with a zero mean(ȝ)and a standard deviation (ı). In 

order to obtain a better dynamic learning performance for pBests, it is assumed that ı decreases nonlinearly, for which a good 

choice may be given as  

 2
min max min( )(1 )

t

T
                           (25) 

where ımax (fixed to one in this study) and ımin (fixed to zero)are the upper and lower bounds of ı, which specifies the learning 

scale to reach a new region. We adopt the Box-Muller transform [49] to obtain a Gaussian distributed random variable, i.e., 

2
2

1( , ) 2 ln(1 ).cos(2 . )Gaussian u u                (26) 

where u1 and u2 are uniformly generated random numbers in [0,1].  
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Fig.3. The schematic of dynamic OBL for pBests. 

 
The schematic of the dynamic OBL for pBests is shown in Fig.3, where the symbol Oc is the learning probability, the symbol 

d is the randomly selected from total dimension (D) as *d rand D    .  Since not all dimensions are changed to their opposite 

values during OBL, useful information in the original individual may be preserved. The point and its opposite point are evaluated 

simultaneously in order to continue with the  one that best fit, that is, if the fitness ( i

newpBest ) is better than 

fitness( ipBest ),then the pBest position of i-th  particle will be replaced with opBesti; otherwise, we continue with pBesti. From 

the above description, it is quite clear that the pBest can be forced to jump to a new solution candidate with the improved OBL 

technique. This strategy provides a disturbance at pBest, the jump out performance is enhanced by this improved OBL with 

dynamic Gaussian distribution which is beneficial to guide particles’ moving direction and enhance convergence speed.  

IV.  EXPERIMENTAL RESULTS 

A.  Hardware Control System and Software Platform  

The parameter estimation process is divided into two main procedures, namely, the experimental data acquisition and data 

processing. To perform our experiments, a permanent magnet synchronous motor prototype and DSP vector control hardware 

platform are used as the experimental facility which is listed in Fig.4 and Table I . Waveforms of measured three-phase 

voltages/currents and electrical angular speeds of PMSM such as normal temperature condition are shown in Fig.5. The current 

signals are obtained from the Hall transducers and then sampled by the DSP. The DC link is connected with the DC power 

source whose output is fixed to 36V. The sampling period is set to 83.3 s. The signals from the DSP are transmitted to a PC via 

serial protocol communication network and recorded in memory for late use of parameter estimation using the proposed 



DPSO-LS algorithm, and this is carried out in a host computer installed with visual studio 2012 software.  

A series of hybrid PSOs are used for a comparison with DPSO-LS. The hybrid PSOs algorithms used include OPSO (OBL for 

PSO) [46], HGAPSO (hybrid PSO with genetic algorithm) [50], HPSOWM (hybrid PSO with Wavelet Mutation) [51], CLPSO 

(comprehensive learning PSO) [52], A-CLPSO (An improved comprehensive learning PSO) [53] and APSO (adaptive Particle 

Swarm Optimization) [54], which are frequently used to test the performance of newly developed algorithms for dynamic 

optimization problems. To assess the quality of the estimated machine parameters and VSI nonlinearities based on the proposed 

DPSO-LS, a statistical analysis is performed and the associated mean, standard deviation and t-test values are calculated.  

 With the consideration of the balance between time cost and the precision of solutions , in this study the optimal setting of 

parameters for the proposed DPSO-ALS is recommended as follows: the population size is 50, the inertia weight in (19) is on 

[0.90, 0.4] and decreases linearly, the two acceleration coefficients c1, c2 are 1.49445 , the adjustment parameter  set to 6 in 

equation(12) , and the opposition learning probability( Oc ) is set to 0.38 in Fig.3. The optimal settings for other hybrid PSOs are 

the same as suggested in the associated references, for example the inertia weight is on [0.90, 0.4] and decreases linearly as 

described. Both acceleration coefficients c1, c2 are 1.49445.  

The basic settings of these PSOs are as follows: all the PSO algorithms using the same population size of 50, the maximum 

iteration is 300 and the number of runs is 30. All the hybrid PSOs are operated on the same hardware and software platform. All 

experiments are carried out on the same computer equipped with Intel®-core™-i5-2450M and 4.0GB DDR3 RAM. 

TABLE ĉ 
DESIGN PARAMETERS AND SPECIFICATION OF PMSM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Rated speed 400rpm 
Rated current 4A 

DC link voltage 36v 
Nominal terminal wire resistance 0.043 

Nominal self inductance 2.91mh 
Nominal mutual inductance -0.330mh 
Nominal d-axis inductance 3.24mh 
Nominal q-axis inductance 3.24mh 

Nominal amplitude of flux induced 
by magnets 

77.6 
mWb 

Number of pole pairs 5 
Nominal phase resistance (T=25 oC) 0.330  

Inertia 
0.8e−5kg

m2 



(a) Photograph of the experimental with prototype PMSM 
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(b) The schematic of vector controlled PMSM drive system. 

 
 

(c) The proposed system 
Fig. 4.The schematic diagram of identification hardware and software platform. 

 
(a)Sampled of three phase current 

 
(b) Sampled of three phase voltages 

 
(c)Sampled of electrical angular speed of PMSM 
Fig.5.Waveforms of sampled PMSM signals. 



 
Fig.6. The fitness convergence curve of seven PSOs on multiple parameters and VSI nonlinearities identification of PMSM under normal temperature. 

 

B. Estimation of PMSM Parameters and VSI Nonlinearities under Normal Temperature  
 

TABLE Ċ.  
RESULT COMPARISONS AMONG SEVEN PSOS ON MULTIPLE PARAMETERS AND VSI NONLINEARITIES IDENTIFICATION OF 

PMSM UNDER NORMAL TEMPERATURE. 
Estimated Parameters OPSO HGAPSO HPSOWM CLPSO A-CLPSO APSO DPSO-LS 

R( ) 0.396 0.359 0.384 0.346 0.371 0.302 0.342 

ȥ(wb) 0.0777 0.0790 0.0784 0.0785 0.782 0.797 0.0783 

Ld(h) 0.00239 0.00287 0.00269 0.00313 0.00248 0.00231 0.00254 

Lq(h) 0.00350 0.00386 0.00386 0.00364 0.00367 0.00367 0.00332 

Vdead0 -0.0819 -0.282 -0.368 -0.122 -0.187 -0.149 -0.068 

Vdead1 -0.119 -0.407 -0.385 -0.257 -0.203 -0.195 -0.090 

Fitness 
Mean 1.535 1.562 1.289 2.43 2.826 2.690 1.176 

Std.dev 0.170 0.383 0.274 0.554 0.486 0.486 0.118 
t-value 6.623 5.305 1.818 13.603 19.604 17.988 0 
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   Fig. 7. Identified parameters under normal temperature. (a) winding resistance. (b) rotor flux linkage (c) d-axis inductance.(d) q-axis inductance. 
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Fig.8. Estimated Vdead under normal temperature.(a)Estimated Vdead0(id=0) (b)Estimated Vdead1(id≠0). 
  

The estimation of PMSM parameters using data measured from normal temperature environment are shown in Table II  , and the 

convergence rates of different PSOs are shown in Fig.7. The estimated VSI nonlinearities of voltage under normal temperature 

condition (with id=0 and id=-2) are shown in Fig. 8.It is clear from Table II that DPSO-LS provides the best performance in 

terms of mean, standard deviation and t-test values (the confidence level is 90%).. From Fig.7, the convergence speed of 

DPSO-LS is faster than other hybrid PSOs. The better performance of DPSO-LS can be explained in two aspects. Firstly, a novel 

movement modification equation using a variable exploration vector is designed to update the velocity of particles. Secondly, a 

dynamic OBL mechanism with adaptive Gaussian distribution is introduced to overcome the blindness in the search of pBest 

through stochastic evolution and enables it jump out the local optimal. As demonstrated in Table Ċ, the estimated winding 

resistance (0.342ȍ) with the consideration of the VSI nonlinearities is quite close to its nominal value (0.33ȍ) under normal 

temperature. Also, the estimated flux linkage ȥ (78.3mWb) by DPSO-LS is quite close to its nominal value (77.6mWb). The slight 

difference between the estimated and nominal values of machine parameters may be caused by nonlinearity on load condition. It 

is interesting that the estimated R without the consideration of VSI nonlinearities (0.373 ȍ) is much larger than that with the 



consideration of VSI nonlinearities (0.342 ȍ). The estimated distorted voltage Vdead0 (id=0) does not equal toVdead1 (id≠0), and 

this confirms the fact that the Vdead is directly related to the current. 

  As shown in Fig. 8, the value of Vdead0 (id=0) and Vdead1 (id≠0) can be estimated simultaneously with other machine parameters 

based on the proposed estimator model. Furthermore, the VSI nonlinearities compensation can be simultaneously obtained by 

computing Dd.Vdead and adding the value of Dq.Vdead to the output of dq-axis PI regulators. Then, the compensation on Vdead  

slowly increases until Vdead approaches to zero,  and this can help reduce the its influence on system stability.  

In comparison with other hybrid PSOs, the estimates of the proposed DPSO-LS are more accurate and the estimated 

parameters for example motor resistance, dq-axis inductances and the rotor flux rapidly converge to their right points. As can be 

seen from Fig.7, DPSO-LS converges to the optimum after about 50 generations of evolution while other hybrids shows poor 

convergence performance.  

C. Estimation of PMSM Parameters and VSI Nonlinearities under Varying Temperature Conditions 

In order to check the performance of the proposed method for tracking the change of parameters under varying temperature 

conditions, experiments on a varying temperature condition are carried out. A heater is used to heat the prototype PMSM. The 

temperature variation experiments are divided into two steps. 

a. Continuously heating the PMSM for 20 minutes and recording experimental data. 

b. Estimating the machine parameters and VSI nonlinearities  

(t=20 minutes).  

The comparisons of the performance of different PSOs are shown in Table ċ , Fig.9 and Fig.10. The estimated VSI 

nonlinearities of voltage under varying temperature conditions (with id=0 and id=-2) are depicted in Fig. 11. From Table ċ, it is 

clear that DPSO-LS outperforms other hybrid PSOs in terms of mean, standard deviation and t-test values. From Fig.9, it can be 

noticed that DPSO-LS has a faster convergence speed than other hybrid PSOs. Also, the steadiness of DPSO-LS is better than 

the other methods. Meanwhile, as can be seen from Table ċ and Fig.10 that the estimated winding resistance R, d-axis 

inductance Ld, q-axis inductance Lq and rotor flux linkage ȥ vary with the changing temperature. For example, the estimated 

winding resistance value increases from 0.342( )to 0.438 ( ) under heating temperature, the stator winding resistance value 

increases gradually when the temperature rises gradually due to the effects of the thermal metal. The estimated rotor flux linkage 

decreases from 78.3 (mWb) to 77.2 (mWb), the abrupt drop in the estimated rotor flux linkage after 20 minute heating can be 

explained by the fact that the residual flux density of the PM  reduces when the temperature of NdFeB magnets increases [32]. 

It is interesting to note that for these PSO methods, the estimated value of Lq is larger than that of Ld in the surface-mounted 

PMSM. This is probably because Ld is significantly affected by the change of permanent magnet flux and reaches a magnetic 

saturation status, while Lq is not so sensitive as Ld to the change of the flux. 



 

 
Fig. 9.The fitness convergence curve of several PSOs on PMSM parameter identification with heating 20 minutes by heater. 
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Fig. 10.  Identified parameters with heating 20 minutes. (a) winding resistance.(b) rotor flux linkage.(c) d-axis inductance.(d) q-axis inductance. 
The estimated Ld and Lq also change when temperature varies, the reason is that the values of Ld and Lq are mainly 

influenced by the flux density as the flux density has changed during the data measurement after20-minitue heating. Furthermore, 

from Fig. 11, it can be seen that the estimated Vdead0 varies from -0.068 (v) to -0.072(v), the estimated Vdead1 varies from -0.090 (v) 

to -0.0957 (v) after 20 minute heating, and the estimated distorted voltage Vdead0 (id=0) does not equal to Vdead1 (id≠0), this can be 

explained by the that the VSI nonlinearity is also influenced by the temperature variation. 



The comparison of dynamic tracking performance shows that DPSO-LS is better and statistically more robust than the other 

hybrid PSOs in terms of global search capacity and local search precision. This may be explained that the proposed dynamic 

search scheme, combined with the learning strategy, play a good role in finding the global optimum for the nonlinear multimodal 

optimization problem here. 

TABLE ċ. 
 RESULT COMPARISONS AMONG SEVEN PSOS ON MULTIPLE PARAMETERS AND VSI NONLINEARITIES IDENTIFICATION OF 

PMSM UNDER TEMPERATURE VARIATION. 
Estimated Parameters OPSO HGAPSO HPSOWM CLPSO A-CLPSO APSO DPSO-LS 

R( ) 0.478 0.480 0.434 0.467 0.489 0.462 0.438 

ȥ(wb) 0.0765 0.0778 0.0774 0.0762 0.0759 0.0766 0.0772 
Ld(h) 0.00268 0.00342 0.00283 0.00202 0.00345 0.00294 0.00283 
Lq(h) 0.00352 0.0080 0.00393 0.00319 0.00371 0.00347 0.00329 
Vdead0 -0.0886 -0.361 -0.371 -0.173 -0.177 -0.098 -0.0772 
Vdead1 -0.107 -0.569 -0.323 -0.220 -0.187 -0.192 -0.0957 

Fitness 
Mean 1.43 1.673 1.259 2.41 2.207 2.398 1.229 

Std.dev 0.228 0.702 0.156 0.624 0.528 1.02 0.127 
t-value 3.359 3.988 0.545 11.621 10.856 7.650 0 

 

                 
(a)                                                                   (b)  

Fig.11. Estimated Vdead with 20 minute heating. (a)Estimated Vdead0(id=0).(b)Estimated Vdead1(id≠0). 
 
 

V. CONCLUSION 

A novel parameter estimation method for  PMSM rotor winding resistance, Ld , Lq , rotor flux linkage and VSI nonlinearities 

has been proposed, in which the estimation of the needed  parameters and the influence of VSI nonlinearities were taken into 

account simultaneously. Compared to the conventional estimation method using the dq-axis equations, the proposed estimator 

can   provide more accurate estimation of the machine parameters with the consideration of VSI nonlinearities. The VSI 

nonlinearities can be considered as unknown system parameters and can be simultaneously estimated using the proposed method. 

Furthermore, the VSI nonlinearities can be estimated individually from the dq-axis equation with id=0 and id≠0, respectively. In 

order to enhance the accuracy and the dynamic performance of the estimator, a dynamic particle swarm optimization with 

learning strategy (DPSO-LS) is proposed to estimate the optimum parameters by minimizing the defined objective function. In 



the DPSO-LS, a novel movement modification equation with variable exploration vector was designed to update particles, which 

permits some particles with large probability to cover large areas of search space. Moreover, a Gaussian-distribution based 

dynamic opposition-based learning (OBL) operator was developed to help pBest jump out local optima. The proposed DPSO-LS 

can significantly enhance the performance of the estimator and enables it to effectively track parameter variation with the 

changing operation conditions. Compared with several other existing PSO algorithms, the performance of DPSO-LS performs 

better in tracking the variation of machine parameters and estimating the VSI nonlinearities under different operation conditions.  

The proposed parameters estimation method can be adapted and applied to condition monitoring, fault diagnosis and 

immeasurable mechanical parameters estimation for practical industrial PMSM drive systems, such as hybrid electric vehicles, 

renewable energy power generation. We would also carry out further investigations on the application of the method for flux 

weakening mode in our future work. 
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