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ABSTRACT 

 

The challenge of developing effective pharmacodynamic biomarkers for pre-clinical and 

clinical testing of FGFR signalling inhibition is significant. Assays that rely on the 

measurement of phospho-protein epitopes can be limited by the availability of effective 

antibody detection reagents. Transcript profiling enables accurate quantification of many 

biomarkers and provides a broader representation of pathway modulation. To identify 

dynamic transcript biomarkers of FGFR signalling inhibition by AZD4547, a potent inhibitor 

of FGF receptor 1, 2 and 3, a gene expression profiling study was performed in FGFR2 

amplified, drug sensitive tumour cell lines. 

Consistent with known signalling pathways activated by FGFR, we identified transcript 

biomarkers downstream of the RAS-MAPK and PI3K/AKT pathways. Using different tumour 

cell lines in vitro and xenografts in vivo we confirmed that some of these transcript 

biomarkers (DUSP6, ETV5, YPEL2) were modulated downstream of oncogenic FGFR1, 2, 3 

whilst others showed selective modulation only by FGFR2 signalling (EGR1). These 

transcripts showed consistent time dependent modulation, corresponding to the plasma 

exposure of AZD4547 and inhibition of phosphorylation of the downstream signalling 

molecules FRS2 or ERK. Combination of FGFR and AKT inhibition in an FGFR2 mutated 

endometrial cancer xenograft model enhanced modulation of transcript biomarkers from the 

PI3K/AKT pathway and tumour growth inhibition. These biomarkers were detected on the 

clinically validated nanoString platform. 

Taken together, these data identified novel dynamic transcript biomarkers of FGFR inhibition 

that were validated in a number of in vivo models, and which are more robustly modulated 

by FGFR inhibition than some conventional downstream signalling protein biomarkers.  
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INTRODUCTION  

Deregulation of FGFR signalling through genetic modification or over-expression of the 

receptors, or their ligands has been observed in numerous tumour settings (1-3).  FGFR 

deregulation has been associated with potent tumour growth inhibition by FGFR tyrosine 

kinase inhibitors in pre-clinical models carrying FGFR gene aberrations (4, 5). AZD4547 is 

one of several FGFR inhibitors currently in the clinic. It is an orally bio-available, highly 

selective and potent, ATP competitive small molecule inhibitor of FGF receptors 1, 2 and 3  

(5, 6). The testing of FGFR signalling inhibition pre-clinically or clinically is challenging and 

requires the development of effective pharmacodynamic (PD) biomarkers. Assays that 

detect direct and specific inhibition of FGFR signalling e.g. phosphorylation of FGFR or 

phosphorylation of FRS2 are limited by antibody quality and compatibility with assay 

platforms that can be applied clinically. Clinical tissue is often available as Formalin Fixed 

Paraffin wax Embedded (FFPE) material and limited in quantity restricting the number of 

protein biomarkers that can be investigated by immunohistochemical analysis.  In recent 

years, gene expression profiling has proven useful in both identifying quantitative assays of 

target inhibition and in better understanding of pathway output and feedback regulation (7-

11). Transcript biomarker analysis allows a broader pathway output overview, due to the 

multiplex capacity and high dynamic range. Transcriptional regulation can therefore 

accurately represent a significant part of the output of oncogenic signalling pathways. Global 

gene profiling analysis via microarray or RNA-sequencing has limitations when screening 

large numbers of samples due to the cost and time taken to generate data. In contrast, 

medium throughput targeted profiling can be performed using platforms such as the BioMark 

HDTM /Fluidigm Array (12-14). This enables profiling of a large number of samples across 

key pathway transcript biomarkers, enabling higher throughput and reducing costs and 

analysis time. A second platform that allows profiling of a larger number of pathway 

transcript biomarkers is the nanoString system, which can also robustly quantify RNA from 

very small quantities of clinical FFPE tissue (15-17).   
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In this study, we identified and validated new dynamic transcript biomarkers of FGFR 

signalling inhibition by AZD4547. Transcript biomarkers were identified via an exploratory 

biomarker analysis in FGFR2 amplified cell lines, which were further validated by targeted 

profiling in additional in vitro and in vivo models dependent upon FGFR1,2 and 3 signalling. 

These chosen markers were validated across various transcript platforms (microarray, 

Fluidigm, nanoString). In addition we were able to show that these transcript biomarkers 

show more consistent modulation than the typical protein markers used to measure 

signalling downstream of receptor tyrosine kinases. 
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MATERIAL AND METHODS 

Cell lines and tissue samples 

We used cell lines with different FGFR1, 2 & 3 dysregulations (amplification, mutation, 

translocation, fusion) and tissue background (breast, bladder, gastric, colon, SCLC, 

myeloma) defined as sensitive to AZD4547 treatment (IC50<1M); and cell lines without 

FGFR dysregulation defined as insensitive to AZD4547 treatment (IC50 >1M) with similar 

tissue types  Supplementary Table 1.  KG1a, DMS114, SNU16, KATOIII, NCI-H716, AGS, 

T24, HCA7, ARH77, NCI-H69 and SKBR3 cells were from American Type Culture 

Collection.  SUM52PE were from Asterand.  RT112 and HCA-7 were from European 

Collection of Authenticated Cell Cultures.  KMS11 were from Japanese Collection of 

Research Bioresources.  MGH-U3 were obtained from Dr. Margaret Knowles (University of 

Leeds, Leeds, UK).  All cell lines were subsequently authenticated via the AstraZeneca (AZ) 

Cell Bank using DNA fingerprinting short tandem repeat (STR) assays (IDEXX BioResearch/ 

CellCheck 9 assay, and in house assay: PowerPlex 16 HS system -Promega cat # DC2100, 

DC2101), in line with the ANSI ASN-0002-2011 industry standards. All revived cells were 

used within 20 passages, and cultured for less than 6 months. 

Cell lines treated with AZD4547 (100nM) or 0.1% DMSO for 2, 6 and 24hours and snap 

frozen and stored at -80C for follow up RNA or protein analysis. 

Gastric cancer tissues were purchased from Asterand, an AstraZeneca approved supplier, in 

that AstraZeneca have assurance that any tissue supplied has been collected ethically, with 

consent for research, and in accordance with all regulatory requirements. AstraZeneca holds 

a UK Human Tissue Authority Licence (Licence Number 12109) and Research Tissue Bank 

Ethics Approval for research involving human tissue (NRES Reference 12NW0366). Prior to 

processing, to confirm disease diagnosis and verify tumour content, FFPE gastric cancer 

tissue samples were reviewed by an internal certified pathologist from Asterand and 

extracted using the AllPrep DNA/RNA FFPE extraction kit (QIAGEN).  
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Western blot analysis 

Western blotting was performed using standard SDS–PAGE procedures.  In brief, cells were 

lysed with RIPA buffer on ice.  Total proteins were separated on a 4–12 Bis–Tris gel, 

Invitrogen (Paisley, UK) and transferred to immunoblotting membranes.  Membranes were 

blocked in 5 (wv) non-fat milk phosphate buffered salineTween 20 (3.2mM Na2HPO4, 

0.5mM KH2PO4, 1.3mM KCl, 135mM NaCl, 0.05 Tween 20, pH 7.4) and then probed with 

primary antibodies overnight at 4°C.  After washing and incubation with secondary 

antibodies, detected proteins were visualized using the horseradish peroxidase Western 

Lightning substrate according to the manufacturer’s instructions (Perkin Elmer, 

Buckinghamshire, UK).  Antibodies used for western blot were FGFR1 (Epitomics, 2144), 

FGFR2 (sc-122), PLC (CST # 2822), FGFR3 (Ab10649), FRS2 (RnD #AF4069); p-FRS2 

(CST #3861), p-ERK (CST #9106 ); ERK (CST#9102), p-PLCg (CST # 2821). 

 

In vivo studies 

All experiments were carried out on 8 to 12 week-old female nude (ANC3A), male nude 

(SNU16) or SCID (KMS11, KG1a) mice in full accordance with the UK Home Office Animal 

(Scientific Procedures) Act 1986 and AstraZeneca BioEthics policy (SNU16, KMS11,KG1a) 

or in the United States under the institutional guidelines of Translational Drug Development 

(TD2) Institutional Animal Care and Use Committee (ANC3A).  Human tumour xenografts 

were established by subcutaneous injection in the flank of 2x107, 5x106, 5x106 cells mixed 

1:1 with matrigel per mouse for  KMS11 and KG1a, SNU16 and ANC3A respectively.  For 

acute dose PD studies mice were randomised into control and treatment groups when mean 

tumour volume reached ~0.5cm3.  The treatment groups received an acute oral dose of 

AZD4547 at 12.5 or 25 mg/kg in 1% polysorbate-80, the control group received 1% 

polysorbate-80.  At various time points (0-48hr) after dosing,  tumour was excised and snap 

frozen, total blood collected and plasma prepared for further analysis.   For the ANC3A 

efficacy study mice were randomised into control and treated groups when mean tumour 
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volume reached approximately ~0.15cm3. AZD4547 was prepared in 1% polysorbate-80 and 

AZD5363 in 10%DMSO/25%w/v Kleptose HPB (Roquette).  For the ANC3A efficacy study 

the treatment groups received AZD4547 at 12.5mg/kg orally once daily and/or AZD5363 at 

150mg/kg orally twice daily. Tumour volume, animal body weight, and tumour condition were 

recorded twice weekly for the duration of the study. Growth inhibition from the start of 

treatment was assessed and statistical significance evaluated using a one-tailed, t test.  (18)  

 

Plasma Pharmacokinetic Analysis 

An analytical standard (2mM) was used on the TECAN robot to produce a set of standard 

spiking solutions (1nM – 10,000nM). Each standard and sample undergoes protein 

precipitation and in analysed using LCMSMS in Masslynx. Data is processed using 

Quanlynx. 

 

Immunohistochemistry 

FFPE sections of all xenograft models (SNU16, KG1a, KMS11) were stained by IHC with 

anti-p-ERK and p-S6 antibodies : Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) CST 

#4376 and phospho-S6 Ribosomal Protein (Ser240/244) from CST #2215.  Data were 

analysed using the Aperio image analysis system and expressed as the percentage staining 

relative to the vehicle control group mean. P-S6 and p-ERK percentage staining (right y axis) 

was then compared to the in vivo log2 fold change of   DUSP6 and ETV5 transcript data (left 

y axis) against time (x axis).  

 

Gene profiling and analysis of in vitro and in vivo studies  

RNA extraction  

Cell pellets and tissues from xenograft models were snap frozen. Total RNA was extracted 

using miRNeasy kit (Qiagen), with DNAse treatment, following manufacturer’s instructions. 

FFPE gastric cancer tissue from Asterand were extracted using the AllPrep DNA/RNA FFPE 
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extraction kit (QIAGEN) according to manufacturer’s instructions. RNA quantity was 

assessed by Nanodrop 2000.   

Microarray profiling and analysis 

Samples profiled by microarray were assessed for RNA integrity (RIN>7) using the RNA 

6000 Nano Assay on the BioAnalyser (Agilent). RNA from cell lines with or without FGFR2 

amplification from similar tissue types (breast, colon, gastric) were analysed on Affymetrix 

human Plus2 array following the manufacturer’s instructions at AROS, Denmark. All 

microarray data have been submitted to ArrayExpress (E-MTAB-4749). Robust Multi-Array 

Differentially expressed genes were identified by paired t-tests (p-value <0.05, Fold Change 

>1.5) between DMSO and AZD4547 treated cell lines at each of the 3 time points for 

AZD4547 sensitive  and insensitive cell line groups. In order to reduce the issue of false 

positives we used “biological filters” such as genes showing modulation at 2 consecutive 

time points (2 & 6hrs, 6 & 24hrs), and with fold change >1.5 in at least 2 of the 4 FGFR2 

amplified cell lines, or belonging to similar signalling pathways rather than using False 

Discovery Rate (FDR).  Pathway annotations for each differentially expressed gene were 

taken from the union of different pathway databases (Pathway Commons; NCI–Nature 

Pathways, KEGG, WikiPathways and Gene Ontology). Supplementary Table 2.  Log2 fold 

change and p-values for all 16597 genes (grey) were plotted on volcano plots for each time 

points in sensitive and insensitive cell lines.  Overlap between the FGFR2 inhibition 

response gene set and equivalent gene sets for downstream RAF/MEK (7) and PI3K/AKT 

(19) signalling pathways was assessed using a Fisher Exact Test.  

Fluidigm profiling and analysis 

Targeted gene expression was performed using the BioMark HDTM –Fluidigm Array platform 

(96.96 dynamic array) and Taqman primers following manufacturer instructions 

(supplementary table 3).  In brief, fifty nanograms of total RNA from in vitro or in vivo studies 

were reverse transcribed and pre-amplified (thermofisher: #4374967, #4488593) for 14 

cycles, with 48 selected primers from the FGFR2 inhibition response gene set. The 96.96 

Fluidigm Dynamic Arrays were primed and loaded on a IFC Controller and qPCR 
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experiments run on the Biomark System, using the standard 96 default protocol. Ct were 

collected and analysed with Fluidigm Real-Time PCR Analysis software and normalised to 

the average of selected housekeeping genes (dCt). For the in vitro study, data were 

normalised to DMSO matching time control (ddCt),  and for the in vivo samples all animals 

data were compared to the average of the control animal group (DMSO-48hrs) (-ddCt). 

All gene expression calculations and statistical analysis were performed in Jmp®12.0.1, and 

data represented in TIBCOTM Spotfire® 6.5.2 or  GraphPad Prism 6. For the in vitro studies 

the mean and standard error of mean (SEM) were calculated across cell lines with similar 

FGFR dysregulations (FGFR1, 2 or 3) or showing insensitivity for FGFR inhibition. A two-

sided paired t-test was used to compare data from the in vitro treatment groups (AZD4547 

and DMSO) (supplementary table 4). The FGFR status was compared using t-tests on data 

normalised to the control (-ddCt) whilst pooling the variability across the different FGFR 

statuses ( supplementary table 5). A pair Student’s t test on gene expression data from 

ANC3A  identified genes significantly modulated by each compound or combination 

(supplementary table 6). 

nanoString analysis 

nCounter data were normalized through an internally developed Pipeline Pilot Tool (NAPPA, 

publicly available on the Comprehensive R Archive Network, CRAN, Harbron & Wappett 

(2014) R package: NAPPA http://CRAN.R-project.org/package=NAPPA ). In brief, data were 

log2 transformed after normalisation using two steps: raw nanoString counts were first 

background adjusted with a Truncated Poisson correction using internal negative controls 

followed by a technical normalization using internal positive controls. Data was then 

corrected for input amount variation through a Sigmoid shrunken slope normalization step 

using the mean expression of housekeeping genes. A transcript was designated as not 

detected if the raw count was below the average of the 8 internal negative control raw 

counts plus 2 standard deviations reflecting approximately a 95% confidence interval. Data 

http://cran.r-project.org/package=NAPPA
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from xenograft samples were compare to vehicle control group, (vehicle_log2) – 

(treated_log2), and compared to qPCR data (-ddCt). 
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RESULTS 

Transcript biomarker discovery and validation work flow. 

In order to identify novel dynamic transcript biomarkers of FGFR signalling inhibition by 

AZD4547, a global gene expression profiling study was performed using microarray on cell 

lines with or without an  FGFR2 gene amplification, and treated with AZD4547 

(Supplementary Table 1). This identified genes that showed consistent and statistically 

significant changes upon AZD4547 treatment in the FGFR2 amplified sensitive cell lines. 

Additional targeted gene expression profiling by Fluidigm based qPCR of a number of 

selected genes was then performed on a number of  cell lines with or without dysregulation 

of  FGFR1,  2 or 3 and treated in vitro and in vivo by AZD4547. Pharmacodynamic (PD) 

transcript biomarkers were further investigated in an independent xenograft model showing 

enhanced combination efficacy with AZD4547 and an AKT inhibitor AZD5363 . These 

studies identified dynamic transcript biomarkers in vitro which were validated in different in 

vivo models. In order to transfer these dynamic transcript biomarkers of FGFR inhibition to a 

clinically amenable platform, they were  further evaluated using the nanoString platform on 

xenograft models and FFPE clinical tissues. Figure 1 shows the preclinical work flow for 

transcript biomarker discovery and validation. 

 

Identification of the AZD4547 dynamic transcript biomarkers in FGFR2-

amplified cell lines. 

We selected four FGFR2 amplified cell lines (SNU16, KATOIII, NCIH716, SUMP52PE), that 

were potently growth inhibited by treatment with AZD4547. These sensitive cell lines were 

from different cancer origins so we used AZD4547 insensitive cell lines from matched 

tumour backgrounds (Breats, Colon, Gastric) as controls to identify genes modulated 

specifically in cells dependent on FGFR2 signalling (HCC1419, SKBR3, HCA7, AGS, 

SNU216).  Cell lines were defined as sensitive (IC50< 1 M) or insensitive (IC50>1M) to 

growth inhibition by AZD4547 as previously described for FGFR inhibition (5, 6). Both 
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sensitive and insensitive cells were treated with AZD4547 (100nM) or DMSO for 2, 6 or 24 

hours. This concentration of AZD4547 was chosen to ensure that effects would be highly 

specific for FGFR inhibition and is consistent with the known potency of signalling and 

growth inhibition by AZD4547 (5), and is in line with clinical exposures (20). 

Gene profiling was performed by microarray and statistical analysis identified genes 

significantly modulated by AZD4547 treatment at each time point only in sensitive cell lines. 

Genes were filtered using a p-value cut off <0.05 and 1.5 fold change and then further 

selected when modulated in at least two consecutive time points (2 & 6 hours, 6 & 24hours) 

and in at least 2 of the 4 FGFR2 amplified cell lines. This analysis revealed 55 gene 

expression changes upon AZD4547 treatment occurring only in FGFR2-amplified sensitive 

cell lines (Fig. 2A, Supplementary Table 2). Consistent with the ability of FGFR signalling to 

activate multiple intra-cellular pathways, a sub-set of the transcript biomarkers were 

previously identified from the RAS-MAPK signalling pathway (3, 6-8). We identified DUPS6, 

together with other genes from the RAS-MAPK pathway (DUSP4/5/7; ETV4/5, SPRY1/2/4; 

SPRED1/2). Down-regulation of this signature suggests that a significant part of the 

signalling output downstream of FGFR is via RAS-MAPK, as recently highlighted  (21). In 

addition, a number of genes previously shown to be affected by the PI3K/AKT pathway 

(MXI1, MXD4, KLHL24, CCNG2, YPEL2/3/5, FOXN3), were also modulated (19, 22, 23).  

In view of this observation and the fact that signaling downstream of FGFR is known to 

encompass several pathways in addition to RAS-MAPK, we compared our 55 FGFR2 

response gene set  to genes associated with the transcriptional output of RAS-MAPK 

signalling (7, 8), and genes associated with PI3K/AKT signalling (19, 22). This is 

represented on a volcano plot (grey)  Fig. 2B, highlighting the 55 transcript biomarkers of 

FGFR2 inhibition (pink) together with those overlapping with PI3K/AKT gene set (green), 

and RAS-MAPK gene set (blue). The overlap between FGFR2 response genes and the 

transcriptional output from these other two signalling pathways was significant (Fisher Exact 

Test p-value < 0.01). Cell lines without any FGFR2 amplification and defined as insensitive 

to AZD4547, showed no modulation of genes in the FGFR2, RAS-MAPK, or PI3K/AKT gene 
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sets (Supplementary Fig. S1). This is an important observation because RAS-MAPK 

signaling is activated by many other means including receptor tyrosine kinase signaling and 

RAS gene mutation and therefore these data confirm that modulation of RAS-MAPK 

signaling by AZD4547 is restricted to FGFR in these FGFR2 amplified cell lines. 

Taken together we identified dynamic transcript biomarkers that measure FGFR inhibition in 

FGFR2 amplified and AZD4547 sensitive cell lines. 

 

Validation of FGFR2 response gene set in FGFR 1, 2  and 3 

deregulated sensitive cell lines. 

In order to investigate if the AZD4547 dynamic transcript biomarkers derived from FGFR2 

amplified cell lines were specific to FGFR2 signalling or generally representative of the 

transcriptional output downstream of oncogenic FGFR signalling, gene expression analysis 

was performed in a number of  FGFR1, 2 or 3 dysregulated and AZD4547 sensitive cell lines 

and insensitive cell lines from similar tumour origin (Fig. 3, supplemetary Table 1).  

We analysed by qPCR on the Fluidigm platform 45 genes selected from the FGFR2 

response genes set (Supplementary table 3). Two statistical analyses were performed, 

comparing treatment groups (AZD4547 to DMSO-supplementary Table 4), or the FGFR 

status (FGFR1 vs FGFR2 vs FGFR3-supplementary table 5). This identified a number of 

genes that were modulated significantly by AZD4547 treatment in all FGFR dependent cell 

lines (eg DUSP4/5/6, ETV4/5, KLHL24, SPRY2/4, SPRED1, Fig. 3A). In addition, some 

genes were modulated significantly only in a particular FGFR dysregulated background. In 

particular, EGR1 was significantly down-regulated only in FGFR2 amplified cell lines (6 

hours treatment p=0.05/ 0.0008 respectively),  the gene IER3 was only downregulated in 

FGFR2 and 3 altered lines, (2 hours  treatment p=0.002/ 0.006 respectively) and MYEOV 

gene expression was not detected in FGFR1 dependent cell lines, but expression was 

downregulated in both FGFR2 and FGFR3 dependent cell lines.  Henceforth we will refer to 

the FGFR2 response gene set as the “AZD4547 dynamic transcript biomarkers”. 
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We also analysed by western blotting the phosphorylation of two key downstream mediators 

of FGFR signalling FRS2 and ERK to demonstrate target engagement, as observed in 

previous studies (5, 24). We detected a band shift in FRS2 upon AZD4547 treatment at all-

time points in SNU16, DMS114 and MGHU3 cells, which display FGFR2, 1 and 3 

aberrations respectively, suggesting a decrease in FRS2 phosphorylation (Fig. 3B). 

Inhibition of the mitogen-activated protein kinase (MAPK) pathway was also demonstrated 

across the time course through a reduction in levels of phosphorylated ERK (Fig. 3B). 

Inhibition of FGFR signalling was also demonstrated across the broader panel of AZD4547 

sensitive cell lines (Fig. 3D). We previously demonstrated after treatment by AZD4547 more 

consistent modulation of the RAS-MAPK pathway across all FGFR dysregulated cell lines 

compared to the PI3K/AKT pathway which was modulated in FGFR2 dysregulated cell lines 

(5)  Pathway modulation was not observed in the insensitive lines upon AZD4547 treatment 

(Fig. 3D).  

 

Validation of AZD4547 dynamic transcript biomarkers in xenograft 

models. 

Since the intended use of these transcriptome markers was to apply them as PD 

biomarkers, we selected three xenograft models derived from cell lines in the sensitive group 

(KMS11 [FGFR3 fusion/mutation], KG1a [FGFR1 mutation] and SNU16 [FGFR2 

amplification]) for further analysis. Tumour bearing mice were orally dosed with AZD4547 as 

previously described (25, 26), and tumours harvested at various time points over a 48hr 

period. The AZD4547 transcript dynamic biomarkers were then analysed on the Fluidigm 

platform and changes in gene expression were compared to vehicle group for each animal.  

To understand how transcript PD biomarkers correlated to AZD4547 drug exposure over 

time, the plasma concentration of AZD4547 was measured for each animal and compared to 

changes in gene expression of DUSP6 and ETV5 (Fig. 4A). We observed a time dependent 
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modulation (2hr to 24hrs) of these markers in all three xenograft models and an inverse 

relationship to the plasma exposure of AZD4547 in vivo.  

We compared the expression of AZD4547 dynamic transcript biomarkers validated in vitro 

(SNU16, KG1a, KMS11-light colour) to their corresponding in vivo xenograft models (dark 

colour) and showed the magnitude of modulation from in vitro to in vivo was relatively 

reproducible (Fig. 4B). A number of genes were significantly modulated over time, but some 

showed only a trend, not reaching a significant fold change in vivo (>2 fold change, data not 

shown). In line with the in vitro findings (Fig 3A), some genes validated in all xenograft 

models (KLHL24, DUSP6, ETV5), but some were observed to be modulated only in a 

particular FGFR dysregulated background (EGR1, IER3, MYOV) highlighting genes that 

maybe dependent upon specific FGFR isoform signalling (Fig. 4B). In the cases of both up-

regulated and down-regulated genes, all showed the expected time dependent effects, with 

peak inhibition or activation and a return to baseline following a single oral dose of 

AZD4547. In summary these data show that transcript biomarkers can serve as quantitative 

biomarkers of in vivo inhibition of oncogenic FGFR signalling.  

Currently there are limited protein biomarkers assays that can be used for analysis of FGFR 

pathway modulation in clinical tumour tissue due to antibody specificity and quality issues for 

proximal markers. These PD biomarkers such as p-ERK and p-S6 for which semi-

quantitative IHC assays of clinical tumour tissue are the most widely used (27). Neither p-

ERK or p-S6 are exclusively modulated downstream of FGFR signalling. In order to compare 

the transcript PD biomarkers to the IHC protein phospho-epitope markers, the levels of p-

ERK and p-S6 were measured in formalin fixed paraffin embedded (FFPE) sections of the 

same xenograft models by standard IHC methods. The percentage staining of p-S6 and  p-

ERK relative to the mean vehicle control group was calculated and compared to DUSP6 and 

ETV5 gene expression (Fig. 4C). Whilst we observed a clear transcriptional modulation of 

DUSP6 and ETV5 in all xenograft models (SNU16, KG1a, and KMS11), the predicted 

modulation of p-S6 or p-ERK measured by IHC was only observed in the SNU16, and in 

KG1a for p-S6 only (Supplementary Fig. S2). Western blot data confirmed target 
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engagement (p-ERK, p-PLC, or p-FRS2), with some variation over time across the three 

models (Supplementary Fig. S3). Since all these models are growth inhibited by AZD4547, 

consistent with FGFR signalling being functionally inhibited, the data presented in Fig. 4C 

suggested that transcriptional biomarkers may be more sensitive and dynamic measures of 

pathway inhibition than traditional  protein phosphorylation biomarkers when measured 

using IHC techniques. 

 

Validation of AZD4547 dynamic transcript biomarkers in an 

independent FGFR2 activated xenograft model. 

Since the in vivo validation of the dynamic gene signature was performed in the same 

tumour cell lines that were used to generate the list of differentially expressed genes, we 

evaluated the dynamic transcript changes in an independent FGFR2 dysregulated and 

AZD4547 sensitive tumour model, AN3CA, which is an FGFR2 mutated/ PTEN null 

endometrial cancer model (28-31). Tumour bearing mice were dosed orally with AZD4547 

and/or AZD5363 (AKT inhibitor) (32) for fourteen consecutive days and the tumours 

analysed for gene expression changes. We observed a similar, significant tumour growth 

inhibition by both monotherapy treatments and enhanced efficacy in the combination treated 

group (Supplementary Fig. S4). A number of genes selected from the AZD4547 dynamic 

transcript biomarkers and PI3K/AKT transcript biomarkers were analysed by qPCR/Fluidigm. 

Two statistical analysis were performed; one to identify genes significantly modulated upon 

treatment (vs vehicle), the other one to identify genes significantly modulated in the 

combination group compared to either monotherapy (AZD4547+AZD5363) (Supplementary 

table 6). We observed modulation of MEK signature genes (e.g.: DUSP6, ETV4&5, IER3, 

SPRY2&4) (7, 8) and of PI3K/AKT transcript biomarkers (eg: HBP1, KLHL24, CCNG2, MX1, 

YPEL2&3…) (19, 22, 33)   after AZD4547 or AZD5363 treatment respectively 

(Supplementary Fig. S5). The RAS-MAPK related genes were modulated by AZD4547 but 

not AZD5363, supporting the notion that these genes are pathway specific and not 
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modulated as a consequence of tumour growth inhibition. As observed in other xenograft 

models (SNU16, KMS11, KG1a), both  DUSP6 and ETV5 were differentially modulated over 

time. In addition, EGR1 which we earlier defined as FGFR2 signalling specific was 

modulated by AZD4547 in this FGFR2 mutant endometrial model.  This is in agreement with 

recently published data showing that EGR1 is a target of AZD4547 in FGFR2-deregulated 

endometrial cancer (28). Also, a number of genes (e.g. BMF, KLH24, YPEL2, YPEL3, 

SEPP1) were modulated by both AKT (AZD5363) and FGFR (AZD4547) inhibition 

(Supplementary Fig. S5), confirming that FGFR inhibition by AZD4547 can also modulate 

signaling via the PI3K/AKT pathway (Fig. 2B &5). In addition, we observed enhanced 

modulation of PI3K/AKT transcript biomarkers in the combination group (Fig 5A & B), 

compared to each single agent, whilst the expression of RAS-MAPK markers, were only 

modulated by FGFR inhibition (Fig 5C). Also no significant modulation of the RAS-MAPK 

pathway was observed by AZD5363 (Supplementary Fig. S5). These analyses further 

confirmed that our transcript biomarkers encompass the output downstream of multiple intra-

cellular signalling pathways and showed that the drug combination achieved a broader and 

deeper modulation of transcript biomarkers than the single agents alone. 

The fact that in this model samples were taken for transcript analysis following fourteen days 

dosing of AZD4547 is an important observation for their clinical utility since pre- and post-

treatment samples are typically obtained after a 7-10 days dosing interval. 

 

 AZD4547 dynamic transcript biomarkers are detected by 

nanoString in xenograft samples and FFPE gastric samples. 

Samples from clinical trials are often formalin fixed and paraffin wax embedded which has 

significant consequences for the quality and quantity of RNA that can be extracted from core 

needle biopsies.  Therefore, a platform that can deliver robust data from limited amounts of 

poor quality RNA is required for analysis of transcriptional biomarkers from clinical tissues.  
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We and others have previously identified the nanoString technology as a robust platform for 

gene expression analysis in clinical tissues (16). 

To confirm consistency in transcript biomarker modulation between the qPCR and 

nanoString platforms, total RNA from xenograft models was analysed on both platforms. 

Dynamic changes of key transcript biomarkers showed a high level of correlation and 

consistency across both platforms, demonstrating these transcript biomarkers can be 

transferred reliably to a clinically amenable platform (Fig. 6A).   

In order to investigate if some of the key transcripts can serve as PD biomarkers, and be 

detected at adequate levels, their baseline level expression was assessed in 195 gastric 

cancer tumours by nanoString analysis. The range of expression levels for each gene is 

shown and demonstrates expression levels above the limit of detection of this platform 

(indicated by negative control) (Fig. 6B).  These data show that transcript levels are 

detectable at levels above baseline in clinical tissues and therefore demonstrate the 

potential to be evaluated as PD biomarkers of FGFR inhibition. 
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DISCUSSION 

We have used a gene expression profiling approach to identify PD transcript biomarkers that 

are specifically modulated by a selective FGFR1, 2, 3 inhibitor, AZD4547, in tumour models 

with a genetic aberrations in FGFR signalling. These markers were originally identified by an 

exploratory approach (all genes by microarray) in vitro and further validated by a targeted 

approach in multiple tumour models in vitro and in vivo. In addition they showed more 

consistent modulation compared to phospho-epitope protein biomarkers routinely used to 

measure effects downstream of FGFR pathway inhibition.  

A subset of the transcript biomarkers modulated by AZD4547 were already known to be 

modulated by signalling pathways downstream of FGFR. For example, the MEK signature 

genes DUSP6 and ETV5 , together with the RAS-MAPK pathway regulator SPRED1 (34) 

were repressed on AZD4547 treatment across all sensitive cell lines over time, consistent 

with FGFR signalling via this pathway (3, 6, 21, 35). The expression of SPRED1 has 

previously been shown to be increased by FGFR signalling stimulated by FGF9 in murine 

pancreatic mesenchymal cells (36), whilst DUSP6 was recently identified as a PD marker 

downstream of FGFR inhibition (21). 

 Consistent with oncogenic FGFR signalling activating multiple intra-cellular signalling 

pathways that are inhibited by AZD4547 (3), we showed modulation of  PI3K/AKT pathway 

transcript markers in the FGFR2 mutant endometrial ANC3A model after treatment by FGFR 

and AKT inhibitors, and an enhanced modulation after combination (Fig.5B). This is also in 

agreement with other publications suggesting an overlap in the FGFR and PI3K/AKT 

pathways (3, 6, 21, 37, 38).  

The power of the transcript profiling approach to characterising  signalling output is 

demonstrated by the fact that we were able to identify transcript biomarkers that showed 

FGFR isoform specificity notably FGFR2 (Fig.3, 4B, 5A & supplementary table 5).This data 

is in agreement with a previous publication where similarly through a whole genome siRNA 

approach, they identified different mechanisms of sensitivity according the FGFR-genetic 
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background of the cell lines (39). We also observed EGR1 to be specifically modulated in 

cell lines with FGFR2 amplification, as recently demonstrated in FGFR2 endometrial cells 

(40).  

This data emphasises the complexity of the FGFR signalling pathway and multiple 

downstream pathway engagement, which varies upon the dysregulated FGFR genetic 

background.   

An essential characteristic of PD biomarkers is time and drug exposure dependent 

modulation. We observed a time dependent modulation (up to 16h and 24h) across three 

xenograft models that were dependent individually upon FGFR1, FGFR2 and FGFR3 

genetic dysregulation. The PD effects were consistent with plasma exposure of AZD4547 in 

vivo, and observed both after acute (48 hrs) and  following 14 days of chronic dosing. 

Understanding the PD modulation and durability of effect on acute and chronic dosing, help 

optimise the timing of biopsies in the clinic (13, 41). Interestingly, the temporal changes in 

the expression of two selected transcript biomarkers were different (Fig. 3 & 4C). Whilst 

DUSP6 was rapidly down regulated within 30 minutes, modulation of ETV5 occurred later, 

most notably in the FGFR2 amplified SNU16 model. Since DUSP6 is an ERK phosphatase 

and plays a key role in regulating RAS-MAPK pathway output, this data shows that relief of 

negative feedback is rapid in response to pathway inhibition.   

An objective of the work presented in this paper was to demonstrate the value of transcript 

biomarker profiling as a supplement to protein PD biomarkers. IHC techniques do have an 

advantage in terms of visualising the cellular context of biomarker modulation. However, 

immunohistochemistry has a number of technical challenges, such as antibody specificity 

and sensitivity, or epitope availability. As shown in Fig. 4C, supplementary Fig. S2, only one 

xenograft model (SNU16) was amenable to analysis of pathway modulation using all protein 

markers tested, whereas transcript modulation was seen in all models tested. Another 

potential advantage of transcript biomarkers is that their quantification is more reproducible 

and shows a broader dynamic range than immunohistochemistry. Furthermore, we were 

able to demonstrate good reproducibility between platforms as shown in Fig. 6A.  
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Transcript profiling allows the identification and analysis of a combination of biomarkers, 

which in turn enables more accurate and complete pathway modulation analysis, and may 

help define the molecular mechanism involved in drug response. It can also help distinguish 

and understand inter-patient diversity in drug response over time according to their genetic 

background. Here we show the identification of gene expression changes that are specific to 

FGFR isoform signalling. This may guide the identification of potential combination partners, 

and further understand resistance mechanisms (13, 41, 42). 

There has been an increase in the use of gene expression profiling techniques in 

personalised health care (PHC) and biomarker discovery over the last few years (9) . As 

fresh-frozen clinical tissues samples are limited, it is important to validate transcript 

biomarker on FFPE samples. We selected the nanoString platform to analyse PD transcript 

biomarkers, reflecting its high sensitivity and multiplexing capability. We noticed that only 

DUSP6 Hs00169257_m1 primer validated across all xenograft models, while other DUSP6 

primers validated only across KG1a and SNU16 models, suggesting that KMS11 may 

express different DUSP6 isoforms compared to other tumour cell lines. This information 

highlight the importance of including all DUSP6 probes in the nanoString code set, giving 

optimal patient population coverage. 

 

Taken together, these data identify novel transcript PD biomarkers of FGFR inhibition in vivo 

that are more consistently modulated than some conventional downstream protein signalling 

markers. It also illustrates the  value of using  transcript biomarkers to understand 

mechanism of action, and provides options for demonstrating proof of mechanism in the 

clinic, and may help guide dose, scheduling and combination strategies. 
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Figures legend 

Figure 1: Transcript biomarker discovery and validation workflow: Exploratory 

biomarker discovery (microarray) identified 55 dynamic transcript biomarkers modulated in 

FGFR2 dysregulated cell lines after treatment by AZD4547. Those biomarkers were further 

validated by targeted gene profiling (Fluidigm/PCR): in vitro on a broader FGFR1, 2 & 3 

dysregulated and control cell line panel, In vivo: on three FGFR1, 2  & 3 dysregulated 

xenograft models, and in an independent FGFR2 dysregulated xenograft model. Validation 

into a clinical platform: the nanoString platform was tested on xenograft and human FFPE 

samples.  

 

Figure 2: Identification of AZD4547 dynamic transcript biomarkers in FGFR2 

amplified cell lines 

A: Heat map of AZD4547 dynamic transcript biomarkers. Hierarchical clustering of  

genes significantly modulated over time by AZD4547 treatment across cell lines with or 

without FGFR2 amplification. B: AZD4547 dynamic markers showing overlap with 

transcriptional markers of MEK  and PI3K/AKT signalling pathways. Volcano plots 

showing the effect size and p-value of differential expression of genes (grey) between 

treated and control conditions in AZD4547 sensitive and insensitive cell lines at each time 

point. Red dashes represent the 1.5 fold change and 0.05 p-value cut off of significance. 

Genes in the FGFR2 inhibition response gene set (pink) are shown with some genes also 

associated with the transcriptional output of RAF/MEK (blue) and PI3K/AKT signalling 

(green).   

 

Figure 3:  
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FGFR pathway modulation in FGFR1, 2 or 3 dysregulated and control cell lines 

treated with AZD4547.  

Cell lines with an FGFR1, 2 or 3 or no FGFR dysregulation, but with similar tissue origin 

were treated with AZD4547 or DMSO for 2, 6 or 24 hours and profiled for gene expression 

and Western Blot analysis. A: The means and standard errors gene expression of a 

selection of the FGFR2 inhibition gene set is represented per time point and FGFR/NA cell 

lines status . Genes significantly modulated upon treatment are indicated with (*). B: Cell 

lysate were analysed by Western Blot for phosphorylation of FRS2, and ERK, over time, on 

a selection of FGFR1, 2 and 3 cell lines is represented. Similarly cell lysate after 6 hours 

treatment of a larger cell line panel with FGFR1, 2 or 3 dysregulation (C) or with similar 

tissue background but no FGFR deregulation (D)  is represented. 

 

Figure 4: Modulation of transcript biomarker in vivo 

KMS11, KG1a and SNU16 tumour bearing mice were orally dosed with AZD4547, blood and 

tumours tissue were harvested at various time points over a 48 hours period. A) Correlation 

of drug exposure to PD biomarkers:  Plasma concentration (mM) of AZD4547 was 

measured for each animal, and the average and SEM per group was calculated. The data is 

represented on right y axis against time (hours-x axis) and compared to DUSP6 and ETV5 

transcript expression (log2 fold change- left y axis). B) Validation of in vitro AZD4547 

transcript dynamic biomarkers in xenograft models: Gene expression analysis was 

performed across all animals per time point; treatment compared to animals control group. In 

vivo (dark colour) and in vitro (light colour) data from matching cell lines (SNU16, KMS11 & 

KG1a) were then plotted on the same graph. We observed genes modulated over time 

across all FGFR1, 2 & 3 xenograft (DUSP6, ETV5, KLHL24) and with some demonstrating a 

more specific FGFR2 amplified modulation (EGR1, MYOV, IER3). C) Correlation of 

transcript biomarker DUSP6 with  p-S6  and p-ERK IHC. Formalin fixed paraffin wax 

embedded (FFPE) sections of all xenograft models (SNU16, KG1a, KMS11) were stained 
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for IHC with   p-ERK (grey plain line)  and p-S6 (grey dotted line)  antibodies and quantified 

(right y axis)  and compared to log2 fold change (left y axis) of DUSP6 (black plain line)  and 

ETV5 (black dotted line)  over time (x axis). 

 

Figure 5: Identification by gene profiling of enhanced pathway modulation in 

combination therapy. 

An FGFR2 mutated endometrial xenograft model (AN3CA) sensitive to AZD4547 & 

AZD5363 was orally dosed by either or both compound for 14 days. Gene profiling was 

performed on samples harvested after 2 and 6 hours after the last dosing. A) Genes 

significantly modulated in the combination group compared to both single agents are 

represented by hierarchical clustering and include primarily genes from the AKT/PI3K 

pathway (B), genes from the RAS-MAPK pathway were modulated only by AZD4547 and 

not AZD5363, and not enhanced in the combination group (C). 

 

Figure 6: Transfer of AZD4547 transcript biomarkers to nanoString platform 

and detection in FFPE clinical tissue. 

A) Correlation of nanoString and qPCR gene expression in xenograft model 

RNA from SNU16 xenograft samples were run on a nanoString, data were normalised to 

vehicle control group and compare to Fluidigm qPCR data. ETV5 expression at 16 and 24 

hours were below  the limit of detection and highlighted with a star (*). 

B) Baseline expression of dynamic genes in gastric cancer samples. 

RNA from 195 FFPE Vietnamese gastric cancer patients were analysed by nanoString. The 

range of expression of each dynamic gene is shown.  Negative represents the limit of 

detection for each sample 

 


