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ABSTRACT 

For reactive crystallization of pharmaceuticals that show rapid reaction rate, low solubility of active 

pharmaceutical ingredient, hence large supersaturation, it was found in a recent study that a process 

design that integrates an impinging jet mixer and a batch stirred tank, the former to achieve intensive 

micromixing prior to reaction and crystal nucleation and the later to immediately disperse the formed 

nuclei or small particles to minimise aggregation but promote crystal growth, has produced high 

quality crystals. The current investigation studies the hypothesis that due to the short processing time 

of reactive crystallization, the impinging jet mixer - stirred tank design can be made to operate in 

continuous mode. The new design combines an impinging jet mixer for feed introduction and 

reaction, and a continuous stirred tank reactor (CSTR) and a tubular reactor for crystal growth. Study 

on reactive crystallization of sodium cefuroxime (an antibiotic), using firstly in a 1L CSTR then 

scaled to 50L CSTR, found that the new design has produced crystals of higher crystallinity, 

narrower particle size, and improved product stability, than the conventional batch crystallizer.  

KEYWORDS:  

Reactive crystallization; continuous crystallization, continuous processing of pharmaceuticals, 
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INTRODUCTION 

Reactive crystallization of sodium cefuroxime, an antibiotic, showed rapid reaction rate, low 

solubility of sodium cefuroxime in the solvent, and as a result very large supersaturation1. Based on 

this mechanistic understanding, a process design was reported recently1
 that has an impinging jet 

mixer submerged in the solution of a batch stirred tank crystallizer, with the thinking that the former  

achieves intensive micromixing of fluids prior to reaction and nucleation and the later disperses 

immediately the formed nuclei of active pharmaceutical ingredient (API) or the small particles to 

minimise their aggregation and promote crystal growth. The design showed improved performance 

than stirred tank crystallizers that were used in industry in the manufacture of an active 

pharmaceutical ingredient, sodium cefuroxime.  

The current study was motivated by the hypothesis that the kind of pharmaceutical reactive 

crystallization processes similar to the production of sodium cefuroxime is very suited for continuous 

mode operation. Firstly, the impinging jets for feeding the reactants are already in continuous 

operational mode in the design of the impinging jet mixer plus stirred batch crystallizer1. Secondly, 

the steps involved in the reactive crystallization, from feeding, to contact of reactants, to formation of 

crystals, are relative rapid processes, completing in minutes, instead of hours. Since the volume of a 

continuous stirred tank reactor (crystallizer) (CSTR), or the length of a tubular reactor (crystallizer) 

is often decided by the residence time required in processing the materials, long residence time might 

mean unrealistic large tank volume or very long tube if continuous mode operation was employed. In 

fact, the requirement on sufficiently long residence time is one of the major challenges facing when 

conversing from batch to continuous mode operation in pharmaceutical manufacture processing. 

Some innovative work has been reported such as the design of continuous oscillatory baffled 



 

 

crystallizer2 in which very slow continuous flow velocity was achieved in a tubular continuous 

crystallizer as a result of the mixing created by the oscillatory baffles, consequently the use of a short 

tube was able to achieve long residence time. For the rapid reactive crystallization, due to its short 

time required, is very suited for continuous operation. Continuous processing of pharmaceuticals has 

numerous potential advantages such as the avoidance of batch to batch variations and easy to achieve 

precision control of processes. These potential advantages have prompted the recent research interest 

world-wide such as the creation of the Novartis-MIT Center on Continuous Manufacturing of 

Pharmaceuticals3. 

There limited literature on continuous reactive crystallization is mainly for inorganic materials or for 

standard CSTR or tubular designs4-8, 9-14. Tavare et al.15 studied a process involving the elementary 

chemical reaction between two reactants, subsequent crystallization of the product took place in a 

continuous crystallizer. Yin et al.16,17 researched a reactive precipitation process in a continuous 

isothermal mixed suspension-mixed product removal crystallizer. Schoenecker et al.18 implemented a 

scale-up procedure for producing amine-functionalized UiO-66 which led to the development of a 

novel flow-through metal-organic framework synthesis process. They scaled up a continuous-flow 

reactive crystallization process by using a draft-tube type reactor. 

In our study, the synthesis of sodium cefuroxime was chosen as a representative organic reactive 

crystallization process. Sodium cefuroxime is a valuable antibiotic, which has high activity against a 

wide range of gram-positive and gram-negative micro-organisms.19,20 However, its poor stability has 

been a cause of widespread concern. During storage and transportation, it tends to deepening in 

colour.21,22 In our previous work1, using process analytical technology (PAT) based on focused beam 

reflectance measurement (FBRM) and a stirred-tank crystallizer combined with a novel impinging jet 

mixer design, the synthesis of sodium cefuroxime was optimized and scaled up to 10L successfully. 



 

 

The stability of the obtained product was improved remarkably with the impinging jet mixer - batch 

stirred tank configuration1. Midler et al.23 described a method using impinging fluid jet streams in a 

continuous crystallization process to achieve high intensity micromixing of fluids so as to form a 

homogeneous compound prior to the start of nucleation. The process permits the direct 

crystallization of particles with high surface area. Lindrud et al.24 and AmEnde et al.25 described an 

apparatus and process for crystallizing submicron-sized particles with the introduction of a sonic 

probe with impinging jets. The previous work is inspiring though some design and operational 

conditions were not given in details. Other recent research on impinging jet crystallization was from 

Tari et al.26 and Liu et al.1. Tari et al. studied antisolvent crystallization of glycine and found that it 

produced small crystals with narrow size distribution. In addition to experimental research, there was 

also work on modelling of impinging jet crystallizers27. 

In the current work, the impinging jet mixer - batch stirred tank configuration1 is further developed 

and a continuous mode process design for carrying out reactive pharmaceutical crystallization is 

presented. The design consists of a pair of impinging jets that continuously feed the reactants, 

allowing them to intensively mix, react and generate nuclei, a continuous stirred tank reactor 

(crystallizer) (CSTR) that disperses the nuclei and small particles, and a pipe linked to the CSTR in 

which crystals undergo further growth in a plug flow pattern. Reactive crystallization producing 

antibiotic sodium cefuroxime is used as the case study.   

In the next section, the materials, the process design, and the instruments used will be firstly 

introduced. Then in Section three, the chemical reaction, crystal growth, and flow and mixing 

behavior were analyzed. Section four reports the experimental results obtained in both a 1L CSTR 

system and a 50L CSTR system.   

MATERIALS, PROCESS, AND INSTRUMENTS 



 

 

Materials 

The reactants are cefuroxime acid (C16H16N4O8S, 424.37 kg·mol-1, water content < 0.2%) and 60% 

w/w sodium lactate aqueous solution (Fisher Scientific UK Ltd).22
 Ethanol (95% v/v) and activated 

carbon were obtained from Fisher Scientific UK Ltd, acetone was obtained from Sigma, and the 

distilled water was produced in our laboratory. 

The reaction solutions were prepared by dissolving 9.0 g 60 % w/w sodium lactate aqueous solution 

in the mixed solvent of 40 mL acetone and 50 mL 95 % ethanol at 20 - 25oC. The mixture was then 

filtered and washed with 10 mL 95 % ethanol in a beaker. Afterwards 10 g acid cefuroxime was 

dissolved in the mixed solvent of 246 mL acetone and 124 mL 95 % ethanol. Activated carbon was 

added in the acid cefuroxime solution and the mixture was stirred for 10 - 15 minutes at 38 - 42oC, 

then filtered and the activated carbon was washed with 30 mL acetone. Finally, the product, sodium 

cefuroxime crystals, was filtered and washed in a mixture of acetone and 95% ethanol (1.8 : 1) until 

the pH value reached 8.0. After 24 hours vacuum drying in a DZF-6030B vacuum oven, the final 

product was obtained. 

The Process 

The process layout is shown in Figure 1 (Figure 1 is for 1L CSTR; the 50L CSTR design is different 

only in dimensions). A pair of impinging jets, as continuous feeding pipes of reactants, is inserted 

into a CSTR. The jets should be placed as close as possible to the CSTR impeller and be submerged 

in the solution (slurry). It should be noted that it was also tested to put the jet mixers above the liquid, 

but the result was found in our early study not as good as submerging them in the solution. Attached 

to the CSTR is a tube from which the slurries are continuously withdrawn. During an operation, the 

reactants, cefuroxime acid (C16H16N4O8S, 424.37 kg·mol-1, water content < 0.2%) and 60% w/w 

sodium lactate, are introduced at room temperature by the two jets, and then meet, mix and react at 



 

 

the jets' ends to form sodium cefuroxime. Since sodium cefuroxime has very low solubility in the 

solvent, it crystallise to forms nuclei immediately. The nuclei (and small crystals) are immediately 

dispersed in the solution of the stirred tank by the impeller of the CSTR to avoid immediate rapid 

aggregation. The slurry stays in the CSTR for a short time, decided by the CSTR volume, before 

flowing into the tube in which the crystals in the slurry continue to grow and the slurry is withdrawn 

at the end as the final crystal product. 

An alternative design could have been to link the jet mixers directly to a tubular crystallizer, 

eliminating the CSTR. The main consideration of not removing the CSTR was that since the 

solubility of sodium cefuroxime is very low, the CSTR stirrer impeller will disperse the nuclei and 

small particles as soon as they are formed (if, as we did, the impinging jet mixer is placed close to 

the stirrer impeller), this will prevent possible spontaneous aggregation of the nuclei. Whether this 

will benefit the crystallization process can be analysed by examining the mechanism of crystal 

growth in a reactive crystallization process. The mechanism that crystals get bigger in a reactive 

crystallization process is still under debate, but the dominant view at the moment is that it is a 

combined process of nuclei (and small crystals) aggregation and surface growth (by absorbing 

molecules or ions to its surfaces) 28,29. Dispersing the nuclei (and small particles) as soon as they are 

formed in the CSTR near the feeding mixer means the dilution of the nuclei and small particles, 

which could promote surface growth and slower aggregation in contrast to rapid spontaneous 

aggregation.  

Another possible alternative configuration is to eliminate the tubular part connected to the CSTR. 

However, the near plug flow condition in the tubular crystallizer often produces crystals with more 

uniform sizes (narrow crystal size distribution) than in a CSTR. Tubular crystallizers were less 

commonly used in practice than CSTR tubular crystallizers mainly due to other factors, for example, 



 

 

crystals could stick to the tube wall causing blockage of the tube. In this study for sodium 

cefuroxime crystallization, no such difficulties were encountered for the tubular crystallizer.  

Instruments 

FBRM (LASENTEC, S400A Controller, PI-14/206 PROBE) was used to monitor crystallization 

processes and also to provide qualitative and quantitative information about nucleation and crystal 

growth.30-34 UV (SHIMADZU UVmini-1240) was used for reaction kinetics determination. X-ray 

diffraction data was collected using Bruker D8 advance (CuKĮ1, Ȝ = 1.540598 Å). Yttria (Y2O3) was 

used as standard for the estimation of instrumental peak broadening. The crystal size distribution was 

measured using Morphologi G3 of Malvern Instrument. The Morphologi G3 measures the size and 

shape of particles using the technique of static image analysis.  

STUDY ON THE REACTION, CRYSTAL GROWTH AND FLOW 

Characterization of the Reaction 

An UV spectrometer was used to study the characteristics of reaction by measuring the concentration 

of acid cefuroxime. The characteristic absorption peak of acid cefuroxime is around 274 nm.35 In the 

UV spectrum range, ethanol has no absorption, but acetone has absorption which can cause 

interference. So a mixed solvent of ethanol and acetone under the same ratio as the reaction solvent 

was made for UV spectrometer baseline data collection. The solutions of acid cefuroxime (C1) used 

for UV spectrometer calibration ranged from 0 mol·L-1 (cefuroxime/solvent) to 0.2 mol·L-1 (step 

length is 0.02 mol·L-1), which covered the entire change of the reaction concentration. The 

calibration curve is given in Figure 2, which it almost follows a straight line.  

The calibrated UV spectrometer was used to measure the gradually depletion of acid cefuroxime 

concentration during the reaction. A beaker instead of the sample cell provided by the spectrometer 



 

 

was used because firstly it was found that as the reaction occurred, the solution in the cell became 

turbid rapidly due to particles generated that affected UV measurement, and secondly there was no 

stirrer in the UV spectroscopy sample cell so the reactants could not achieve full mixing. A magnetic 

stirrer was put into the beaker, and then as soon as the reactants were added into the beaker, the timer 

started. After every minute, the clear supernatant solution was drawn out by a pipette and put into the 

spectrometer cell for measurement. When the measurement was completed in about 10 seconds, the 

solution was put back into the beaker. In this way, the impact of particles was avoided and the 

measurement process more closely mimics the real reaction operation. Five experiments were 

conducted and the concentrations were averaged. Figure 3 presented the relationship of the mean 

concentration values versus the reaction time.  

As can be seen in Figures 3 and 4, the reaction reached completion in about 8 minutes, and ln (C10/C1) 

versus reaction time was a straight line, indicating that the reaction is most likely first-order.  It needs 

to point out that the reaction time in the impinging jet mixer - CSTR could be slightly shorter than 8 

minutes because of the improved mixing. Nevertheless, the UV measured reaction time provides 

useful information about the reaction.  

Characterization of Crystal Growth 

Several theories exist to explain the mechanisms of crystal growth.36 The diffusion-reaction theory 

suggests that once an ordered crystal structure is formed by nucleation, the growth units (atoms, ions 

or molecules) can diffuse from the surrounding supersaturated solution to the surface of the nucleus 

and resulting in crystal growth. Adsorption layer theory suggests that particle growth happens on 

pre-exist layers of atoms or molecules that adsorbed on crystals faces. For rapid reactive 

crystallization it was thought that in addition surface growth, aggregation of small particles including 

nuclei is another factor causing crystal size growth. 37,38,28,39  



 

 

FBRM was used here for characterization of crystal growth. The result is given in Figure 5. It was 

observed that the total counts (an indicative measure of number of crystals) of crystals of all size 

ranges continuously increased for about 15 minutes, then the counts  in the size range of 1 m - 5 m 

started to drop first, and the total counts of particles started to drop almost at the same time. Then 

counts in the ranges of 10 m - 23 m and 29 m - 86 m also dropped, leaving only the counts of 

the largest particles (> 100 m˅still kept increasing. Figure 5 also indicated that at about 25th 

minute crystals no longer grow in size.   

In the above, the reaction and crystal growth behaviour has been studied. Thermodynamic data is 

available from our previous study,22  so it will not be repeated here. 

CFD simulation of the mixing and flow behaviour 

Computational fluid dynamics (CFD) analysis using the ANSYS Fluent 13 software was made to 

study the 1L tank reactor with the impinging jet mixers and tubular reactor. Figure 6 shows that the 

CFD computational domain.  Sliding mesh was used in the mixing paddle region of the stirred tank 

reactor. The setting of interface was also used to achieve the mass and heat transfer between the 

mixing paddle region and the main reactor region. The entire reactor was compartmentalized by 

three-dimensional mesh with 255269 tetrahedral cells in total where the main reactor region contains 

228142 cells and the mixing paddle region has 27127 cells. Since the diameters of the feeding 

nozzles and the outlet tube were much smaller than the reactor diameter, the surface mesh 

construction was used firstly to ensure the uniformity of the grid, and then using grid's own 

amplifying function, the whole mesh was generated automatically. Grid-independent and step-

independent were verified before simulation.  



 

 

Pure single-phase flow simulation was carried out firstly and compared with the previous 

experimental data. The properties of single-phase liquid material used in the simulation were the 

same as the solvent mixture (ethanol and acetone) used in the experiment. Parameter settings 

including reaction temperature, feed rate and stirring speed were based on the values obtained from 

the experiments.1 Standard SIMPLE pressure-velocity coupling was used with a first-order upwind 

scheme being employed for the discretization of the convection terms in the governing equations. 

Due to the insulation of the system, heat losses through the outer wall of the reactor were assumed to 

be negligible. Standard non-slip wall boundary conditions were applied in the studies with the 

standard turbulent wall function being used. Since the reaction is neither endothermic nor exothermic, 

the temperature of the entire reactor was set constant. The material properties of the solvent such as 

density, viscosity, thermal conductivity and specific heat were also set to fixed values.30 

The cases simulated here were the impact of the nozzles’ angles on the flow state. From Figure 7, the 

following observations can be made: (a) for 10o upward nozzles, the high-speed zone in the middle of 

the two nozzles indicated that it could guarantee the two reactants frontal mid-way collision. 

However, after collision, the rapid decline of the velocity indicated that it was difficult for the 

mixture to leave the mixing zone (impinging jet mixer region) into the tank reactor; (b) for the 

parallel nozzles the high-speed zone moved to one side obviously, indicating that the nozzles could 

guarantee the two reactants colliding in the mid-way, and the collision speed was relative lower than 

the other two cases, and the mixing effect might not be satisfactory. This result explained why in 

experiments the parallel nozzles had led to crystal accumulation which caused clogging of the 

nozzle;1 and (c) for 10o downward nozzles, the advantages of the former two cases were reflected: 

the two reactants were able to collide in the mid-way with high speed and the mixture could flow 

into the tank reactor without problem.  



 

 

To make the simulation as close as possible to the real process, the Eulerian-Eulerian two-phase flow 

simulation approach was then applied for estimating the residence time and residence time 

distribution, which means particles were added into the crystallizer in simulation. The properties of 

these particles were taken as the same as sodium cefuroxime. Species transport equation was used 

and the other settings remained the same with single-phase flow simulation. Residence time 

distribution (RTD) was simulated because it can be used to compare with two ideal reactor models, 

ideal plug flow reactor and mixed flow reactor. In an ideal plug-flow reactor, there is no axial mixing 

and the fluid elements leave in the same order as they arrived. Therefore, the variance 2 of an ideal 

plug-flow reactor is zero. In mixed flow reactors, an ideal continuous stirred-tank reactor is based on 

the assumption that the flow at the inlet is completely and instantly mixed into the bulk of the reactor. 

The reactor and the outlet fluid have identical, homogeneous compositions at all times. Therefore, 

the variance of an ideal mixed-flow reactor 2 is one.40 The RTD of a real reactor deviate from that 

of an ideal reactor, depending on the hydrodynamics within the vessel.  

To estimate the residence time distribution of the tank reactor via CFD simulation, a small amount of 

inert substance fluid was injected into the novel reactor from the impinging jet probe and the 

concentration change of the inert substance was modelled at the outlet of the reactor (0 mm in Figure 

6). The concentration was normalized first, and then the function E(t) was obtained. As can be seen 

in Figure 8(a), in all cases the residence time was no less than 8 minutes. It was also observed that 

mixing effects of the three nozzle designs were significantly different. The variance ı2 results 

indicated that the 10o downward nozzles provide the best mixing followed by the parallel, and the 

10o upward was the worst. This conclusion was also consistent with the pure single-phase flow 

simulation results, which further illustrated the importance of mixing for reaction processes. The 

variance ı2 results also indicated that the design that adding impinging jets and the stirrer into the 

reactor made this tank reactor closer to an the ideal mixed flow reactor.  

http://en.wikipedia.org/wiki/Plug_flow_reactor_model
http://en.wikipedia.org/wiki/Continuous_stirred-tank_reactor


 

 

For estimating the RTD in the tubular reactor, a little amount of inert substance fluid was injected 

into the reactor from 0 mm in Figure 6 and the concentration change of this inert substance was 

monitored at different lengths (1500mm, 1700mm, 2000 mm, and 2500 mm in Figure 6). As can be 

seen in Figure 8(b), in all cases the residence time in the tubular reactor was no less than 22 minutes. 

As analysed earlier, the reaction and crystal growth came to completion in about 25 minutes. The 

residence time in the chosen CSTR and that in the tubular reactor add together to give about 30 

minutes, larger than the required 25 minutes for the completion of reaction and crystal growth. So the 

sizes of the selected CSTR and tubular reactor are suitable. 

EXPERIMENTAL RESULTS AND DISCUSSION 

Experiments in the 1L Crystallizer 

The 1L system is as sketched in Figure 1. The reaction temperature (controlled by a Julabo circulator) 

was 25 - 28oC. The stirring speed (controlled by an IKA EUROSTAR digital stirrer) was kept at 

around 80 rpm. The velocity of introducing feed via the impinging jet mixer was 10 m·s-1 (controlled 

by 307 Piston Pumps). 

Tube lengths of 1500 mm, 1700mm and 2000mm were used for the tubular part. Figure 9 shows the 

peak intensities of products obtained for the three lengths (other parts of the system and operational 

conditions were the same), indicating that 1700mm and 2000mm lengths give similar XRD patterns, 

slightly better than 1500 mm. The particle mean size and size distribution of the products under these 

two lengths were also very close. As a result, a tube length of 1700 mm was chosen for conducting 

four repeated experiments (20130626, 20130627, 20130628, and 20130701), which produced the 

same good quality products (their XRD results are shown in Figure 10). From the stability test results, 

as shown in Table 1, it can be seen that the products obtained from this new process design was more 

stable (improved about three colour grades) compared with conventional batch crystallizers.  



 

 

Experiments in the 50L Crystallizer 

For the 50L crystallizer, the design of the impinging jests was the same as in the 1L crystallizer: 10o 

downward and 6.78 mm spacing. The reactant feed velocity in the impinging mixers was also the 

same as in the 1L system, i.e. 10 m/s, and stirring speed  80 rpm. The length of the tubular part was 5 

m with the diameter being 5.6 cm. 

The XRD spectra for crystals obtained from the 50L system were given in Figure 11, showing almost 

identical patterns as crystals produced from the 1L crystallizer. It can also be seen from the 

Morphologi G3 results in Figure 12, the crystal size distribution of products obtained from the 50L 

system were much better than the products obtained from the conventional batch crystallizer. The 

mean size was smaller with no bimodal phenomenon. As can be seen from the stability results (Table 

2), the colour grade of products of the 50L system were almost the same as the products from the 1L 

design, higher than the products obtained from the conventional batch crystallizer by three colour 

grades under 60oC accelerated stability tests.  

CONCLUSIONS 

The process consisting of a mixer of impinging jets and a CSTR followed by a tubular reactor was 

designed and tested for reactive crystallization of an antibiotic, sodium cefuroxime, mainly for the 

purpose of improving the drug's stability. The design was based on the idea that the impinging jet 

mixer creates intensive mixing for reactants and for nucleation; the nuclei and small particles were 

immediately dispersed in the CSTR to avoid immediate intensive aggregation, then the mixture flows 

into the tubular reactor to allow crystals to grow (via the combined mechanisms of crystal growth: 

face growth and aggregation). For the tested pharmaceutical, no blockage or other operational 

difficulties were experienced. The experiments were carried out on both a 1L CSTR system and a 5L 

CSTR system. Both cases demonstrated similar performance. The sodium cefuroxime crystals 



 

 

showed significantly improved stability during 600C accelerated stability tests in comparison with 

crystals obtained from conventional batch crystallizers.  
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Table 1.Stability Test Data of Sodium Cefuroxime Obtained from the 1L Experiments* 

Batch No. 60oC 

 0 day 5 days 7 days 10 days 14 days 20 days 

Original <Y-2 <Y-5 <Y-7 <Y-9 <Y-9 <Y-10 

20130626 <Y-2 <Y-3 <Y-5 <Y-6 <Y-6 <Y-7 

20130627 <Y-2 <Y-3 <Y-4 <Y-5 <Y-6 <Y-7 

20130628 <Y-2 <Y-3 <Y-4 <Y-5 <Y-6 <Y-7 

20130701 <Y-2 <Y-3 <Y-5 <Y-6 <Y-6 <Y-7 

*Y means the colour grade yellow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2.Stability Test Data of Sodium Cefuroxime Obtained from the 50L Experiments.* 

Batch No. 60oC 

 0 day 5 days 7 days 10 days 14 days 20 days 

Original <Y-2 <Y-5 <Y-7 <Y-9 <Y-9 <Y-10 

20131020-1 <Y-2 <Y-3 <Y-4 <Y-6 <Y-6 <Y-7 

20131020-2 <Y-2 <Y-3 <Y-5 <Y-5 <Y-6 <Y-7 

20131021-1 <Y-2 <Y-3 <Y-4 <Y-5 <Y-6 <Y-7 

20131021-2 <Y-2 <Y-2 <Y-4 <Y-5 <Y-6 <Y-7 

*Y means the colour grade yellow. 

 

 

 

 

 

 

 

  



 

 

 

Figure 1. Sketch of the 1L novel crystallizer for sodium cefuroxime reactive crystallization. 

 

 

 

 

 



 

 

 

Figure 2. UV spectrometer calibration curve for acid cefuroxime (C1) from 0 mol·L-1 to 0.2 mol·L-1. 
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Figure 3. Mean concentration curve of acid cefuroxime (C1) during the reactive crystallization 

process measured by ultraviolet–visible spectrometer. 
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Figure 4. Relative concentration (ln (C10/C1)) curve of acid cefuroxime (C1) during the reactive 

crystallization process measured by ultraviolet–visible spectrometer. 
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Figure 5. Counts of sodium cefuroxime crystals during the reactive crystallization measured by 

focused beam reflectance measurement (FBRM). 
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Figure 6. Illustration of the computational mesh of the crystallizer for CFD simulation: (a) overall 

three-dimensional mesh in reactor region with the collection surface of residence time distribution; 

(b) mesh in tank reactor with impinging jet mixer probe; and (c) mesh in mixing paddle region. 
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Figure 7. Velocity distribution (m·s-1) in the impinging jet mixer region simulated by CFD single- 

phase flow: (a) 10oupward nozzles, (b) parallel, and (c) 10o downward.  
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Figure 8. Residence time distribution estimated by CFD Eulerian-Eulerian two-phase flow 

simulation approach for (a) the CSTR reactor and (b) the tubular reactor. 
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Figure 9. XRD patterns of sodium cefuroxime crystals obtained from 1L experiments (peak intensity 

and peak width at half height of peak between 9o to 10.5o were chosen to present the crystallinity). 
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Figure 10. XRD patterns of sodium cefuroxime crystals obtained from 1L four repeated experiments 

(peak intensity and peak width at half height of peak between 9o to 10.5o were chosen to present the 

crystallinity). 
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Figure 11. XRD patterns of sodium cefuroxime crystals obtained from 50L scale-up experiments 

(peak intensity and peak width at half height of peak between 9o to 10.5o were chosen to present the 

crystallinity). 

 

 

(a)                                                                   (b) 

Figure 12. Particle size distribution, analysed by Morphologi G3, for sodium cefuroxime crystals 
obtained from 50L scale-up experiments: (a) Product obtained from the conventional batch 
crystallizer; (b) product obtained from the new 50 L continuous crystallizer. 
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