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ABSTRACT 

A stainless steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-

catalysis of waste high density polyethylene with the aim of producing high value carbon 

products, including carbon nanotubes. The catalysis temperature and plastic to catalyst ratio 

were investigated to determine the influence on the formation of different types of carbon 

deposited on the nickel-stainless steel mesh catalyst. Increasing temperature from 700 to 

900 °C resulted in an increase in the carbon deposited on the nickel loaded stainless steel mesh 

catalyst from 32.5 wt.% to 38.0 wt.%.  The increase of sample to catalyst ratio reduced the 

amount of carbon deposited on the mesh catalyst in terms of g carbon g-1 plastic. The carbons 

were found to be largely composed of filamentous carbons, with negligible disordered 

(amorphous) carbons.  Transmission electron microscopy analysis of the filamentous carbons 

revealed them to be composed of a large proportion (estimated at ~40%) multi-walled carbon 

nanotubes. The optimum process conditions for carbon nanotube production, in terms of yield 

and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800 °C 

and plastic to catalyst ratio of 1:2 where a mass of 334 mg of filamentous/multi-walled carbon 

nanotubes g-1 plastic was produced.  
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1. Introduction 

 

There is current interest in carbon nanotubes as advanced materials due to their reported unique 

and advantageous properties in a range of industrial sectors such as electronics [1], biosensors 

[2], energy storage, reinforced composites etc. [3].  Carbon nanotubes are cylindrical hollow 

tubes composed of carbon with nano-sized diameters (0.1-100 nm) and long length (100m>). 

The nanotubes may be single-walled or multi-walled. Carbon nanotubes are most monnly 

produced by chemical vapour deposition [4]. The process involves high carbon content 

feedstocks such as methane, ethylene, benzene, xylenes, acetylene which interact with catalysts 

and form carbon nanotubes which grow on the catalyst surface [5, 6, 7, 8].  The process 

conditions range from 700 – 1200 °C and typical catalysts include Fe, Co, Ni, nano-particles 

and organometallic catalysts  such as ferrocene, cobaltocene, nickelocene [9, 10, 11].  

Waste plastics have been proposed as a feedstock to produce carbon nanotubes since 

when the plastics are subjected to pyrolysis, the polymer thermally degrades to produce a wide 

range of hydrocarbon gases.  The carbon rich hydrocarbons can be regarded as suitable 

feedstock for the formation of carbon nanotubes by interaction with a suitable catalyst [12, 13, 

14, 15, 16, 17]. Barzagan and McKay [13] have recently reviewed the production of carbon 

nanotubes from the thermal/catalytic processing of waste plastics. Kukovitskii et al [14] 

pyrolysed polyethylene in the presence of a nickel plate catalyst at 420-450 C with the aim of 

producing carbon nanotubes, but the carbons were of poor quality.  Yen et al [15] pyrolysed 

polyethylene in a fluidised bed reactor followed by a catalytic reactor at 700-800 °C with a Fe-

MgO catalyst to produce carbon nanotubes. The authors have previously [12] used a pyrolysis-

catalytic, two-reactor system to produce carbon nanotubes with a Ni-Ca-Al or Ni-Zn-Al 

catalyst using polypropylene as the feedstock. Later work using the same reactor system used 

real-world waste plastics derived from different industrial sources using a Ni-MN-Al catalyst 
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to produce carbon nanotubes, where contamination of the plastic with polyvinyl chloride led 

to distortion of the CNTs produced [17].   Liu et al [16] used a two-stage pyrolysis-catalyst 

reactor system to produce carbon nanotubes from polypropylene, the plastic was co-pyrolysed 

with zeolite to crack the plastic pyrolysis gases and the carbon nanotubes were produced in a 

second stage catalytic reactor using NiO catalyst. The optimum temperature for carbon 

nanotubes formation was 700 °C and 37 wt.% of carbon nanotubes were produced. A mixture 

of polyethylene and polypropylene was pyrolysed in a fluidised bed and the pyrolysis gases 

passed to a catalyst reactor containing different Ni-Al 2O3 catalysts by Yang et al, [18]. They 

showed that the quality of the product carbon nanotubes was influenced by catalyst temperature. 

We have also reported [19] the importance of catalyst temperature in determining the quality 

of carbon nanotubes from pyrolysis-catalysis of low density polyethylene.  Too high a 

temperature (900 °C) distorting the product carbon nanotubes.  Further, the influence of metal 

promoters in the nickel catalyst also affect the yield and quality of carbon nanotubes, for 

example Fe and Co have been shown to promote carbon nanotube formation [20].  

For the development of the process for the production of carbon nanotubes from waste 

plastics, using pyrolysis-catalysis, a route to recover the carbon nanotubes from the catalyst is 

required [20, 21]. The carbon nanotubes can become encapsulated and intermingled with the 

catalyst particles, making recovery of the carbon nanotubes difficult. Stainless steel mesh has 

been applied by many researchers in the production of CNTs from different feedstocks [22, 23, 

24, 25, 26]. For example, Alves et al. [23] produced carbon nanotubes using a stainless steel 

type 304 alloy (Fe:Cr:Ni). It has also been reported that iron in the form of stainless steel 

promotes CNTs growth [24, 25]. Sano et al. [24] produced aligned multi-walled carbon 

nanotubes on the surface of stainless steel from phenol decomposition. The stainless steel mesh 

was activated by intensive oxidisation in air followed by reduction in H2. Vander Wal and Hall 

[26] used activated type 304 stainless steel mesh as a catalyst to produce carbon nanotubes 
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from hydrocarbon gas mixtures such as C2H2/benzene or a CO/benzene mixture by chemical 

vapour deposition method. 

However, there are few reports concerning the use of stainless steel mesh based 

catalysts for CNTs production from waste plastic. In this work, a Ni-based stainless steel mesh 

catalyst has been chosen to produce CNTs from the pyrolysis-catalysis of waste high density 

polyethylene using a two-stage reaction system. The temperature of the catalyst and the ratio 

of plastic sample to catalyst were also investigated. 

 

2. Materials and Methods 

2.1. Materials 

High density polyethylene (HDPE), particle size ~2mm, was purchased from ACROS Organics 

UK. Stainless steel gauze was purchased from Alfa Aesar and was used as catalyst support for 

the nickel-stainless steel catalyst. The mesh was woven from 0.028 mm diameter stainless steel 

wire. The mesh was cut into squares (~ 4mm) and pre-treated by immersion into concentrated 

HNO3 acid for 30 min, washed with de-ionized water, followed by drying at 100 °C for 3h and 

calcination at 800 °C for 3h with a heating rate of 10 °C min-1 in a static air atmosphere. For 

the loading of Ni on the pre-treated stainless steel mesh (SS), NiCl2, ammonia solution and 

water were mixed and added to the mesh and dried in an oven at 90 °C for about 12 h. The 

produced stainless steel mesh loaded with nickel was water washed then dried at 105 °C. 

Calcination of the Ni-stainless steel precursor was carried out at 900 °C for 3 h. The prepared 

catalyst was characterised by SEM and XRD. 

 

2.2. Pyrolysis-catalysis reactor 

The pyrolysis-catalysis of the high density polyethylene was investigated using a two-stage 

fixed-bed reactor (Figure 1). The reactors were constructed of stainless steel with a diameter 
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of 2.2 cm and a height of 20 cm for the pyrolysis stage and 30 cm for catalysis stage and were 

heated by electrically heated furnaces with full monitoring and control for each stage. N2 was 

used as the purge gas throughout the experiments at a fixed metered flow rate of 80 ml min-1.  

The low rate of nitrogen will affect the residence time of the reactants over the catalyst and 

hence influence the formation of carbon on the catalyst. The HDPE sample was placed in the 

first stage pyrolysis reactor and pyrolysed at a heating rate of 40 °C min-1 to a final pyrolysis 

temperature of 500 °C.  The second stage catalytic reactor was pre-heated to 800 °C and 

contained the nickel loaded stainless steel mesh catalyst. The total reaction time was 40 mins 

with an extra 20 mins gas collection time. The influence of catalyst temperature on the process 

was investigated at temperatures of 700, 800 and 900 °C and with a plastic to catalyst ratio of 

2:1. In addition, a plastic to catalyst ratio of 4:1 was investigated at 900 °C catalyst temperature. 

Carbon was deposited on the nickel-stainless steel mesh catalyst during the pyrolysis-catalysis 

experiments.  Product oils were collected in a dry-ice cooled condenser system and 

uncondensed gases passed to a Tedlar™ gas sample bag [22, 27]. The solid residue in the 

HDPE pyrolysis stage was measured by the weight difference of sample crucible before and 

after reaction. The carbon production was measured by the weight difference of reactor tube 

before and after reaction. The condensed liquid oil production was measured by the weight 

difference of the condensation system before and after reaction. 

 

2.3. Analytical methods 

The prepared nickel-loaded stainless steel catalysts were analysed by X-Ray Diffraction (XRD) 

using a SIEMENS D5000 instrument in the range of 10° ņ 70° using Cu KĮ radiation at a 

wavelength of 0.1542. The gaseous products were analysed off-line with two Varian 3380 gas 

chromatographs (GC) [27]. One GC was used for H2, CO, O2 and N2 and was fitted with a 2m 

long, 2mm diameter, 60-80mm mesh molecular sieve column and a thermal conductivity 
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detector. Within the GC was a second column which was 2m long, 2mm diameter containing 

molecular sieve material of 80-100mm mesh, which was connected to a thermal conductivity 

detector and was used for the quantitation of CO2. The second GC used a 80-100 mm mesh 

HayeSep molecular sieve column and flame ionization detector for the analysis of C1 ņ C4 

hydrocarbon gases.  

The deposited carbons on the nickel-stainless steel mesh catalyst were removed from 

the mesh and were analysed by temperature programmed oxidation (TPO) using a Shimadzu 

thermogravimetric analyser (TGA) in order to understand the mass and type of deposited 

carbon. Scanning electron microscopy (SEM) using a Hitachi SU8230 SEM and also 

transmission electron microscopy (TEM) using a Tecnai TF20 were used to observe the 

characteristics of the deposited carbons. Raman analysis results were used to indicate the 

graphitic of carbon deposited on the Nickel-stainless steel mesh catalyst with a Renishaw Invisa 

Raman spectroscope. The system used a wavelength of 514 nm and the Raman shift 

wavelengths were between 1000 and 3200 cm-1. 

 

3. Results and discussion 

3.1. Characteristics of the fresh catalyst 

The freshly prepared nickel-loaded stainless steel catalyst was examined using scanning 

electron microscopy and example micrographs are shown in Figure 2. Figure 2(a) shows the 

low magnification image of the catalyst where the interlocking grid wires of the stainless steel 

mesh can be clearly seen.  Figure 2(b) and 2(c) show higher magnification micrograms of the 

wire mesh surface showing a crystalline structure. Figure 3 shows an X-ray diffraction pattern 

of the freshly prepared nickel-loaded stainless steel catalyst indicating the presence of NiO, 

NiO/FeNi, FeNi and NiO peaks.  During the pyrolysis of high density polyethylene, reducing 
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gases including hydrogen and carbon monoxide are produced which serve to reduce the catalyst 

and produce nickel and nickel-iron phases. 

 

3.2. Product yield 

The product yield and gas composition resulting from the pyrolysis-catalysis of high density 

polyethylene (HDPE) in the presence of the nickel-stainless steel catalyst in relation to catalyst 

temperature and also plastic to catalyst ratio are shown in Table 1. The results show that there 

was little influence of catalyst temperature on the yield of gas at each plastic to catalyst ratio, 

however, the liquid product yield showed a significant reduction from 17.00 wt.% at 700 °C to 

10.50 wt.% at 900 °C catalyst temperature. Importantly, the carbon deposited on the nickel 

loaded stainless steel mesh catalyst showed an increase in yield from 32.50 wt.% to 38.00 wt.%.  

The residue yield in Table 1 refers to the mass of pyrolysis char in the pyrolysis reactor after 

the experiments, which was negligible at ~0.5 wt.%.  Table 1 also shows the influence of 

increasing the plastic to catalyst ratio from 2:1 to 4:1 at a nickel-stainless steel mesh catalyst 

temperature of 900 °C.  The results show that increasing the plastic to catalyst ratio increased 

the gas yield from ~51 wt.% to 62.62 wt.%, and the carbon deposition was reduced from 38.00 

to 25.75 wt.%.  The liquid yield was largely unaffected by change in plastic to catalyst ratio. 

Table 1 also shows the composition of the product gases in relation to the nickel-

stainless steel mesh catalyst temperature and plastic to catalyst ratio. The main gases produced 

during the pyrolysis-catalysis of the HDPE were hydrogen, carbon monoxide, methane and C2 

ņ C4 hydrocarbons.  The gas product therefore has a significant calorific value which could be 

used as process fuel for the system. The increase of catalysis temperature from 700 to 900 °C 

resulted in an increase of the CO concentration from 0.78 to 3.02 vol.% and the concentration 

of hydrogen was the highest at 51.03 vol.%, when the catalyst temperature was at 900 °C. The 

concentration of hydrocarbon gases (C2-C4) decreased from 26.69 to 12.92 wt. % as the 
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catalysis temperature was increased from 700 to 900 °C. The decomposition of plastics to form 

gas products and solid carbon have been described via the following reactions [28]:  

Thermal cracking: pCnHxĺqCmHy+rH                                                                   (1) 

Carbon formation: CnHxĺnC+x/2 H2                                                                                                        (2) 

During the pyrolysis-catalysis of plastics, the polyalkene HDPE plastic was initially 

degraded into smaller organic compounds, then these compounds were dehydrogenated to 

produce carbon products and gaseous products [19]. The product oils and gases which are 

generated from the pyrolysis of the HDPE and which pass over the stainless steel mesh catalyst 

have been analysed before and shown to be largely aliphatic in composition [29-31]. The gases 

produced are mainly methane, ethane, ethene, propane, propene, butane and butene, with lower 

concentrations of hydrogen and carbon monoxide [31]. Depending on the plastic pyrolysis 

conditions and the condensation temperature and system design, the product oil can represent 

an oil or wax-like product. The waxes when analysed by high temperature gas chromatography 

have been shown to consist of alkane, alkene and alkadiene hydrocarbons in the range up to 

C60 and the oils typically have a hydrocarbon range up to C40 with a peak at C20 [29]. However, 

much higher molecular weight hydrocarbons can be detected using size exclusion 

chromatography [30, 31].  Therefore, the thermal degradation of the HDPE via a random 

scission mechanism [29] might be expected to produce a wide range of aliphatic hydrocarbon 

gases, oils and waxes and polymer fragments from light gases up to heavy molecular weight 

species which then pass over the stainless steel mesh catalyst, cracking the pyrolysis gases and 

also depositing carbon nanotubes. 

It is suggested that a higher gasification temperature promoted the secondary reactions 

in the polyethylene pyrolysis-catalysis process resulting in the enhancement of hydrogen and 

carbon monoxide production [29 (32)]. When the sample to catalyst ratio was increased from 

2:1 to 4:1 at 900 °C catalyst temperature, H2 concentration decreased from 51.03 to 35.59 vol.%, 
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CO concentration decreased from 3.02 to 2.23 vol. % and hydrocarbon gases concentration 

increased from 12.92 to 23.13 vol.%.  

 

3.3. Carbon production and characterization 

The carbon deposited on the nickel loaded catalyst was collected by physical separation from 

the mesh catalyst and characterised by several techniques.   Thermogravimetric analysis (TGA) 

using temperature programmed oxidation (TPO) of the collected carbon deposits was carried 

out and the results are shown Figure 4 [33]. TGA-TPO characterisation enables the oxidation 

of the carbon in an air atmosphere in relation to a temperature controlled fixed heating rate.  

The different type of carbon deposit oxidise at different temperatures, for example 

disordered/amorphous carbons oxidise at lower temperatures than graphitic, filamentous type 

carbons [14].  It was assumed the weight loss which occurred before 600 °C oxidation 

temperature was assigned as the oxidation of amorphous type carbon and the weight loss that 

occurred after 600 °C was assigned as filamentous carbon [18, 27, 32]. Based on the 

differentiation of the two types of carbon deposited on the nickel-stainless steel mesh catalysts 

using the data from the TGA-TPO (Figure 4), the mass of filamentous and amorphous carbons 

were calculated and the results are shown in Figure 5. The weight of filamentous carbon 

increased from 316.35 mg g-1 plastic at 700 °C catalyst temperature to 374.06 mg g-1 at 900 °C 

catalyst temperature. It is suggested that more heavy hydrocarbons were decomposed into light 

hydrocarbons when the catalysis temperature was increased; these produced light hydrocarbons 

which are suggested to provide more carbon sources for the formation of filamentous carbons. 

It is consistent with the changes of C2-C4 gaseous productions shown in Table 1, when the 

catalysis temperature was increased from 700 to 900 °C, C2-C4 hydrocarbon concentrations 

decreased from 26.69 to 12.92 vol.%.  
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Fang et al. [33] reported that the oxidation peak of filamentous carbons with smaller 

diameters occurred at lower temperatures during TGA-TPO analysis compared with oxidation 

of filamentous carbons with larger diameters which occurred at higher oxidation temperatures. 

In addition, Li et al. [34] differentiated between the TGA-TPO characterisation of single walled 

carbon nanotubes compared with multi-walled carbon nanotubes, where the single-walled 

CNTs were oxidised at lower oxidation temperatures compared to multi-walled CNTs which 

oxidised at higher temperatures. They suggested that the oxidation of MWCNTs occurred at 

higher temperature because of strong interaction between graphite layers in the MWCNTs, 

which stabilised the structure of MWCNTs indicating higher thermal stability compared with 

single-wall CNTs.  Consequently, the TGA-TPO data might indicate that the carbon oxidation 

at higher temperature corresponds to filamentous carbons, including multi-walled carbon 

nanotubes.   

Increasing the plastic to catalyst ratio from 2:1 to 4:1 resulted in a decrease in 

filamentous carbon deposition from 374.06 to 247.03 mg g-1 plastic. Li et al. [34] reported that 

an increased sample to catalyst ratio enhanced the carbon dissolving rate into the metal particles 

of the catalyst compared with the rates of carbon diffusing and precipitating, thus the formation 

of filamentous carbons were prohibited [35].  

Figure 6(a), 6(b) and 6(c) shows the SEM micrographs of the carbons formed on the 

reacted nickel-stainless steel mesh catalyst. It is clear that the diameters of filamentous carbons 

formed at catalysis temperature at 700 °C are smaller than the filamentous carbons formed at 

higher catalyst temperature when the sample to catalyst ratio was 2:1. Figure 7(a) and 7(b) 

(TEM analysis) confirm the presence of MWCNTs as the type of carbon deposited on the 

nickel-stainless steel mesh catalyst. The carbon nanotubes were typically 10 ņ 20 nm diameter 

and more than 1 µm in length. In addition, there were some solid carbon fibres in addition to 

the MWCNTs observed with TEM analysis. Estimation of the amount of MWCNTs compared 



11 
 

to solid fibre filamentous carbons and amorphous carbons using TEM, suggested that 

approximately 40% were MWCNTs. Kumar and Ando [36] reported an increase of diameters 

of CNTs with the increase of reaction temperature with a chemical vapour deposition process 

using pure hydrocarbon as feedstock. However, Gong et al. [37] pointed out the mechanism of 

CNTs growth from polyalkene plastics is different from using pure hydrocarbon gas, because 

of complicated products which are produced from such polymers including gas, liquid and 

semi-liquid products. The authors proposed that there were synergistic reactions between light 

hydrocarbons and aromatic compounds. 

Raman spectroscopy is a technique used to characterize the structures of carbon 

materials, including the amorphous and/or graphitic carbons [33, 38, 39, 40, 41]. As shown in 

Fig. 8, the Raman spectra in the wavelength range of 1000 to 2750 cm-1 are presented to 

compare the carbons produced at different catalysis temperature when the sample to catalyst 

ratio was 2:1. The D band centred at 1300 cm-1 suggests an amorphous or disordered carbon 

structure. The G band centred at 1550 cm-1 indicates filamentous or ordered carbons which 

correspond to the tangential vibrations of the graphite carbons. The G’ band in the Raman shift 

at a wavelength around 2700 cm-1 indicates the purity of carbons [21, 38]. The graphitization 

of carbon production can be evaluated by the ID/IG ratio which is the intensity of the D band 

normalized to the G band. The ID/IG ratios of the carbons produced at different catalysis 

temperatures are displayed in Figure 8 and are 1.18, 1.25 and 1.53 for the carbons produced at 

catalysis temperatures of 700, 800 and 900 oC respectively.  The ratio indicating that disordered 

carbons are present in addition to graphitic carbons. The ID/IG ratios of commercial multi-

walled carbon nanotubes produce typical ratios of between 0.63-1.5 [12]. The results show that 

the degree of graphitization of the carbons produced from HDPE by pyrolysis-catalysis with 

the nickel-stainless steel mesh catalyst in this work are within the range of commercial carbon 

nanotubes. The IG’/IG ratio obtained from Raman spectroscopy can be used to estimate the 
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purity of carbon where the presence of the G’ band indicates defects in the graphitic 

chrystallinity of the carbon [38, 40]. When a catalysis temperature of 800 °C was used the IG’/IG 

ratio was the lowest at 0.48 indicating the carbons are the most graphitic compared with the 

carbons produced at 700 and 900 °C.  

Overall, this work has shown that significant yields of graphitic, long length, carbon 

nanotubes can be produced from the two-stage pyrolysis-catalysis of high density polyethylene. 

The carbon nanotubes have relatively small diameters (10 ņ 20 nm) and are several microns in 

length.  The use of the nickel-loaded stainless steel mesh enables the carbon nanotubes which 

are deposited on the catalyst during the reaction to be easily physically removed from the mesh, 

which aids catalyst re-use and carbon nanotube utilisation. 

 

4. Conclusions 

In this study, different catalysis temperatures (700, 800 and 900 oC), and different sample to 

catalyst ratios (2:1 and 4:1) were investigated for the pyrolysis-catalysis of high density 

polyethylene for the production of high value carbon products, including carbon nanotubes. 

The catalysis consisted of a stainless steel mesh which had been loaded with nickel to produce 

a nickel-stainless steel catalyst. Carbon was deposited onto the mesh catalyst during the process 

of pyrolysis-catalysis of the high density polyethylene.  The influence of catalyst temperature 

was to produce increasing deposits of carbon on the mesh catalyst from 32.5 wt.% at 700 °C 

catalyst temperature rising to 38.0 wt.% at 900 °C. Using a higher plastic to catalyst feed ratio 

resulted in a reduction in catalyst carbon deposition at 900 °C.  The carbon was easily 

removable from the stainless steel mesh catalyst and was characterised by a number of 

techniques. Electron microscopy (SEM and TEM) examination of the carbon revealed that the 

carbon consisted of mainly filamentous carbons, which consisted of a high proportion (~40%)  

multi-walled carbon nanotubes. The carbons were also analysed using Raman spectroscopy 
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which suggested that carbon nanotube quality was influenced by process conditions. Optimal 

conditions for the production of high yields of high carbon nanotubes was 800 °C nickel-

stainless steel mesh catalyst temperature and plastic to catalyst ratio of 1:2, where yields were 

more than 0.3 g filamentous/carbon nanotube type carbons for each gram of plastic feedstock.    
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Table 1 Mass balance and gas concentrations for the pyrolysis-catalysis of high density 
polyethylene (HDPE) in relation to catalyst temperature and different plastic to catalyst 

ratio. 

 

HDPE weight (g) 2 2 2 4 
Temperature (˚C) 700 800 900 900 
Sample to catalyst 
ratio 

2:1 2:1 2:1 4:1 

Gas yield (wt. %) 50.44 51.99 51.13 62.62 
Liquid yield (wt. %) 17.00 14.00 10.50 9.75 
Residue yield 
(wt. %) 

0.50 0.50 0.50 0.50 

Carbon yield 
(wt. %) 

32.50 34.00 38.00 25.75 

Mass balance 
(wt. %) 

100.44 100.49 100.13 98.87 

     
Gas concentration 
(Vol. %) 

    

CO 0.78 1.82 3.02 2.23 
H2 50.51 44.95 51.03 35.59 
O2 0.28 0.43 0.62 0.85 
CO2 0.26 0.33 0.33 0.21 
CH4 21.48 32.57 32.08 37.99 
C2-C4 26.69 19.90 12.92 23.13 
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of the two stage fixed bed pyrolysis-catalytic reactor system 

Figure 2. Scanning electron micrograph of the prepared nickel-loaded stainless steel mesh 

catalyst 

Figure 3. X-ray diffraction analysis of the prepared nickel-loaded stainless steel mesh 

catalyst 

Figure 4. TGA-TPO and DTG-TPO analysis of the deposited carbon in relation to catalyst temperature 

and different plastic to catalyst ratio. 

Figure 5. Proportions of disordered carbon and filamentous carbon produced from HDPE by pyrolysis-

catalysis with the nickel-stainless steel mesh catalyst 

Figure 6. SEM analyses of carbon deposited on the wire mesh catalyst for the pyrolysis-catalysis of 

waste high density polyethylene in relation to catalyst temperature. 

Figure 7. TEM analyses of carbon deposited on the wire mesh catalyst for the pyrolysis-catalysis of 

waste high density polyethylene at different catalyst temperatures. 

Figure 8. Raman analyses of carbon deposited on the wire mesh catalyst for the pyrolysis-catalysis of 

waste high density polyethylene in relation to temperature. 
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Figure 2. 
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Figure 6.  

 

 

  

(c) 900 ˚C + 2g                                                   (d) 900 ˚C + 4g                                                   

(a) 700 ˚C + 2g                      (b) 800 ˚C + 2g                                                   
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Figure 7. 

 

 

(a) 700 ˚C + 2g 

(b) 800 ˚C + 2g 

(b) 800 ˚C + 2g 

(c) 900 ˚C + 2g (d) 900 ˚C + 4g 
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Figure 8.  
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