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Abstract 

Tooth hypersensitivity is a growing problem affecting both the young and ageing population 

worldwide. Since an effective and permanent solution is not yet available, we propose a 

new methodology for the restoration of dental enamel using femtosecond lasers and novel 

calcium phosphate biomaterials. During this procedure the irradiated mineral transforms 

ŝŶƚŽ Ă ĚĞŶƐŝĨŝĞĚ ůĂǇĞƌ ŽĨ ĂĐŝĚ ƌĞƐŝƐƚĂŶƚ ŝƌŽŶ ĚŽƉĞĚ ɴ-pyrophosphate, bonded with the surface 

of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential 

replacement material for dental hard tissue. To this end, ǁĞ ŚĂǀĞ ƚĞƐƚĞĚ ƚŚĞ ŚĂƌĚŶĞƐƐ ŽĨ ɴ-

pyrophosphate pellets (sintered at 1000 oC) and its mineral precursor (brushite), the wear 

rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in 

ƉŽǁĚĞƌ ĨŽƌŵ͘ Iƚ ǁĂƐ ĨŽƵŶĚ ƚŚĂƚ ƚŚĞ ŚĂƌĚŶĞƐƐ ŽĨ ƚŚĞ ɴ-pyrophosphate pellets is comparable 

with that of dental enamel and significantly higher than dentine while, the brushing trials 

ƉƌŽǀĞ ƚŚĂƚ ƚŚĞ ǁĞĂƌ ƌĂƚĞ ŽĨ ɴ-pyrophosphate is much slower than that of natural enamel. 

FŝŶĂůůǇ͕ ĐǇƚŽƚŽǆŝĐŝƚǇ ĂŶĚ ŐĞŶŽƚŽǆŝĐŝƚǇ ƚĞƐƚƐ ƐƵŐŐĞƐƚ ƚŚĂƚ ŝƌŽŶ ĚŽƉĞĚ ɴ-pyrophosphate is 

cytocompatible and therefore could be used in dental applications. Taken together and with 

the previously reported results on laser irradiation of these materials we conclude that iron 

ĚŽƉĞĚ ɴ-pyrophosphate may be a promising material for restoring acid eroded and worn 

enamel.   

Keywords: calcium phosphate, enamel restoration, dental biomaterials, sintering, iron doping 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

1. Introduction 

In dentistry tooth hypersensitivity is now considered as a growing problem affecting both 

the young and ageing populations worldwide. Surveys concerning the prevalence and 

distribution of the disease suggest that almost 10-15% of the general population suffer from 

tooth hypersensitivity (Smith and Grande, 2015). This percentage is expected to 

dramatically increase in future as advances in dental care result in more people retaining 

their natural teeth for longer (and consequently providing more opportunity for problems 

associated with enamel erosion). Literature suggests that the investigation of this condition 

started almost one century ago (e.g. (Croisier and Jérôme, 2013)) however, the exact 

mechanism that causes tooth hypersensitivity is not yet clear. What is certain is that the 

aetiology of the disease is linked with exposure of the dentine tubule system (lesion 

localisation) and this is the result of enamel loss. One suggested pathway to hypersensitivity 

occurs when dentine is stimulated with a hot or cold liquid; fluid flow in the exposed tubules 

triggers a mechanoreceptor response of the fibre nerves causing pain to the patients 

(Panseri et al., 2012). The quality of life for those affected by chronic dentinal 

hypersensitivity is markedly compromised as long term relief for pain is yet to be achieved.  

The basic treatment strategies so far include; a) dentin blocking agents that occlude the 

exposed tubules (e.g. sodium chloride, hydroxyapatite based tooth pastes etc.) and b) 

desensitisation agents that reduce nerve sensitivity (Gillam et al., 2011). However, for cases 

with localised moderate or severe dental hypersensitivity immediate and long term relief is 

required and a number of additional restorative approaches may be followed. So far, 

various materials have been tested for enamel restoration. The acrylic resin is the most 

widely used. Usually, these products consist of a liquid and a powder; the powder contains 

beads of polymethyl ʹ methacrylate and a chemical initiator (which may be a peroxide). The 
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liquid phase consists of methylmethacryalte monomer and a chemical activator. Generally, 

acrylic resins are less prone to erosion compared to other synthetic dental materials (e.g. 

silicates) because they have low solubility over a wide range of pH values (McCabe and 

Walls, 2013). Such polymeric materials suffer from significant disadvantages which demand 

regular intervention; acrylic materials are particularly sensitive to volumetric shrinkage 

against the hydroxyapatite present in dental enamel. Volume reductions up to 6% have 

been observed (Kleverlaan and Feilzer, 2005) and the resulting voids become active fillers 

for bacterial colonisation. Moreover, the lower compressive strength and hardness of resins 

compared to the natural mineral of teeth, result in poor durability especially during the 

application of abrasive forces (Yan et al., 2009). An effort to overcome these disadvantages 

led to the development of a new group of composite restorative materials. These consist of 

a resin phase and a reinforcing filler. Even though the mechanical properties are improved 

compared to acrylic resins, composites still do not reach the performance levels of dental 

enamel or dentine (McCabe and Walls, 2013). The substandard properties of current 

restorative materials is an important factor for the failure of enamel restoration in the long 

term and for the lack of a permanent solution to tooth hypersensitivity. On the other hand, 

solutions such as the use of commercial toothpastes containing nanoparticles (that occlude 

exposed dentine tubules) only provide temporary symptomatic relief as the pain returns 

when use of the product is stopped.  

By recognising the outstanding issues of the current restorative materials we offer a 

radically new approach that utilises materials chemically similar to natural enamel. In our 

approach we have achieved the occlusion of the exposed dentine using femtosecond pulsed 

lasers and calcium phosphate based materials which match the thermal expansion 

coefficient and the mechanical properties of enamel and dentine. As depicted in Fig. 1 the 
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proposed strategy can be described in three steps; a) cleaning and drying of the tooth 

surface; b) use of a microfluidic based delivery system to apply fresh calcium phosphate 

biomaterial on a defective area of a tooth to produce a thin, loosely adherent film (<30 ʅm); 

c) irradiation of the film with a femtosecond pulsed laser to densify the coating and 

promote bonding with the underlying tooth surface. If the proposed treatment is applied 

before complete loss of dental enamel and the exposure of dentine tubules, it could be a 

perfect procedure not only for the treatment but also for the prevention of tooth 

hypersensitivity.  

 

Figure 1: Proposed method for enamel restoration (magnified schematic cross section of exposed dentin 

tubules). First an eroded enamel cavity is identified, then filled with a new biomaterial which is subsequently 

laser irradiated to densify and bond the new material to the existing tooth. 

Our first experimental results to support the feasibility of the aforementioned procedure 

were reported by Elmadani et al. (2012). In that work we demonstrated the sintering of 

erbium doped brushite  crystals (DCPD: CaHPO4·2H2O) on exposed dentine surfaces of 

human molars, with the use of a femtosecond laser operating at 2.5 GHz and a wavelength 

of 1520 nm. Brushite was considered as a suitable biomaterial because of its platelet ʹ like 

crystal habit which can provide large occlusion areas while minimising heat accumulation. 

More recently we have confirmed that after sintering with a femtosecond laser, brushite 

transforms into ɴ-pyrophosphate (BPP: ɴ-Ca2P2O7), which is the dominant phase in the 

irradiated area (Anastasiou et al., 2016). The localised temperature rise on the surface of 
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the coating, facilitates this phase transformation in the ultrafast irradiation regime. These 

temperatures are only superficial and confined in relatively small volume.  In this 

investigation it was also demonstrated, that the linear absorption of laser radiation is 

significantly enhanced at 1040 nm wavelength, for iron doped materials, and that doping 

with Fe3+ shifts the sintering temperature of the synthesised calcium phosphates to lower 

temperature range.  

The question now arises is whether iron doped ɴ-pyrophosphate is a suitable biomaterial for 

enamel restoration. So far, calcium phosphate biomaterials have been found suitable for 

numerous applications in dentistry. Some, include coating of metallic dental implants (Lucas 

et al., 1993), injectable cements for the repair of small defects, materials for the 

construction of bone grafts (Rungsiyanont et al., 2012) or even the addition of nanoparticles 

to toothpastes for the occlusion of dentine tubules or for dentine/enamel remineralisation 

(Tschoppe et al., 2011). Among calcium phosphate materials, hydroxyapatite is the most 

tested and documented because of its obvious similarity to the mineral component of bone 

and teeth. On the other hand, there is an insignificant amount of literature concerning the 

use of the minerals brushite and ɴ-pyrophosphate for potential applications in dentistry.  

The aim of the present work is to evaluate iron-doped brushite and its thermal 

transformation to ɴ-pyrophosphate, as potential biomaterials for acid eroded enamel 

restoration. In order to establish the suitability of ɴ-pyrophosphate for dental applications 

we have investigated the mechanical properties of the aforementioned biomaterials, the 

wear rate during brushing trials and their in vitro cytocompatibility with oral fibroblast cells. 

In order to evaluate our results we also compare the performance of our materials with 

dental enamel, dentine and a commercially available composite material, (Spectrum®).  
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2. Materials and methods 

2.1. Materials synthesis 

Brushite powder (Ca:P ratio 1:1) was produced following the synthesis procedure described 

by Elmadani et al., (2012). 200 mL of a 0.1 M Ca(NO3)2ͼ4H2O (Fisher Chemicals, CAS:13477-

34-4) ĂƋƵĞŽƵƐ ƐŽůƵƚŝŽŶ ǁĂƐ ŚĞĂƚĞĚ ƚŽ ϯϳ ȗC͕ ƚŚĞŶ Ă Ϭ͘ϭ M ;NH4)3PO4 (Acros Organics, 

CAS:7783-28-0) solution (200 mL) was added drop by drop. The final mixture was left under 

ĐŽŶƚŝŶƵŽƵƐ ƐƚŝƌƌŝŶŐ Ăƚ ϯϳ ȗC ĨŽƌ Ϯ Ś͘ TŚĞ ƐŽůƵƚŝŽŶ ǁĂƐ left to settle for 1 h to allow 

precipitation. The brushite crystals which formed were collected on a filter paper (Whatman 

ŐƌĂĚĞ ϰϰ ǁŝƚŚ ƉŽƌĞƐ ŽĨ ϭ ʅŵͿ͕ ǁĂƐŚĞĚ ƐĞǀĞƌĂů ƚŝŵĞƐ ǁŝƚŚ ĚŝƐƚŝůůĞĚ ǁĂƚĞƌ ĂŶĚ ĚƌŝĞĚ ĨŽƌ Ϯϰ Ś Ăƚ 

75 ȗC͘ Synthesis of the Fe3+ doped brushite (DCPD-Fe) followed a similar route, however 

before the addition of the (NH4)3PO4 solution, 10% mole Fe(NO3)3·9H2O (Sigma Aldrich, 

CAS:7782-61-8) was added into the calcium nitrate solution. ɴ-pyrophosphate in powder 

form was needed for the particle toxicity experiments and it is known in literature that ɴ-

pyrophosphate can be obtained by thermal treatment of brushite crystals (Webb, 1966). 

Thus, both the undoped and the Fe3+ doped materials͕ ǁĞƌĞ ƚŚĞƌŵĂůůǇ ƚƌĞĂƚĞĚ Ăƚ ϭϬϬϬ ȗC for 

5h in air atmosphere. The materials synthesized in this work are presented in Table 1.  

Table 1: Types of materials synthesized and their identity. 

Name Doping Mineral 

DCPD-UN - Un-doped brushite 

DCPD-Fe 10% Fe 10% iron doped brushite 

BPP-UN - Un-doped ɴ-pyrophosphate 

BPP-Fe 10% Fe 10% iron doped ɴpyrophosphate 

To test the optical and mechanical properties of the powder materials, pellets were pressed 

in a 13 mm diameter die. For each pellet approximately 0.25 g of the corresponding powder 

was filled inside the die before pressing with a load of 7 ton for 30 min, resulting thicknesses 

between 1 and 1.5 mm. For the ɴ-pyrophosphate samples, pellets of brushite were heated 
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at 1000 ȗC for 5 h. Heat treatment resulted in the transformation of the material and 

densification of the pellets.  

A set of bovine enamels were prepared by cutting the blocks of enamel approximately 2 mm 

in diameter and embedding them in epoxy resin before grinding the enamel surface flat 

using wet/dry paper. The flatness of the block was then characterised using non-contact 

profilometry (ProScan) until an RA maximum of 1.0 µm was achieved. Dental composite 

(Spectrum®) was pressed into a silicon mold (7 mm diameter and 1 mm thickness) and cured 

for 30 s in blue clinical light. The composite block was then ground flat and tested for 

flatness using profilometry. 

2.2. Characterisation Methods 

The crystal phase and the purity of synthesized minerals were analysed by X-Ray powder 

ĚŝĨĨƌĂĐƚŝŽŶ ƵƐŝŶŐ Ă PŚŝůŝƉƐ X͛PĞƌƚ MPD͕ ǁŝƚŚ ŵŽŶŽĐŚƌŽŵĂƚŝĐ CƵ K radiation (0.154098 nm). 

For powder diffraction, a step size of 0.065° and a Ϯɽ ƐĐĂŶŶŝŶŐ ƌĂŶŐĞ ĨƌŽŵ ϭϬΣ ƚŽ ϲϬΣ͕ was 

used at a scan speed of 0.014132° s-1 to yield a powder diffraction pattern.  

Scanning electron microscopy (SEM, a Hitachi SU8230 1-30 kV cold field emission gun) was 

used to investigate the size and shape of the powder crystals and for the identification of 

physical and chemical changes induced by laser irradiation. Since calcium phosphate 

minerals have poor electrical conductivity, prior to SEM analysis it was necessary to coat 

each sample with a 5 nm thick layer of platinum and then vacuum cleaning for 10 min 

(Quorom Technologies sputter coater and vacuum cleaner), so that the electrostatic 

charging during SEM analysis can be minimised.  

A Simultaneous Thermal Analyser (PerkinElmer®, STA 8000) with the capability of acquiring 

thermogravimetric analysis (TGA) and differential thermal analysis (DTA) was employed to 
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investigate the chemical changes (reactions and phase transformations) which take place 

during the heating of the materials. All thermal experiments were carried out over a 

temperature range fƌŽŵ ϰϬ ƚŽ ϭϱϬϬ ȗC ĂŶĚ Ăƚ Ă ŚĞĂƚŝŶŐ ƌĂƚĞ ŽĨ ϮϬ ȗC ƉĞƌ ŵŝŶ͘  

A UV-VIS spectrometer (PerkinElmer®, LAMBDA 950) equipped with a 60 mm integrating 

sphere module was used to measure the reflectivity of the materials. Measurements were 

performed on the non-irradiated pressed pellets for wavelengths between 250 and 2000 

nm.  

The pressed and sintered pellets were polished to ensure a flat smooth surface using 2000 

grit wet/dry paper followed by polishing with a paste of 5 µm aluminium hydroxide powder. 

The hardness of the pellet was them measured using a microhardness tester (Sturers 

Duramin) with a Knoop diamond and a 100 g load for 15 s. Each pellet was tested 5 times 

and an average value was then taken by defining the range of variation.  

The enamel, composite and sintered pellets were coated in two layers of nail varnish leaving 

a central strip of material exposed. The samples (pellets and enamel) were immersed under 

static conditions for 2 minutes five times daily in citric acid 0.3% (pH 3.2), the remaining 

time the samples were kept in artificial saliva (CaCO3 0.7 mM, MgCO3 0.4 mM, KH2PO4 4 

mM, KCl 31.4 mM, HEPES 20 mM) at 37 0C and pH=6.8, with a minimum of one hour 

between each exposure to acid. Overnight the samples were immersed in a storage solution 

(CaCO3 0.5 mM, MgCO3 0.4 mM, KH2PO4 0.5 mM, KCl 31.4 mM, HEPES 20 mM). The 

brushing trials followed the aforementioned daily cycle with the addition of two brushing 

steps (one at the beginning of the cycle and one before the storage of the samples). The 

duration of each step was 2 min (13 strokes), the mechanical load was 250 g while, a 

toothbrush of medium hardness was used. After 7, 14 and 21 days of the cycling regime the 
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depth of erosion was measured against the varnish protected areas using noncontact 

surface profilometry (Scatron®). 

2.3 Cytotoxicity and genotoxicity testing 

2.3.1. Cytotoxicity: MTT assay 

Normal oral fibroblasts were cultured in 12ml of complete Dulbecco's Modified Eagle 

Medium (DMEM; Sigma) in 75cm2 culture flasks (Fisher) at 37oC, 5% (v/v) CO2. Complete 

DMEM consisted of high glucose DMEM supplemented with 10% (v/v) foetal calf serum 

(FCS), 1% (v/v) penicillin/streptomycin solution (10000 units penicillin and 10 mg 

streptomycin/ml; Sigma). These cells were routinely split every three days at a ratio of 1:8. 

To achieve this, cells were washed twice with Dulbecco's phosphate-buffered saline (DPBS) 

to remove all traces of serum before adding 1ml of 1X Trypsin (Sigma) to each flask. Cell 

were then incubated at 37 oC for 2 to 3 min approximately. Once the trypsinisation process 

was completed, DMEM containing serum was added to the cell suspension to inhibit further 

tryptic activity which may damage cells. Following this, cells were pelleted, re-suspended in 

complete DMEM and transferred to new 75 cm2 culture flasks. 

Effects of the brushite and ɴ-pyrophosphate on the viability of normal oral fibroblasts were 

evaluated using the MTT assay (thiazolyl blue tetrazolium bromide. Cells were seeded in 96-

well plates (Fisher) at a density of 10,000 cells/well in DMEM with 10% (v/v) foetal calf 

serum (FCS), 1% (v/v) penicillin/streptomycin solution (10000 units penicillin and 10 mg 

streptomycin/ml; Sigma) and allowed to attach overnight at 37 °C with 5% CO2. 

 After removing the culture medium by two washes with phosphate buffered saline (PBS), 

the toxicity assay was started with 200 ʅl serum-free DMEM with either undoped or iron 

doped materials (0ʹϭϬϬϬ ʅŐ/ml) for 24 hours. The MTT assay was performed according to 

ƚŚĞ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ƉƌŽƚŽĐŽů ;SŝŐŵĂͿ͘ OƉƚŝĐĂů ĂďƐŽƌďĂŶĐĞ ǁĂƐ ƌĞĂĚ ƵƐŝŶŐ Ă LĂďƐǇƐƚĞŵƐ ŝEMS 
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Reader MF at 540 nm. Experiments were carried out three times independently for each 

material. The results are expressed as mean percentage viability (±SEM) compared with 

untreated controls (analysed by ANOVA).  

2.3.2. Genotoxicity 

Normal oral fibroblasts (cultured as described in section 2.3.1) were plated at a density of 

100,000 cells/well in 24-well plates (Fisher) in DMEM with 10% (v/v) foetal calf serum (FCS), 

1% (v/v) penicillin/streptomycin solution (10000 units penicillin and 10 mg 

streptomycin/mL; Sigma) and allowed to attach overnight at 37 °C with 5% CO2. After 

removing the culture medium by two washes with PBS, cells were incubated with 0ʹ1000 

ʅŐͬŵů of either un-doped or iron doped materials in serum free DMEM for 24 h at 37 °C 

with 5% CO2. The cells were pelleted by centrifugation at 1000 rpm for 5 min and 

resuspended in serum-ĨƌĞĞ DMEM͘ A ϭϬϬ ʅl aliquot of this suspension was mixed with 200 

ʅl of 1% (w/v) low-melting-point agarose in PBS solution and kept at 37 ΣC ƵŶƚŝů ƵƐĞ͘ ϭϬϬ ʅl 

was placed onto duplicate microscope slides (Thermo Scientific) pre-coated with 1% (w/v) 

agarose and covered with a coverslip (Scientific Laboratory Supplies Ltd.). Slides were placed 

on ice for no more than 20 s to allow the agarose to gel, after which the coverslips were 

removed. The slides were treated with a detergent lysis solution (2.5 M NaCl, 1 mM EDTA, 

10 mM Tris, 10% DMSO, 1% Triton X-100 at pH 10) for 1 hour and placed in running buffer 

(300 mM NaOH, 1 mM EDTA at pH 13) at 4°C for 40 min to allow DNA unwinding, followed 

by electrophoresis at a constant voltage of 23 V for 20 min. Slides were finally removed, 

neutralised by adding 400 mM Tris at pH 7.5 for 5 min, gently dried and stained with 30 ʅL 

ethidium bromide (25 ʅŐͬŵl). The stained slides were stored in damp conditions at 4°C and 

scored within 2 days. The slides were viewed using an Olympus BX41 microscope and 

digitally analysed using Komet 5.5 software. Cells were scored by evaluating 50 cells per 
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slide, with duplicate slides for every sample. Experiments were carried out three times 

independently for each of the materials. The results are expressed as mean percentage tail 

DNA (±SEM, analysed by ANOVA). 0 µg/ml represents the negative controls. 

2.3.3. Cell preparation for transmission electron microscopy (TEM) imaging 

Normal oral fibroblasts (cultured as described in section 2.3.1) were plated at a density of 

100,000 cells/well in 24-well plates (Fisher) in DMEM with 10% (v/v) foetal calf serum (FCS), 

1% (v/v) penicillin/streptomycin solution (10000 units penicillin and 10 mg streptomycin/ml; 

Sigma) and allowed to attach overnight at 37 °C with 5% CO2.  

Following seeding of the cells, culture medium was removed and cells washed twice with 

PBS. Cells were then incubated with 0ʹϭϬϬϬ ʅŐͬŵů of either undoped or iron doped 

materials in serum free DMEM for 24 h at 37°C with 5% CO2. Cells were then pelleted, 

washed with pre-warmed PBS and fixed with 100 mM phosphate buffered with 2.5% EM 

grade Glutaraldehyde for 15 min at 37 ȗC͘ Cells were pelleted, fixative was removed, pellet 

resuspended and fresh 2.5% Glutaraldehyde added. Cells were incubated at 4 oC for 4 hours 

to allow the fixation process to take place. Cells were then pelleted, washed with fresh 

maintenance solution and resuspended. To post fix, 1% osmium tetroxide fixative was 

added (Millonigs 100mM phosphate buffer, pH 7.3) and incubated for 1.5 h in the dark at 

room temperature. Cells were once again pelleted and from this step onwards, each 

solution was pipetted on and aspirated off, being careful not to resuspend the cell pellet. 

Four dehydration steps were carried out: 10% ethanol for 10 min; 50% ethanol for 15 min; 

70% ethanol for 15 min; and 100% ethanol for 10 min. Tubes were sealed with parafilm and 

stored at 4 ȗC ŽǀĞƌŶŝŐŚƚ͘ 

In order to embed the cells in resin (Agar Araldite CY212 Epoxy), each sample was washed 

with propylene oxide twice for 20 min, then incubated in propylene oxide and araldite (1:1) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

for 16 h, followed by transfer to propylene oxide and araldite (1:3) for several hours and 

finally transferred into pure araldite for 8 h. The cells were transferred to embedding 

moulds containing fresh araldite, which was then polymerised for 16 h at 60 °C. Ultrathin 

sections of 80-100 nm thickness were cut using an ultramicrotome (Reichert-Jung, Ultracut-

E) with a diamond knife. Sections were then mounted on continuous carbon support grids 

(Agar Scientific Ltd), sputtered coated with ~ 10 nm of amorphous carbon (Quorum 

Technologies coater) and imaged using a Tecnai F20 FEG-TEM operated at 200 kV and fitted 

with a Gatan Orius CCD camera and Oxford Instruments 80 mm2 Xmax SD X-ray detector 

running Aztec processing software. 

3. Results 

3.1. Characterisation of the synthesised materials 

X-Ray diffraction patterns for the initial, laser irradiated and heat treated materials are 

presented in Fig 2 for the DCPD-UN (Fig. 2a) and the DCPD-Fe (Fig. 2b) brushite. The 

purpose of this comparison is to demonstrate that the changes arisen to the mineral after 

irradiation with a femtosecond laser (with the parameters described in Anastasiou et al., 

(2016)) are comparable with the mineral after thermal treatment for 5 h at 1000 ȗC. The 

starting material is identified as pure brushite since all the significant peaks coincide with 

the peaks of the reference pattern JCPDS-01-074-6549 (ͻ for brushite). After laser 

irradiation is ɴ-pyrophosphate which dominates at the surface of the samples (as discussed 

in Anastasiou et al., 2016). The majority of the peaks are assigned to the ɴ-pyrophosphate 

reference pattern (JCPDS-04-009-8733; ප ĨŽƌ ɴ-pyrophosphate), except the residual brushite 

(0 2 0) and (0 4 0) peaks which are still present at Ϯɽсϭϭ͘ϱϲȗ ĂŶĚ Ϯϯ͘ϱϭȗ, respectively. Given 

that the penetration depth of the X-ray beam ranges from 20 to ϭϮϬ ʅŵ ;ĚĞƉĞŶĚŝŶŐ ŽŶ ƚŚĞ 

BƌĂŐŐ ĂŶŐůĞ͕ ϮɽͿ and that the depth of transformation due to laser energy has been shown 
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to be between 40-60 ʅm (Anastasiou et al., 2016), it is likely that while there is complete 

transformation of the material at the surface of the pellet, the underlying mineral might 

remain unaltered (i.e. brushite). As it is evident from the X-Ray diffraction patterns, heat 

treatment of brushite at ϭϬϬϬ ȗC ƌĞƐƵůƚƐ into a complete transformation of the mineral to ɴ-

pyrophosphate (all peaks have been assigned to the JCPDS-04-009-8733 reference pattern) 

and all the peaks match with those found for the laser irradiated materials (except the two 

residual brushite peaks identified in the laser irradiated samples). 

 

 

Figure 2: X-Ray diffraction patterns for the starting, irradiated and heated powders; a) for the undoped (DCPD-
UN) material; b) for the 10% Fe-doped (DCPD-Fe) material. Brushite and ɴ-pyrophosphate reflections are 
ůĂďĞůůĞĚ ǁŝƚŚ ͻ ĂŶĚ ප ƌĞƐƉĞĐƚŝǀĞůǇ͘ Only the major peaks of these two phases are labelled.  

SEM images of the initial, heat treated and laser irradiated materials are presented in Fig. 3 

for the un-doped and Fe3+ doped samples. From Fig. 3a and Fig. 3b it is evident that the 
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original brushite crystals for both minerals have comparable morphology. Comparing the 

heated un-doped brushite (Fig. 3c) with heated Fe3+ doped brushite (Fig. 3d), it is apparent 

that both have transformed morphology (to -calcium pyrophosphate; Fig 2). However, 

outlines of the original brushite platelets (now porous) are still present in the images of the 

heat treated un-doped powder (Fig. 3c). On the other hand, the doped material has 

transformed and partially densified without the formation of significant surface pores. 

Similarly to these findings the laser irradiated DCPD-UN pellet surface retains the original 

brushite crystal forms however, micro-porosity and micro cracks are present due to water 

removal during the brushite to pyrophosphate transformation (Fig 3e and as discussed in 

Anastasiou et al., 2016). At the same time the laser irradiated DCPD-Fe pellet (Fig. 3d) has 

sintered and remineralised without the formation of micropores and significantly lower 

cracking, similarly to the heated DCPD-Fe powders (Fig 3d).  

 

  

  

  

a) b) 

d) c) 

e) f) 
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Figure 3: SEM images of the initial and the heated materials; a) initial un-doped brushite crystals; b) initial Fe-
doped brushite crystals; c) un-doped brushite powder heated at 1000 C exhibiting transformation with 
retention of some original plates containing considerable microporosity ; d) Fe-doped brushite powder heated 
at 1000 C exhibiting both morphology transformation and some densification without significant surface 
microporosity; e) surface image of the laser irradiated un-doped brushite pellet showing microporosity and 
cracks on the relics of the original powder morphology; f) surface image of the laser irradiated Fe-doped 
brushite pellet showing densification without large-scale microporosity or cracks.  

The different behaviour upon heating (and laser irradiation) of the doped and un-doped 

materials can be attributed to the phase transformation temperatures of each one of these 

materials. The transformation of pure brushite to ɴ-pyrophosphate takes place Ăƚ ϴϭϯ ȗC 

(Anastasiou et al., 2016) and with further heating to ϭϮϵϯ ȗC, tŚĞ ɴ form changes to ɲ-

Ca2P2O7 which ŝƐ ŶŽƚ ǀĞƌǇ ƐƚĂďůĞ ĂŶĚ ŝŶ ŵĂŶǇ ĐĂƐĞƐ ƚƌĂŶƐĨŽƌŵƐ ďĂĐŬ ƚŽ ƚŚĞ ɴ ĨŽƌŵ ĚƵƌŝŶŐ 

cooling (Bian et al., 2004). TŚĞ ŵĞůƚŝŶŐ ƉŽŝŶƚ ŝƐ ŝĚĞŶƚŝĨŝĞĚ Ăƚ ϭϯϴϬ ȗC. These transformation 

peaks are shifted to lower temperatures for the Fe3+ doped material as shown in Fig. 4. 

Specifically, the ɴ to ɲ-Ca2P2O7 transformation now occurs at 1012 ȗC, the melting point has 

been reduced to 1272 ȗC while, during cooling the ɲ to ɴ-Ca2P2O7 transformation takes place 

at 855 ȗC. From these results it is easy to understand that although after heat treatment at 

1000 ȗC the final product of the two materials (Fe-DCPD and DCPD) is the same (ɴ-

pyrophosphate as it was identified by X-ray diffraction in Fig. 4) the pathway to this is 

different for each case.  
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Figure 4: Thermal analysis of iron doped brushite (DPCD-Fe) and identification of the phase transformation 
temperatures ĨŽƌ ŚĞĂƚŝŶŐͬĐŽŽůŝŶŐ ƌĂƚĞ ŽĨ ϮϬ ȗCͬŵŝŶ (the DSC curve is shown in red for heating and blue for 
cooling and values reported on the LH y-axis while the TGA curve is shown with the dashed line and values 
reported on the RH y-axis). The key transformation temperatures are marked. 

Optical reflectivity measurements for the DCPD-UN, DCPD-Fe samples and dental enamel 

are presented in Fig. 5. As expected, doping with Fe3+-ions increases photon optical 

absorption of brushite in the 800 -1050 nm regime. At the 1040 nm fs-pulsed laser 

irradiation wavelength, reflectivity for un-doped brushite is 83%, which drops to around 

72% for Fe3+-doped brushite while, reflectivity of dental enamel for the same wavelength is 

86%.  

 

 
Figure 5: Reflectivity measurements for brushite (DCPD-UN), Fe

3+
-doped brushite (DCPD-Fe) and dental 

enamel show that Fe
3+-

doping increases the absorption at 1045 nm wavelength. 

3.2. Mechanical properties and brushing trials  

The hardnesses of the undoped pyrophosphate (BPP-Un) and Fe doped (BPP-Fe) 

pyrophosphate pellets are presented and compared with the hardnesses of natural enamel, 

dentine and a commercial composite polymer in Fig 6. The hardness of the iron doped pellet 

is significantly higher than that of the undoped pellet (265 HK for BBP-Fe and 32.5 HK for 

BBP-Un), is similar to that of natural enamel (298 HK) and is much harder than the currently 

available restorative materials (hardness of the composite is 33 HK).  
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Figure 6: Hardness of iron-doped (BBP-Fe) and un-doped (BPP-Un) ɴ-pyrophosphate thermally sintered pellets 
and comparison with enamel, dentine and a commercial composite material (Spectrum ®).  

Before the simulated tooth brushing trials all pellets were tested for mass loss when 

immersed in the citric acid solution over a two week pH cycle without applying any 

mechanical load. The DCPD-UN, DCPD-Fe and BPP-Un pellets fell apart after 3 days whereas, 

the BPP-Fe pellet remained intact over the full cycle. For this reason BPP-Fe was the only 

material tested during the extended brushing trials.  

The results of the 3 week simulated tooth brushing trials are presented in Fig. 7. The depth 

of erosion for the natural enamel is measured to be around 4 ʅm after the first week of the 

testing, increasing to 12 ʅm after the second week and reaches 17.54 ʅm at the end of the 

third (Fig. 7a). The enamel sample show significant erosion and mass loss in both SEM and 

profilometry images of the brushed surface (Fig 7b and Fig. 7d respectively). On the other 

hand limited erosion (0.6 ʅm) can be detected on the surface of the BPP-Fe pellet (Fig. 7a). 

After SEM imaging (Fig. 7b and Fig. 7c) and profilometry scanning (Fig. 7e) we were able to 

identify only some traces of erosion on the BPP-Fe pellet. 
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Figure 7: Comparison of the measured erosion depth between natural enamel and an Fe-doped ɴ-
pyrophosphate pellet after a three week simulated tooth brushing trial; a) erosion during three weeks of 
brushing trials (error bars of 5% represent the maximum deviation between the three replicates of each 
sample); b) SEM image of dental enamel after the second week of the trial showing a clearly eroded brushing 
track; c) SEM image of BPP-Fe pellet after the second week of the trial showing no significant erosion along the 
brushing track; d) profilometry of dental enamel at the end of the second week of the trial indicating the depth 
of materials loss ; e) proflilometry of the BPP-Fe pellet at the same time point indicating minimal material loss . 

3.3. Cytotoxicity and genotoxicity testing  

In this study normal oral fibroblasts were exposed to a range of concentrations of either 

undoped or iron doped ɴ-pyrophosphate particles. Potential cytotoxicity and genotoxicity 
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was assessed by MTT and comet assays, respectively. Figures 8a and 8b show a statistically 

significant reduction in cell viability compared to controls only in the presence of undoped 

materials at exposure levels of 100 and 1000 µg/ml for undoped brushite (DCPD-Un) and 

from 1 µg/ml for undoped ɴ-pyrophosphate (BPP-Un). No DNA damage was detected by the 

comet assay in any samples as shown in Fig. 9a and 9b. 

 

Figure 8: Cell viability (by MTT assay) measured in normal oral fibroblasts at 24 h of treatment with; a) 
undoped materials (brushite and b-pyrophashate); b) iron doped materials. Results are percentage values 
(Mean ± SEM) where 100% corresponds to control values (untreated cells). *Significantly different from 
control values (p<0.05) by one-ǁĂǇ ANOVA ĨŽůůŽǁĞĚ ďǇ DƵŶŶĞƚƚ͛Ɛ ŵƵůƚŝƉůĞ ĐŽŵƉĂƌŝƐŽŶ ƚĞƐƚ͘ ंSignificantly 
different from ɴ-pyrophosphate values (p<0.05) by 2 sample t-test. Significant responses are seen at 100 and 
1000 ʅg/mL and above 1 ʅg/mL for undoped and iron doped brushite respectively. 

 

Figure 9: Genotoxicity (by comet assay) measured in normal oral fibroblasts at 24 h of treatment with; a) 
undoped materials; b) iron doped materials. Results are percentage values (Mean ± SEM). No significant 
responses are observed at any exposure levels tested. 

3.4. Particle uptake by the fibroblast cells 

Transmission electron microscopy imaging was carried out in order to assess whether 

normal oral fibroblasts do uptake brushite or ɴ-pyrophosphate particles or particle 
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fragments (100 ʅg/ml). Evidence of cellular uptake of these particles is shown in Fig. 10. 

Clearly, particle fragments are taken up without significant impact on the cellular 

ultrastructure. The calcium phosphate nature of the particles was confirmed by spot Energy 

Dispersive X-ray EDX (Fig. 10). 

 

  

Figure 10: TEM imaging and analysis of normal oral fibroblasts treated with calcium phosphate materials; 
Contrast-inverted scanning TEM image of a cell followed by higher magnification image and EDX spectrum 
ĨƌŽŵ ƚŚĞ ĂƌĞĂ ŝŶĚŝĐĂƚĞĚ ĂͿ UŶĚŽƉĞĚ ďƌƵƐŚŝƚĞ͖ ďͿ UŶĚŽƉĞĚ ɴ-pyrophosphate; c) Iron doped brushite; d) Iron 
ĚŽƉĞĚ ɴ-pyrophosphate. 
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4. Discussion 

Although sintering of un-doped (DCPD-UN) and 10% Fe-doped (DCPD-Fe) brushite to 1000 

ȗC ƌĞƐƵůƚs in both cases in the transformation to ɴ-pyrophosphate (Fig. 11) the micro- 

structure and the mechanical properties of the two materials are completely different. 

When the DPCD-UN sample ŝƐ ŚĞĂƚĞĚ ƚŽ ϭϬϬϬ ȗC ƚŚĞ ɶ- Ca2P2O7 transforms to ɴ- Ca2P2O7 at 

ϴϭϯ ȗC ĂŶĚ ƚŚŝƐ ŝƐ ƚŚĞ ĨŝŶĂů ƉƌŽĚƵĐƚ of the heat treatment. On the other hand, when the 

DCPD-Fe sample ŝƐ ŚĞĂƚĞĚ Ăƚ ϭϬϬϬ ȗC ƚŚĞ ɶ- to ɴ- ƚƌĂŶƐĨŽƌŵĂƚŝŽŶ ƚĂŬĞƐ ƉůĂĐĞ Ăƚ ϳϮϬ ȗC ĂŶĚ Ăƚ 

ϭϬϬϬ ȗC the formation of the unstable ɲ-pyrophosphate occurs (the transformation peak has 

ďĞĞŶ ŝĚĞŶƚŝĨŝĞĚ Ăƚ ϭϬϭϮ ȗC ďƵƚ ĂƐ ƉƌĞƐĞŶƚĞĚ ŝn Fig. 4 ƚŚĞ ƉƌŽĐĞƐƐ ďĞŐŝŶƐ ďĞůŽǁ ϭϬϬϬ ȗCͿ. The 

latter phase transforms back to ɴ-Ca2P2O7 during cooling Ăƚ Ă ƚĞŵƉĞƌĂƚƵƌĞ ŽĨ ϴϯϯ ȗC͘ Thus 

although the final product after heating is the same for the DCPD-Un and Fe materials, the 

extra two transformation steps observed at ϭϬϬϬ ȗC for the DCPD-Fe result in its total 

remineralisation to a different particle morphology and even produces particle sintering and 

densification. These results are consistent with the reported transformations of the two 

materials after laser irradiation (Anastasiou et al., 2016). The only difference between heat 

treatment and laser irradiation is that in the first case the transformations occur in the bulk 

of the material while in the second case we have only alterations of the surface (up to 40-60 

ʅm deep). 

The benefits of doping with iron are not restricted only to the enhancement of the sintering 

process. Iron increases the optical absorption of the minerals at 1040 nm wavelength in 

comparison to the absorption of dental enamel (Fig 6). This is crucial for the proposed laser 

treatment procedure since any thermal damage to the underlying hard tissues would be 

minimised. Generally, the energy absorption rate which transforms to heat (S) during the 
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irradiation of the samples is a function of the laser energy fluence (J), the pulse duration (tp), 

ƚŚĞ ƌĂĚŝĂƚŝŽŶ ƉĞŶĞƚƌĂƚŝŽŶ ĚĞƉƚŚ ;ɷͿ ĂŶĚ ƚŚĞ ŵĂƚĞƌŝĂů͛Ɛ ƌĞĨůĞĐƚŝǀŝƚǇ ;RͿ (eq. 1) (Tzou and Chiu, 

2001). If we expose DCPD-Fe and dental enamel to the same laser beam (with fixed J, tp and 

ɷ) reflectivity is the only parameter that differs. Utilising eq. 1 for the two cases it can be 

shown that the energy absorption rate is 2 times higher for the DCPD-Fe, leading to higher 

surface temperatures than for enamel and this way we can control and minimise any 

thermal damage induced to the tooth.  

ܵ ൌ ͲǤͻͶ ሺͳ െ ܴሻݐܬ௣ߜ     ሺെ ߜݔ െ ͳǤͻͻʹ൫ݐ െ ௣ݐ௣൯ݐʹ ሻ eq. 1 

The hardness of iron doped pyrophosphate pellets are found to be similar to natural enamel 

and much harder than un-doped pyrophosphate pellets produced with the same thermal 

treatment (Fig 6). As discussed before, sintering and densification are more pronounced by 

the presence of iron and that results in the significant difference in the hardness of the two 

materials.  The great difference (order of magnitude) in the erosion depth between the 

enamel and the iron doped pyrophosphate can be attributed to the low solubility of 

pyrophosphate in comparison to natural enamel. It is known that hydroxyapatite of enamel, 

due to carbonate substitutions in the mineral crystal lattice, is more acid soluble and that is 

significant cause of enamel wear in the first place (Lussi, 2006). 

Exposure of oral fibroblasts in vitro to increasing concentrations of brushite and ɴ-

pyrophosphate particles (undoped and iron doped) only proved to affect cell viability at 

higher concentrations of undoped materials (Fig 8) and did not cause DNA damage (Fig 9). 

Iron doped ɴ-pyrophosphate produced the least response of the cells to particle exposure 

(despite clear evidence of particle uptake; Fig 10) and so could be considered the most 

cytocompatible of all the materials tested. In the recent work of Manchon et al. (2015), ɴ-
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tricalcium phosphate powders doped with different concentrations of iron (from 10 to 30% 

mol) were tested for cytocompatibility. They also report the absence of any toxic effect of 

iron doped ceramics on the osteoblast-like cell line MG-63. Finally, the uptake of the calcium 

phosphate particles or particle fragments by the cells is a normal phenomenon since it is 

known that fibroblasts are involved in the degradation process of minerals through 

phagocytic mechanisms (Sheikh et al., 2015). 

Overall, this work demonstrates the suitability of the iron doped minerals for the restoration 

of dental enamel through the procedure described in Fig. 1. Moreover, in recent 

experiments we observed that iron doped material (DCPD-Fe) can be successfully laser 

sintered on enamel surface (Fig. 11). After irradiation with a 1 GHz femtosecond laser (1040 

nm wavelength and average power of 0.4 W) the produced BPP-Fe layer is strongly attached 

on dental enamel while in some cases the interface between enamel and the new 

biomaterial is hard to be distinguished (Fig. 11).  

Enamel Sintered layer Interface EDX map for Fe 

   

Figure 11: Sintered Fe-doped pyrophosphate on enamel surface, magnified image of the interface and EDX 
map for identifying Fe. Experiments have been conducted with 1 GHz femtosecond laser, emitting at 1040 nm. 
The irradiation parameters are the same as described in Anastasiou et. al., (2016). 

5. Conclusions 

The aim of this work was the evaluation of iron doped ɴ-pyrophosphate as a potential 

biomaterial for dental applications and specifically for the restoration of dental enamel. The 

mechanical properties and cytocompatibility of this material were tested and compared to 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

the properties of dental enamel, dentine and a commercial composite for enamel 

restoration. The most important outcomes of this research could be concluded as the 

following: 

 We demonstrate that doping brushite with 10 mol% iron (Fe3+), can improve thermal 

and laser sintering at 1000 oC.  

 IƌŽŶ ĚŽƉĞĚ ɴ-pyrophosphate pellets sintered at 1000 ȗC have the same hardness as 

natural enamel and are considerably harder than dentine and a commercial 

restorative material (composite). 

 We show that iƌŽŶ ĚŽƉĞĚ ɴ-pyrophosphate pellets sintered at 1000 oC can perform 

better than natural enamel during simulated tooth-brushing trials s. There were no 

signs of erosion or mass loss on the tested iƌŽŶ ĚŽƉĞĚ ɴ-pyrophosphate pellet. This is 

attributed to the higher stability of the pyrophosphate when exposed to pHs lower 

than 5. 

 Cytotoxicity and genotoxicity testing suggest that iron doped ɴ-pyrophosphate is 

cytocompatible and therefore could be used in dental applications. 

With the results of this work we demonstrate that ɴ-pyrophosphate is a promising material 

for dental applications and specifically for enamel restoration. Its stability at low pH and the 

slow wear rate indicate that it can restore and even enhance natural enamel. Going forward 

we will next assess the strength and integrity of a ɴ-pyrophosphate layer laser irradiated 

onto enamel.  

Acknowledgments 

The authors acknowledge support from the sponsors of this work; the EPSRC LUMIN (EP/K020234/1) and EU-

Marie-Curie-IAPP LUSTRE (324538) projects. Also authors would like to acknowledge Dr Helen Colley for 

supplying the oral fibroblast cell lines, Mr. Mohammed Javed for the laboratory support and Mr. John 

Harrington and Mr. Stuart Micklethwaite for SEM support. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

References 

ANASTASIOU, A. D., THOMSON, C. L., HUSSAIN, S. A., EDWARDS, T. J., STRAFFORD, S., MALINOWSKI, 
M., MATHIESON, R., BROWN, C. T. A., BROWN, A. P., DUGGAL, M. S. & JHA, A. 2016. 
Sintering of calcium phosphates with a femtosecond pulsed laser for hard tissue 
engineering. Materials & Design. 

BIAN, J.-J., KIM, D.-W. & HONG, K.-S. 2004. Phase transformation and sintering behavior of Ca2P2O7. 
Materials Letters, 58, 347-351. 

CROISIER, F. & JÉRÔME, C. 2013. Chitosan-based biomaterials for tissue engineering. European 

Polymer Journal, 49, 780-792. 

ELMADANI, E., JHA, A., PERALI, T., JAPPY, C., WALSH, D., LEBURN, C., BROWN, T., SIBBETT, W., 
DUGGAL, M. & TOUMBA, J. 2012. Characterization of Rare-Earth Oxide Photoactivated 
Calcium Phosphate Minerals for Resurfacing Teeth. Journal of the American Ceramic Society, 
95, 2716-2724. 

KLEVERLAAN, C. J. & FEILZER, A. J. 2005. Polymerization shrinkage and contraction stress of dental 
resin composites. Dental Materials, 21, 1150-1157. 

LUCAS, L. C., LACEFIELD, W. R., ONG, J. L. & WHITEHEAD, R. Y. 1993. Calcium phosphate coatings for 
medical and dental implants. Colloids and Surfaces A: Physicochemical and Engineering 

Aspects, 77, 141-147. 

LUSSI, A. 2006. Dental Erosion: From Diagnosis to Therapy, Karger. 

MANCHON, A., HAMDAN ALKHRAISAT, M., RUEDA-RODRIGUEZ, C., PRADOS-FRUTOS, J. C., TORRES, 
J., LUCAS-APARICIO, J., EWALD, A., GBURECK, U. & LOPEZ-CABARCOS, E. 2015. A new iron 
calcium phosphate material to improve the osteoconductive properties of a biodegradable 
ceramic: a study in rabbit calvaria. Biomed Mater, 10, 055012. 

MCCABE, J. F. & WALLS, A. W. G. 2013. Applied Dental Materials, Wiley. 

PANSERI, S., CUNHA, C., D'ALESSANDRO, T., SANDRI, M., RUSSO, A., GIAVARESI, G., MARCACCI, M., 
HUNG, C. T. & TAMPIERI, A. 2012. Magnetic Hydroxyapatite Bone Substitutes to Enhance 
Tissue Regeneration: Evaluation In Vitro Using Osteoblast-Like Cells and In Vivo in a Bone 
Defect. PLoS ONE, 7, e38710. 

RUNGSIYANONT, S., DHANESUAN, N., SWASDISON, S. & KASUGAI, S. 2012. Evaluation of biomimetic 
scaffold of gelatinʹhydroxyapatite crosslink as a novel scaffold for tissue engineering: 
Biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, 
and primary bone cells. Journal of Biomaterials Applications, 27, 47-54. 

SHEIKH, Z., ABDALLAH, M.-N., HANAFI, A.-A., MISBAHUDDIN, S., RASHID, H. & GLOGAUER, M. 2015. 
Mechanisms of in Vivo degradation and resorption of calcium phosphate based biomaterials. 
Materials, 8, 7913-7925. 

SMITH, B. D. & GRANDE, D. A. 2015. The current state of scaffolds for musculoskeletal regenerative 
applications. Nat Rev Rheumatol, 11, 213-222. 

TSCHOPPE, P., ZANDIM, D. L., MARTUS, P. & KIELBASSA, A. M. 2011. Enamel and dentine 
remineralization by nano-hydroxyapatite toothpastes. Journal of Dentistry, 39, 430-437. 

TZOU, D. Y. & CHIU, K. S. 2001. Temperature-dependent thermal lagging in ultrafast laser heating. 
International Journal of Heat and Mass Transfer, 44, 1725-1734. 

WEBB, N. 1966. The crystal structure of [beta]-Ca2P2O7. Acta Crystallographica, 21, 942-948. 

YAN, L., CHAI TECK, N. & CHUI PING, O. 2009. Iron(III) and manganese(II) substituted hydroxyapatite 
nanoparticles: Characterization and cytotoxicity analysis. Journal of Physics: Conference 

Series, 187, 012024. 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

Highlights 

 A novel procedure for the restoration of dental enamel is introduced 

 Iron doped ȕ-pyrophosphate is evaluated as potential biomaterial for enamel 

restoration 

 Iron doped ȕ-pyrophosphate found to have the same hardness as natural 

enamel and dramatically lower wear rate 

 Cytotoxicity and genotoxicity tests suggest that iron doped ȕ-pyrophosphate is 

cytocompatible and safe for dental applications 
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