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Artemisinin, a sesquiterpene lactone produced by Artemisia annua
glandular secretory trichomes, is the active ingredient in the most
effective treatment for malaria currently available. We identified
a mutation that disrupts the CYP71AV1 enzyme, responsible for
a series of oxidation reactions in the artemisinin biosynthetic
pathway. Detailed metabolic studies of cyp71av1-1 revealed that
the consequence of blocking the artemisinin biosynthetic path-
way is the redirection of sesquiterpene metabolism to a novel
sesquiterpene epoxide, which we designate arteannuin X. This
sesquiterpene approaches half the concentration observed for
artemisinin in wild type plants, demonstrating high-flux plasticity
in A. annua glandular trichomes and their potential as factories for
the production of novel alternate sesquiterpenes at commercially
viable levels. Detailed metabolite profiling of leaf maturation
time-series and precursor-feeding experiments revealed that non-
enzymatic conversion steps are central to both artemisinin and
arteannuin X biosynthesis. In particular, feeding studies using
13C-labelled dihydroartemisinic acid (DHAA) provided strong evi-
dence that the final steps in the synthesis of artemisinin are non-
enzymatic in vivo. Our findings also suggest that the specialised
sub-apical cavity of glandular secretory trichomes functions as a lo-
cation for both the chemical conversion and storage of phytotoxic
compounds, including artemisinin. We conclude that metabolic
engineering to produce high yields of novel secondary compounds
such as sesquiterpenes is feasible in complex glandular trichomes.
Such systems offer advantages over single cell microbial hosts for
production of toxic natural products.

Artemisinin | p450 oxidase | terpenoid | sesquiterpene | Artemisia
annua

Introduction

The sesquiterpene lactone, artemisinin is the active ingredient in
artemisinin-combination therapies - the most effective treatment
for malaria currently available. The production of artemisinin
occurs in specialized 10-cell biseriate glandular trichomes present
on the leaves, stems and inflorescences of Artemisia annua (1-
3). Artemisinin is phytotoxic (4) and is believed to accumulate
in the sub-apical extracellular cavity of glandular trichomes (2).
This ability of trichomes to transfer compounds into extracellular
cavities (5, 6) overcomes the problem of cellular toxicity. Con-
veniently, natural products located in these cavities are readily
extractable. This is exemplified by artemisinin, which is extracted
on a commercial scale by submerging intact dried A. annua leaf
material in organic solvent with the active ingredient being di-
rectly crystallised from the condensed organic fraction (7). There
has been much interest in determining the steps involved in the
biosynthesis of artemisinin in recent years, largely driven by ef-
forts to produce this compound through a completely biosynthetic
microbial-based fermentation route (8, 9). Presently microbial
production is at best semi-synthetic, terminating at artemisinic
acid (AA), which must then be extracted from culture and chem-
ically converted to artemisinin using photooxidation (8, 10). The

lack of a low cost, scalable conversion process is considered to
be a major factor in the failure so far of the semi-synthetic route
to sustainably impact the market making it uncompetitive with
plant-based production (11)

Although the enzymatic steps involved in production of the
non-phytotoxic precursors amorpha-4,11-diene (A-4,11-D) and
dihydroartemisinic acid (DHAA) have been elucidated (12-15)
and the associated genes have been shown to be highly expressed
in both the apical and sub-apical cells of the glandular secretory
trichomes (3, 16), the final steps in the conversion of DHAA
to artemisinin are considered to be non-enzymatic and may
be extracellular (17, 18). Therefore, microbial-based “complete”
synthetic biology routes to artemisinin may never be achiev-
able. Meanwhile, modern molecular breeding has succeeded in
improving A. annua (19), creating hybrids reaching artemisinin
yields of 1.4% dry leaf biomass in commercial field trials (20)
(http://www.artemisiaf1seed.org/).

The glandular secretory trichomes of A. annua produce al-
most six hundred secondary or specialised metabolites many of
which are terpenoids (21). These include a significant number
of terpene allylic hydroperoxides and endoperoxides (21). This
latter class, of which artemisinin is a member, are typically bioac-
tive and therefore potential targets for development as pharma-
ceuticals (22). Consistent with their phytochemical complexity,
it is known that glandular secretory trichomes express multi-
ple members of gene families, encoding enzymes of specialised
metabolism including terpene synthases and cytochrome P450
oxidases (16, 19, 23). Many of these enzymes are considered to

Significance

The anti-malarial, artemisinin, is a sesquiterpene lactone pro-
duced by glandular secretory trichomes on the leaves of
Artemisia annua. Using a mutant impaired in artemisinin
synthesis we demonstrate the importance of non-enzymatic
conversions in terpenoid metabolism and highlight the ability
of A. annua glandular secretory trichomes to re-direct flux
into a novel sesquiterpene. The research presented offers new
insight into the mechanism of the final steps of artemisinin
synthesis in A. annua, with significant implications for future
production of secondary compounds in native vs heterologous
host systems.
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Fig. 1. Effects of cyp71av1-1 mutation on selected sesquiterpene levels in fresh and dried leaves. A) Level of selected sesquiterpenes were quantified by
GC-MS (i) and UPLC-MS (ii)-(x) in fresh leaf (L) 1-5 (juvenile), 7-9 (expanding), 11-13 (mature) as counted from the apical meristem, plus oven-dried whole
plant-stripped leaves (dry) from 12-weeks old glasshouse-grown homozygous (hom), heterozygous (het) cyp71av1-1 and segregating wild type (WT) as
described in SI; error bars – SEM (n=15 for L1-5, L7-9 and L11-13; n=6 for dry leaf). Letters represent Tukey’s range test results after one way ANOVA
or REML (see SI Materials and Methods for details). Groups not sharing letters indicate statistically significant differences(B) Summary of the effects of
cyp71av1-1 mutation on the level of selected sesquiterpenes; red cross indicates steps of the pathway targeted by cyp71av1-1 mutation, full arrows –
known enzymatic steps, dotted arrows – potential non enzymatic conversions, brown dotted arrows – novel pathway operating in the cyp71av1-1 mutant,
full green arrows – metabolite changes (all types of leaves). Metabolite abbreviations: G-3-P – glyceraldehyde-3-phosphate; MEP - 2-C-methylerythritol 4-
phosphate; MEcPP - 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate. Cytosolic precursors: HMG-CoA - 3-hydroxy-3-methylglutaryl-CoA; MVA – mevalonate,
FPP – farnesyl diphosphate, A-4,11-D – amorpha-4,11-diene, AAOH – artemsinic alcohol, AAA – artemsinic aldehyde, AA – artemsinic acid, ArtB – arteannuin
B, DHAAA - dihydroartemsinic aldehyde, DHAA - dihydroartemsinic acid, DHAAOOH- dihydroartemsinic acid tertiary hydroperoxide, DHEDB – dihydro-
epi-deoxyarteanniun B, DeoxyArt- deoxyartemisinin: A-4,11-DOOH- amorpha-4,11-diene tertiary hydroperoxide. Enzyme abbreviations: HMGR- 3-hydroxy-
3-methylglutaryl coenzyme A reductase, HDR- 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, DXR-1-deoxy-D-xylulose-5-phosphate reductoisomerase,
DXS- 1-deoxy-D-xylulose-5-phosphate synthase FPS- Farnesyl diphosphate synthase. Artemisinin pathway: AMS – amorpha-4,11-diene synthase, CYP71AV1 -
amorpha-4,11-diene C-12 oxidase, CPR – cytochrome P450 reductase, DBR2 - artemisinic aldehyde Δ 11 (13) reductase, ALDH1 - aldehyde dehydrogenase.

be promiscuous (24). We reasoned that this plasticity could be
exploited by developing biochemical knock-outs, re-directing flux

to new high-value sesquiterpenes in a proven plant production
system.
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Fig. 2. Developmental patterns of artemisinin and arteannuin X biosynthesis.
Leaves 1 to 24 (counting from apical meristem and shown below graphs) de-
tached from the main stem of three cyp71av1-1 (A) and three wild type plants
(B). Chloroform extracts were subjected to NMR analysis (see SI Materials and
Methods for details) and abundance for selected metabolites calculated from
the integration of distinctive resonances is shown as proportion of the total
for each leaf. Abbreviations: A-4,11-D – amorpha-4,11-diene, A-4,11-DOOH
- amorpha-4,11-diene tertiary hydroperoxide, DHAA - dihydroartemsinic
acid, DHAAOOH- dihydroartemsinic acid tertiary hydroperoxide, DHEDB –
dihydroepoxyarteanniun B;error bars – SEM (n=3)

Recent attempts to knock down the amorpha-4,11-diene syn-
thase using RNAi in self-pollinating A. annua resulted in only a
modest (30-50%) reduction in artemisinin levels (25). We have
chosen to target CYP71AV1, which catalyses the three-step con-
version of amorpha-4,11-diene to artemisinic acid (13, 26, 27).
When we knocked out this enzyme, as expected artemisinin was
not produced - however, rather than amorpha-4,11-diene accu-
mulating, it was instead readily converted to a novel sesquiter-
pene epoxide, arteannuin X. Detailed metabolite analysis re-
vealed that production of this compound paralleled the produc-
tion of artemisinin during leaf maturation with early steps occur-
ring in young leaves and later steps in older leaves. Our findings
confirm the function of the CYP71AV1 enzyme in planta and
also demonstrate the flexibility of glandular secretory trichome
biochemistry, such that it is capable of re-directing the flux of
amorpha-4,11-diene into a novel sesquiterpene epoxide at levels
similar to artemisinin.

Fig. 3. Feeding intact and protein extracted glandular secretory trichomes
(GSTs) with 13C-isotope labelled DHAA. Intact GSTs isolated from young
leaves of cyp71av1-1 (A) or segregating wild type (B) and trichome protein
extracts from cyp71av1-1 (C) or segregating wild type (D) were fed with
[U-13C15]-DHAA as described in SI materials and methods. The concentra-
tion of selected [U-13C15]-labelled metabolites was first corrected for the
different densities of the GST extracts and then calculated with subtraction
of relevant feeding buffer controls, containing no trichomes or no pro-
tein extracts. Metabolites are represented by shapes: Artemisinin-triangles,
DHEDB – squares, Treatments are represented by colours: white – intact,
light incubated GSTs; black- intact, dark incubated GSTs red - boiled, light
incubated GSTs. Level of metabolites was monitored by UPLC-MS. See SI
Materials and Methods for details. Error bars – SEM (n=3). Labelled substrate
([U-13C15]-DHAA) levels started at 30 - 40uM (off the scale of the graphs) and
decreased as expected over the course of the experiments.

Results and Discussion
Disruption of CYP71AV1 results in the accumulation of a novel
sesquiterpene epoxide at the expense of artemisinin

We used the TILLING method (28) to screen for mutations
in the single copy (Fig. S1) CYP71AV1 gene in an F2 population
of A. annua that had been derived from an ethyl methane sul-
fonate (EMS)-mutagenized population of the Artemis F1 hybrid
as previously described (19). This resulted in an allelic series
of 10 mutants, of which just one was non-sense due to a G
to A transition in the second exon of CYP71AV1 (Fig. S2 A).
This mutation, which we designate cyp71av1-1, gives a predicted
conversion of amino acid Trp124 in the polypeptide to a stop
codon resulting in a major truncation of the enzyme and loss of
most of the putative heme-binding sites, as well as Ser473, which
is crucial for catalysing oxidation reactions (Fig. S2 B,C).

Previous work had shown that early stage intermediates in
the artemisinin pathway accumulate in young A. annua leaves
and as they mature artemisinin accumulates (25, 29). In order to
investigate the effects of the cyp71av1-1 mutation on artemisinin
biosynthesis we analysed three leaf developmental stages: juve-
nile (leaves 1-5 as counted down from apical meristem), expand-
ing (leaves 7-9) and mature (leaves 11-13). To generate material
for this analysis we backcrossed cyp71av1-1 to Artemis parents,
selfed the progeny and performed DNA marker-based selection
of wild type (WT), heterozygous and homozygous cyp71av1-1
individuals from the segregating backcrossed F2 population (Fig.
S3). We did not detect any morphological differences between
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wild type and cyp71av1-1 material (Fig. S4). We also extended the
analysis to include oven-dried leaf material stripped from entire
plants in order to investigate metabolite conversions occurring
post-harvest.

Compared to WT and heterozygous material, the juvenile
leaves of cyp71av1-1 contain significantly elevated levels of the
first committed metabolite in the artemisinin pathway, amorpha-
4,11-diene (A-4,11-D; Fig. 1A i), Supplemental Tables 2 and 4),
consistent with the reported in vitro activity of CYP71AV1 (13,
26, 27). Metabolite profiling further revealed a complete loss of
all metabolites downstream of A-4,11-D including artemisinin,
which typically accumulate in juvenile, expanding and mature wild
type leaves (Fig. 1A ii)- 1A viii); 1C; Supplemental tables 1 and
3).

Other classes of secondary metabolites, including aromatic
alcohols and ketones, coumarins, monoterpenes and other
sesquiterpenes remained largely unchanged in cyp71av1-1 (Sup-
plemental Tables 1 and 2). However, levels of some minor mono-
(eucalyptol, borneol, sabinene) and sesquiterpenes (calarene,
α-bisabolol, cedrenol,) were reduced and levels of two minor
flavonoids (retusin and artemetin) were increased in cyp71av1-
1 (Supplemental Tables 1 and 2). These and other changes were
largely restricted to the juvenile leaves (Supplemental Tables 1
and 2, Fig S5) which are relatively dense in glandular trichomes
(29) and exhibit high expression levels of terpene synthases (30).
Recent attempts to silence AMORPHA-4,11-DIENE SYNTHASE
(AMS) expression in self-pollinating varieties of Artemisia annua
resulted in increased levels of two non-amorphadiene sesquiter-
penes, caryophyllene and copaene, which may be due to an
elevated pool of FPP acting as substrate for other sesquiterpene
synthases in the glandular trichomes (25).

Ultra-Performance Liquid-Chromatography tandem Mass
Spectrometry (UPLC-MS) analysis revealed that cyp71av1-1
leaves accumulate large amounts of an oxygenated C14 metabolite
(Supplemental Table 1, Peak ID M221.1535T43). One and two
dimensional Nuclear Magnetic Resonance (1D and 2D-NMR)
spectroscopic techniques were used to elucidate the structure of
this amorphadiene sesquiterpene as (2S,3R,6S)-3-methyl-6-(2R-
methyloxiran-2-yl)-2-(3-oxobutyl) cyclohexanone, which we refer
to as arteannuin X (Fig. 1 A ix) and 1B). At 0.4% leaf dry weight
in mature leaves the concentration of arteannuin X in cyp71av1-
1 is almost half that of artemisinin in wild type leaves and the
developmental profile for accumulation in expanding and mature
leaves is similar for both compounds (Fig. 1A ix); Supplemental
table 1). The fact that arteannuin X is present in trace amounts
in wild type and heterozygous cyp71av1-1 material (Fig. 1A ix);
Supplemental Table 1) suggests it normally occurs as a by-product
of amorpha-4,11-diene oxidation. In vivo and in vitro formation of
low abundance by-products derived from other intermediates of
artemisinin synthesis have previously been reported (12, 17, 18).

NMR analysis of cyp71av1-1 extracts identified a second ma-
jor compound, amorpha-4,11-diene tertiary allylic hydroperoxide
(A-4,11-DOOH; Fig. 1A x); 1B) that had not previously been
reported in wild type A. annua. The pattern of accumulation
of A-4,11-DOOH (Fig. 1A x)) pre-empted that of arteannuin
X reaching a concentration of almost 0.15% leaf dry weight in
juvenile and expanding leaves of cyp71av1-1 before decreasing in
mature leaves (Fig. 1A x)). Although A4,11-D-OOH was suffi-
ciently stable to survive the chromatographic isolation procedures
which were required in order to obtain it in a pure state for
analysis by NMR, it was found to be unstable under prolonged
storage in deuterated chloroform, where it spontaneously con-
verted to arteannuin X. This provided the first circumstantial
evidence that arteannuin X might be biosynthesised from A-
4,11-D via its tertiary hydroperoxide (A-4,11-DOOH) in vivo, in
much the same way that DHAA has previously been shown to be

transformed to artemisinin via the tertiary allylic hydroperoxide
of dihydroartemisinic acid, DHAAOOH (17).

In planta similarities between the synthesis of arteannuin x
and artemisinin

Using UPLC-MS we compared the conversion profile of
A-4,11-D to arteannuin X in leaves with that of DHAA to
artemisinin. Specifically, we also monitored DHAAOOH, the
final intermediate in the in-vivo production of artemisinin (Fig.
1A iv), 1B). We found that DHAAOOH levels peak in expanding
WT leaves at a concentration of 0.5% leaf dry weight (Fig. 1A
iv), Supplemental Table 1). Artemisinin levels increase gradually
from juvenile to mature leaves, reaching a maximum concentra-
tion of 1.2% dry leaf weight and remaining stable during the
post-harvest drying process. (Fig. 1A iv), Supplemental Table
1). Previous work has shown that the DHAAOOH intermedi-
ate can also give rise to both dihydro-epi-deoxyarteannuin B
(DHEDB) (31), and (by Hock-cleavage) deoxyartemisinin (17).
While DHEDB remains at a concentration 3-fold lower than
artemisinin throughout leaf maturation and post-harvest (Fig. 1A
vi), Supplemental table 1), the levels of deoxyartemisinin increase
during dry leaf storage, accumulating to 0.1% leaf dry weight
(Fig. 1A vii), Supplemental Table 1). These data suggest that post-
harvest any remaining DHAAOOH is preferentially converted to
deoxyartemisinin rather than artemisinin.

We next carried out a more detailed analysis of the progres-
sion during leaf maturation of A-4,11-D to either arteannuin X
or artemisinin in cyp71av1-1 and WT, respectively, by performing
1H NMR analysis on individual extracts from a 24-leaf matu-
ration series (Fig. 2). Determination of the relative amounts of
the three most abundant sesquiterpene metabolites associated
with cyp71av1-1 (A-4,11-D, A-4,11-DOOH and arteannuin X)
revealed a progressive decline in A-4,11-D, which was matched by
an increase in arteannuin X. This analysis also demonstrated that
the amount of A-4,11-DOOH reaches a maximum in leaves 7-8
(Fig. 2A). This pattern is entirely consistent with our hypothesis
that A-4,11-D is converted to arteannuin X via the intermediate
A-4,11-DOOH. 1H NMR analysis of wild type material clearly
demonstrated that a decline in DHAA inversely correlates with
an increase in artemisinin which reaches a maximum at leaves 14-
15, while the DHAAOOH intermediate peaks around leaves 7-8
(Fig. 2B), as for A-4,11-DOOH.

The results of the above experiments revealed clear par-
allels in the conversion of A-4,11-D to arteannuin X via the
hydroperoxide intermediate (A-4,11-DOOH) and the final steps
in the conversion of DHAA to artemisinin via DHAAOOH.
There is strong in vivo and in vitro evidence for a non-enzymatic
autoxidation of DHAA to DHAAOOH and subsequent non-
enzymatic rearrangement to artemisinin (17). Our data suggest
that a similar auto-oxidation operates in cyp71av1-1 to convert
amorpha-4,11-diene to A-4,11-DOOH and on to arteannuin X.
The spontaneous conversion of A-4,11-DOOH to arteannuin-X
in deuterated chloroform noted above is entirely consistent with
this hypothesis.

In vivo evidence for non-enzymatic DHAA conversion in
cyp71av1-1 and WT trichomes.

Previous reports have suggested peroxidase and/or dioxyge-
nase enzymes may be involved in the conversion of DHAA to
artemisinin (16, 32). To further investigate DHAA conversion
we fed [U-13C15]-DHAA to boiled, intact and dark-incubated
trichomes that had been isolated from cyp71av1-1 (which lacks
endogenous DHAA) and wild type leaves (see SI Materials and
Methods for details). Chloroform extracts of [U-13C15]-DHAA
fed trichomes and no-trichome controls were subjected to UPLC-
MS analysis and the mass spectrum of each sesquiterpene 12C
monoisotope metabolite was used to predict the mass spectra
expected from the corresponding [U-13C15]- isotopomer. Metabo-
lite concentrations were first normalised to the trichome density
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for a given sample. As DHAA can slowly degrade and con-
vert spontaneously to “downstream” products over time labelled
metabolite concentrations in trichome samples were also cor-
rected by subtracting concentrations measured in matched time-
equivalent buffer controls. (Fig. 3).

It was found that [U-13C15]-artemisinin did not accumu-
late substantially over the 5-day feeding period in extracts of
[U-13C15]-DHAA-fed trichomes in either cyp71av1-1 or WT
leaves (Fig. 3A and B white, red and black triangles). Lack of
artemisinin accumulation in trichomes fed with [U-13C15]-DHAA
is perhaps not surprising, as previous results have indicated
that DHAAOOH cannot efficiently undergo Hock-cleavage into
artemisinin in an aqueous environment (such as trichome extrac-
tion buffer), and that it may preferentially form DHEDB (17).
We found an accumulation of [U-13C15]-DHEDB in extracts from
both light-incubated boiled and intact trichomes from cyp71av1-
1 and wild type leaves (Fig. 3A and B, white and red squares).
Dark-incubated samples do not show an accumulation of the [U-
13C15] labelled DHEDB (Fig. 3A and B, black squares) leading
us to conclude that DHEDB formation is light-dependent. Both
cyp71av1-1 and wild type trichomes show very similar patterns
of [U-13C15]-DHEDB accumulation which reached a plateau be-
tween 2-3 days after feeding commenced (Fig 3A and B, white
and red squares). It is also evident that boiling accelerates the
formation of DHEDB in both cyp71av1-1 and wild type trichomes
(Fig 3A and B, red vs. white squares), consistent with the process
being non-enzymatic. We did not detect labelled DHAAOOH
itself which suggests the experimental conditions favoured rapid
conversion of this intermediate through to DHEDB.

In order to investigate if uptake of [U-13C15]-DHAA into
isolated trichomes is a limiting factor in the feeding experiment
we fed the labelled substrate to crude protein extracts from
isolated trichomes. The products and temporal pattern of their
accumulation was very similar to that obtained for the intact
trichome feeding (Fig 3C and D). Notably, there is no accu-
mulation of [U-13C15]-artemisinin over the 5 day feeding period
(Fig 3C and D red, black and white triangles) while [U-13C15]-
DHEDB accumulates in both light-incubated boiled and non-
boiled protein extracts from cyp71av1-1 and wild type trichomes
(Fig 3C and D red and white squares). It is also evident that
boiling accelerates the formation of DHEDB in both cyp71av1-
1 and wild type trichome protein extracts (Fig 3C and D, red vs.
white squares), consistent with the process being non-enzymatic.

The intact trichome- and trichome protein extract-feeding ex-
periments demonstrate that in cyp71av1-1, a block in artemisinin
and DHEDB biosynthesis can be rescued by direct feeding of
DHAA, which is expected given the role of CYP71AV1 in the
artemisinin biosynthetic pathway (Fig. 1B). The lack of further
accumulation of artemisinin over a 5 day period in trichomes
maintained in an aqueous media contrasts with the gradual ac-
cumulation of artemisinin in trichomes during leaf maturation
(Fig 1 and 2). These observations lead us to suggest that the non-
aqueous environment present in the intact sub-apical cavity of
glandular secretory trichomes is essential for the efficient conver-
sion of DHAA to artemisinin via DHAAOOH. In the absence of
such an environment, DHAA is instead converted to DHEDB in
a light dependent non-enzymatic process.

The hydrophobic nature of amorpha-4,11-diene prevented
us from preparing aqueous solutions of [U-13C15]-A-4,11-D for

trichrome-feeding experiments and performing a similar analysis
of arteannuin X in the cyp71av1-1 mutant.

Given that the final steps in artemisinin biosynthesis appear
to be non-enzymatic, the question arises as to how its production
during leaf maturation is controlled. It is reasonable to assume
that active transport system(s) will be responsible for pumping
artemisinin precursors into the sub-apical cavity of glandular
secretory trichomes. Transport of DHAA into the sub-apical
cavity could be a limiting factor with spatial and temporal expres-
sion patterns of relevant transporters controlling the increase in
artemisinin during leaf maturation (Fig. 2B).

Conclusion
We have described an A. annua CYP71AV1 knock-out mutant

which provides the first in planta confirmation for the function
of this enzyme. The cyp71av1-1 mutant accumulates high levels
of amorpha-4,11-diene, which is converted to arteannuin X, a
novel nor- seco-amorphane sesquiterpene epoxide. This work
clearly demonstrates the plasticity of metabolism in the glandular
secretory trichomes of A. annua; when one pathway is blocked
novel sesquiterpene alternatives are produced, highlighting the
potential of trichomes as factories for production of new com-
pounds with potential medicinal and industrial applications.

We found that the in-vivo oxidation of amorpha-4,11-diene
to arteannuin X parallels that of DHAA to artemisinin during
the progression of leaf maturation. We were able to chemically
complement cyp71av1-1 by externally feeding DHAA to intact tri-
chome preparations and trichome protein extracts. This demon-
strated that the conversion of DHAA to DHEDB, via a tertiary
allylic hydroperoxide, is a non-enzymatic, light-requiring process.,
The lack of accumulation of artemisinin in these experiments
supports the idea that a non-aqueous environment, as provided by
the sub-apical cavity of glandular secretory trichomes, is essential
for the non-enzymatic production of the endoperoxide containing
artemisinin from DHAA. Taken together these findings high-
light the importance of non-enzymatic conversions in terpenoid
metabolism of A. annua glandular secretory trichomes. This,
together with the observation that artemisinin is known to be
cytotoxic to various cell types (4, 33, 34), suggests a functional
requirement for the specialised sub-apical cavity as a location
for both chemical conversion and storage. It also highlights the
challenges of producing certain types of plant natural products in
microbial systems which lack this level of structural complexity,
and the need for more research into the compartmentation of
metabolic processes in plant production systems

Materials and Methods
Full details of plant material used, plant growth conditions, screening of
EMS-mutagenized population, genotyping, metabolomic analyses, 2-D NMR
structural characterization, trichome extractions and trichome feeding with
13C-labelled substrates are presented in the Supplementary Information.
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